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Abstract
This paper presents the dimension split element-free Galerkin (DSEFG)method for three-dimensional potential problems, and
the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem
can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving
least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system
with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation,
and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in
the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG
method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that
the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

Keywords Dimension split method · Improved moving least-squares (IMLS) approximation · Improved element-free
Galerkin (IEFG) method · Finite difference method (FDM) · Dimension split element-free Galerkin (DSEFG) method ·
Potential problem

1 Introduction

The meshless method is an effective tool to solve boundary
value problems of partial differential equations in addition to
the finite difference method (FDM), finite element method
(FEM), and boundary element method (BEM). Themain dif-
ference between these conventional numerical methods and
meshless method is the different approaches to obtain the
shape functions. However, once the shape function has been
formed, they use the same procedure to obtain the equation
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system to get the numerical solution of a problem. FDM,
FEM, and BEM rely on meshes, then remeshing must be
used to solve some complicated problems, such as extremely
large deformations and crack growth problems. The mesh-
less method only needs nodes or particles, and it can solve
many complicated physical and engineering problems that
cannot be solvedwellwith conventional computationalmeth-
ods [1,2].

The potential problem is an important physical and engi-
neering problem, whose governing equations are commonly
Laplace’s equations or Poisson’s equations. The popular
numerical methods solving potential problems include FEM,
FDM, BEM, and meshless methods [3–7]. The meshless
method is actually amore effective numericalmethod to solve
partial differential equations that govern various physical and
engineering phenomena than traditional methods.

In recent years, several meshless methods, such as bound-
ary node method [8–10], element-free Galerkin method
[11–18], boundary element-free method [19,20], and mesh-
less local Petro-Galerkin method coupled with FEM [21],
were developed to solve potential problems. The improved
element-free Galerkin (IEFG) method is an effective mesh-
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less method to solve three-dimensional potential problems,
because in the IEFG method, the improved moving least-
squares (IMLS) approximation, in which the orthogonal
function system is selected as the basis function, is used to
obtain the shape function [12,22]. The algebraic equations
system in the IMLS approximation is well-conditioned, and
it can be solvedwithout deriving the inversematrix. There are
fewer coefficients in the IMLSapproximation than the ones in
the moving least-squares (MLS) approximation, which is the
basis of the EFG method, then the computational efficiency
of the IEFG method is greater than the EFG method. Using
the IEFG method, the three-dimensional potential problem
was effectively solved [12]. Furthermore, the IEFG method
can also be successfully applied to other science and engi-
neering problems. In their work, Zhang et al. [23] employed
the IEFG method for two-dimensional elasticity problems,
2D fracture problems [24], three-dimensional wave equation
[25], and two-dimensional elastodynamics problems [26].

The dimension split method (DSM) was proposed by Li
and Huang [27]. The essential features of the DSM are that
the three-dimensional domain is partitioned by several two-
dimensional surfaces into several sub-domains. They used
optimal control to deal with the stream-function equations
of compressible turbomachinery flows and their finite ele-
ment approximation [27]. They also applied the DSM for the
3D compressible Navier–Stokes equations in turbomachine
[28], the three dimensional rotating Navier–Stokes equations
[29], the incompressible Navier–Stokes equations in three
dimensions [30], and the linearly elastic shell [31]. Addi-
tionally, Hansen and Ostermann [32] presented the DSM
for evolution and quasilinear parabolic equations [33]. The
dimension split method is actually an efficient and conve-
nient numerical method to solve various problems [34–37].
Thework of Cheng et al. [38,39] introduced theDSM into the
improved complex variable element-free Galerkin method
for solving three-dimensional potential and wave propaga-
tion problems. It is obvious that the DSM is different from
the traditional domain decomposition method because only
two-dimensional problems are solved in each sub-domain
without solving a three-dimensional problem, then the com-
putational efficiency is improved greatly.

Three-dimensional potential problems are effectively
solved with the dimension split element-free Galerkin
method. For these two-dimensional problems, the IMLS
approximation is applied to construct the shape function.
The Galerkin weak form is applied to obtain a discretized
system equation, and the penalty method is employed
to impose the essential boundary condition. The finite
difference method is selected in the splitting direction.
Finally, several numerical examples are solved using the
dimension split element-free Galerkin (DSEFG) method.
These numerical examples test and verify DSEFG theo-
retical result. The convergence study and error analysis of

the DSEFG method are presented. The numerical exam-
ples show that the DSEFG method has greater computa-
tional precision and computational efficiency than the IEFG
method.

2 The basic equations of three-dimensional
potential problems with dimension split
scheme

Consider the following three-dimensional potential problem

∂2u

∂x21
+ ∂2u

∂x22
+ ∂2u

∂x23
= b(x), x = (x1, x2, x3) ∈ Ω, (1)

u(x) = ū(x), x ∈ Γu, (2)

q(x) = ∂u(x)
∂n

= q̄(x), x ∈ Γq , (3)

where u(x) is an unknown function, b(x) is a known function.
In the general case, there exist mixed boundary conditions
on the boundary Γ of the domain Ω . Γu is one part of the
boundary Γ with known potential function ū(x), and Γq is
the remaining boundary with known normal derivative q̄(x).
Notice that Γ = Γu ∪ Γq , Γu ∩ Γq = ∅, and n is the unit
outward normal to the boundary Γ .

When using the DSEFG method to solve potential prob-
lems, we can choose the splitting direction according to the
control equations and boundary conditions, which results in
that the process of calculating and programming are easy to
achieve.

In this paper, we assume that the problem domain Ω is
split into L layers along the direction x3, and the distance
between adjacent layers is �x3. Then we have L + 1 two-
dimensional sub-domains Ω(k), k = 0, 1, . . . , L , and

Ω =
L-1⋃

k=0

Ω(k) ×
[
x (k)
3 , x (k+1)

3

]
∪ Ω(L), (4)

where

a = x (0)
3 < x (1)

3 . . . < x (L)
3 = c, x3 ∈ [a, c], (5)

�x3 = x (k+1)
3 − x (k)

3 = (c − a)/L. (6)

For a fixed x (k)
3 , u, and ∂2u

∂x23
can be considered the func-

tion of x1 and x2. Three-dimensional potential problem is
translated into a series of two-dimensional boundary value
problems, i.e.

∂2u(k)

∂x21
+ ∂2u(k)

∂x22
= b(k) − ∂2u(k)

∂x23
, (x1, x2) ∈ Ω(k), x3 = x (k)

3 ,

(7)
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The corresponding boundary conditions are

u (x1, x2) = ū (x1, x2) = ū
(
x1, x2,x

(k)
3

)
,

(x1, x2) ∈ Γ (k)
u , (8)

q (x1, x2) = q̄ (x1, x2) = q̄
(
x1, x2, x

(k)
3

)
,

(x1, x2) ∈ Γ (k)
q , (9)

where

u(k) = u
(
x1, x2, x

(k)
3

)
, (10)

b(k) = b
(
x1, x2, x

(k)
3

)
, (11)

u(x1, x2) is the field potential in the sub-domain Ω(k),

ū(x1, x2,x
(k)
3 ) is the given potential on essential boundary

Γ
(k)
u , q̄(x1, x2,x

(k)
3 ) is the given gradient on natural bound-

ary Γ
(k)
q , Γ (k) = Γ

(k)
u ∪ Γ

(k)
q , and Γ

(k)
u ∩ Γ

(k)
q = ∅.

Then we can solve Eqs. (7)–(9) in the sub-domain Ω(k)

by using the IEFG method, and in the direction x3 finite
differencemethod is used to obtain the solution of the original
problem, i.e. Eqs. (1)–(3). This is the idea of the DSEFG
method for three-dimensional potential problems.

The equivalent functional of Eqs. (7)–(9) is

Π =
∫

Ω(k)

[
u

(
∂2u

∂x23
− b

)]
dΩ(k)

−
∫

Ω(k)

1

2

[(
∂u

∂x1

)2

+
(

∂u

∂x2

)2
]
dΩ(k)

−
∫

Γ
(k)
q

uq̄dΓ (k). (12)

The shape function of the IMLS approximation does not
satisfy the property of the Kronecker delta function; there-
fore, the essential boundary cannot be directly imposed to
Eq. (12). In this paper, the penalty method is used to impose
the essential boundary conditions. The modified functional
can then be expressed as

Π∗ = Π + α

2

∫

Γ
(k)
u

(u − ū)(u − ū)dΓ (k), (13)

where α is the penalty factor.
Let

δΠ∗ = 0, (14)

the equivalent integral weak form can be obtained as

∫

Ω(k)
δu · ∂2u

∂x23
dΩ(k) −

∫

Ω(k)
δ(Lu)T · (Lu)dΩ(k)

−
∫

Ω(k)
δu · bdΩ(k) −

∫

Γ
(k)
q

δu · q̄dΓ (k)

+α

∫

Γ
(k)
u

δu · udΓ (k) − α

∫

Γ
(k)
u

δu · ūdΓ (k) = 0, (15)

where

L(·) =
[

∂
∂x1
∂

∂x2

]
(·). (16)

3 The dimension split element-free Galerkin
method for three-dimensional potential
problems

3.1 Improvedmoving least-squares approximation

M nodes x(k)
I , I = 1, 2, . . . , M are distributed in a two-

dimensional sub-domain Ω(k). The u (x) at node x(k)
I is

represented as

uI = u
(
x(k)
I , x (k)

3

)
. (17)

u
(
x(k), x (k)

3

)
at any x(k) =

(
x (k)
1 , x (k)

2

)
is approximated by

nodes x(k)
I , I = 1, 2, . . . , n whose influence domains cover

the point x(k).
The IMLS approximation is used to construct shape

functions. The approximation of u (x) at point x(k) in the two-

dimensional sub-domain Ω(k) is donated as uh
(
x(k), x (k)

3

)
,

and the trial function is

uh
(
x(k), x (k)

3

)
=

m∑

i=1

pi
(
x(k)

)
ai

(
x(k)

)

= pT
(
x(k)

)
a

(
x(k)

)
, x(k) ∈ Ω(k),

(18)

where pi
(
x(k)

)
is the basis function, pT

(
x(k)

)
is a vector of

basis functions that consist mostly of monomials of the low-
est order to ensure minimum completeness, m is the number
of terms of the monomials, and a

(
x(k)

)
is a vector of coef-

ficients. For the two-dimensional sub-domain Ω(k), in this
paper the basis function is chosen as the linear basis, i.e.

pT = (1, x1, x2) , m = 3. (19)
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Define a functional

J =
n∑

I=1

w
(
x(k)−x(k)

I

) [
m∑

i=1

pi
(
x(k)

)
ai

(
x(k)

)
− uI

]2

,

(20)

where x(k)
I , I = 1, 2, . . . , n, are nodes with domains of influ-

ence that cover the point x(k), w
(
x(k) − x(k)

I

)
is a weight

functionwith a domain of influence, and uI = u
(
x(k)
I , x (k)

3

)
.

From

∂ J

∂a
= 0, (21)

we obtain

a
(
x(k)

)
= A−1

(
x(k)

)
B

(
x(k)

)
u, (22)

where

A
(
x(k)

)
= PTWP, (23)

B
(
x(k)

)
= PTW, (24)

uT = (u1, u2, . . . , un) , (25)

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

p1
(
x(k)
1

)
p2

(
x(k)
1

)
· · · pm

(
x(k)
1

)

p1
(
x(k)
2

)
p2

(
x(k)
2

)
· · · pm

(
x(k)
2

)

.

.

.
.
.
.

. . .
.
.
.

p1
(
x(k)
n

)
p2

(
x(k)
n

)
· · · pm

(
x(k)
n

)

⎤

⎥⎥⎥⎥⎥⎥⎦
, (26)

W =

⎡

⎢⎢⎢⎢⎢⎢⎣

w
(
x(k) − x(k)

1

)
0 · · · 0

0 w
(
x(k) − x(k)

2

)
· · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · w
(
x(k) − x(k)

n

)

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(27)

In the IMLS approximation, a weighted orthogonal poly-
nomial set (p1, p2, . . . , pm) is selected as the basis functions,
which results in

a
(
x(k)

)
= A∗ (

x(k)
)
B

(
x(k)

)
u, (28)

where

A∗ (
x(k)

)
=

⎡

⎢⎢⎢⎢⎣

1
(p1,p1)

0 · · · 0

0 1
(p2,p2)

· · · 0
...

...
. . .

...

0 0 · · · 1
(pm ,pm )

⎤

⎥⎥⎥⎥⎦
. (29)

Substituting Eq. (28) into Eq. (18), we can obtain

uh
(
x(k), x (k)

3

)
=

n∑

I=1

Φ∗
I

(
x(k)

)
uI

(
x(k)

)

= Φ∗ (
x(k)

)
u, (30)

where Φ∗ (
x(k)

)
is a shape function

Φ∗ (
x(k)

)
=

(
Φ∗

1

(
x(k)

)
, Φ∗

2

(
x(k)

)
, . . . , Φ∗

n

(
x(k)

))

= PT
(
x(k)

)
A∗ (

x(k)
)
B

(
x(k)

)
, (31)

Φ∗
I

(
x(k)

)
=

m∑

j=1

p j

(
x(k)

) [
A∗ (

x(k)
)
B

(
x(k)

)]

j I
. (32)

For the monomial basis function

q = (qi ) =
(
1, x1, x2, x

2
1 , x1x2, x

2
2 , . . .

)
, (33)

the weighted orthogonal basis function set can be written as

pi = qi −
i−1∑

k=1

(qi , pk)

(pk, pk)
pk, i = 1, 2, 3, . . . . (34)

In this paper, we select cubic spline function

w (d) =

⎧
⎪⎨

⎪⎩

2
3 − 4d2 + 4d3, d � 1

2 ,

4
3 − 4d + 4d2 − 4

3d
3, 1

2 < d � 1,

0, d > 1,

(35)

as the weight function. Here

d = dI

d̂
= |x − xI |

d̂
, (36)

d̂ is the size of the domain of influence of the node xI , d̂ =
dmax · cI , dmax is a scaling parameter, and cI is the distance
between xI and the nearest node from it.

3.2 The dimension split element-free Galerkin
method for three-dimensional potential
problems

To obtain the solution of the original problem, i.e. Eqs. (1)–
(3), the Galerkin weak form of the three-dimensional poten-
tial problem is used to get the final discretized equations.
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From Eq. (30), we have

∂2u
(
x(k), x (k)

3

)

∂x23
= ∂

∂x23

n∑

I=1

Φ∗
I

(
x(k)

)
uI

(
x(k), x (k)

3

)

=
n∑

I=1

Φ∗
I

(
x(k)

)∂2uI

∂x23
= Φ∗ (

x(k)
)
u′′,

(37)

Lu
(
x(k), x (k)

3

)
=

n∑

I=1

[
∂

∂x1
∂

∂x2

]
Φ∗

I

(
x(k)

)
uI

=
n∑

I=1

BI

(
x(k)

)
uI = B

(
x(k)

)
u, (38)

where

u′′ =
(

∂2u1
∂x23

,
∂2u2
∂x23

, . . . ,
∂2un
∂x23

)T

, (39)

B
(
x(k)

)
=

(
B1

(
x(k)

)
,B2

(
x(k)

)
, . . . ,Bn

(
x(k)

))
, (40)

BI

(
x(k)

)
=

[
Φ∗

I ,1

(
x(k)

)

Φ∗
I ,2

(
x(k)

)
]

. (41)

Substituting Eqs. (30), (37), and (38) into Eq. (15) yields

∫

Ω(k)
δ
[
Φ∗ (

x(k)
)
u
]

·
[
Φ∗ (

x(k)
)
u′′] dΩ(k)

−
∫

Ω(k)
δ
[
B

(
x(k)

)
u
]T ·

[
B

(
x(k)

)
u
]
dΩ(k)

−
∫

Ω(k)
δ
[
Φ∗ (

x(k)
)
u
]

· bdΩ(k)

−
∫

Γ
(k)
q

δ
[
Φ∗ (

x(k)
)
u
]

· q̄dΓ (k)

+
∫

Γ
(k)
u

δ
[
Φ∗ (

x(k)
)
u
]

· α ·
[
Φ∗ (

x(k)
)
u
]
dΓ (k)

−
∫

Γ
(k)
u

δ
[
Φ∗ (

x(k)
)
u
]

· αūdΓ (k) = 0. (42)

In order to obtain the discrete equations, we discuss each
integration term of Eq. (42) as follows.

The first integration term of Eq. (42) is

∫

Ω(k)
δ
[
Φ∗ (

x(k)
)
u
]

·
[
Φ∗ (

x(k)
)
u′′] dΩ(k)

= δuT ·
[∫

Ω(k)
Φ∗T (

x(k)
)
Φ∗ (

x(k)
)
dΩ(k)

]
· u′′

= δuT · C · u′′, (43)

where

C =
∫

Ω(k)
Φ∗T (

x(k)
)
Φ∗ (

x(k)
)
dΩ(k). (44)

The second integration term of Eq. (42) is

∫

Ω(k)
δ
[
B

(
x(k)

)
u
]T ·

[
B

(
x(k)

)
u
]
dΩ(k)

= δuT ·
[∫

Ω(k)
BT

(
x(k)

)
B

(
x(k)

)
dΩ(k)

]
· u

= δuT · K · u, (45)

where

K =
∫

Ω(k)
BT

(
x(k)

)
B

(
x(k)

)
dΩ(k). (46)

The third integration term of Eq. (42) is

∫

Ω(k)
δ
[
Φ∗ (

x(k)
)
u
]

· bdΩ(k)

= δuT ·
∫

Ω

Φ∗T (
x(k)

)
bdΩ(k)

= δuT · F1, (47)

where

F1 =
∫

Ω(k)
Φ∗T (

x(k)
)
bdΩ(k). (48)

The fourth integration term of Eq. (42) is

∫

Γ
(k)
q

δ
[
Φ∗ (

x(k)
)
u
]

· q̄dΓ (k)

= δuT ·
∫

Γ
(k)
q

Φ∗T (
x(k)

)
q̄dΓ (k) = δuT · F2, (49)

where

F2 =
∫

Γ
(k)
q

Φ∗T (
x(k)

)
q̄dΓ (k). (50)

The fifth integration term of Eq. (42) is

∫

Γ
(k)
u

δ
[
Φ∗ (

x(k)
)
u
]

· α ·
[
Φ∗ (

x(k)
)
u
]
dΓ (k)

= δuT ·
[∫

Γ
(k)
u

Φ∗T (
x(k)

)
αΦ∗ (

x(k)
)
dΓ (k)

]
·

u = δuT · Kα · u, (51)

where

Kα = α

∫

Γ
(k)
u

Φ∗T (
x(k)

)
Φ∗ (

x(k)
)
dΓ (k). (52)
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The sixth integration term of Eq. (42) is

∫

Γ
(k)
u

δ
[
Φ∗(x(k))u

]
· αūdΓ (k) = δuT

·
∫

Γ
(k)
u

Φ∗T(x(k))αūdΓ (k)

= δuT · Fα, (53)

where

Fα = α

∫

Γ
(k)
u

Φ∗T(x(k))ūdΓ (k). (54)

Substituting Eqs. (43), (45), (47), (49), (51), and (53) into
Eq. (42), we obtain

δuT · (Cu′′ − Ku + Kαu − F1 − F2 − Fα) = 0. (55)

As δuT is arbitrary, we have

Cu′′ + K̄u = F, (56)

where

K̄ = Kα − K, (57)

F = F1 + F2 + Fα. (58)

To solve Eq. (56), L − 1 points are uniformly inserted to
the domain [a, c], and [a, c] in direction x3 is equally divided
into L parts. That is, the domainΩ is divided into L−1 planes
in direction x3, then we consider the potential of the plane
when x3 = x (1)

3 , x (2)
3 , . . . , x (L−1)

3 .

Suppose u(x (1)
3 ),u(x (2)

3 ), . . . ,u(x (L−1)
3 ) represent the

approximation of the potential of the plane when x3 =
x (1)
3 , x (2)

3 , . . . , x (L−1)
3 . Let

u(x (1)
3 ) = u(1), (59)

u(x (2)
3 ) = u(2), (60)

...

u(x (L−1)
3 ) = u(L−1), (61)

and

u(x (0)
3 ) = u(0) = u(a), (62)

u(x (L)
3 ) = u(L) = u(c), (63)

by using the finite difference method, we have

u′′(k) ≈ u(k−1) − 2u(k) + u(k+1)

(�x3)2
, k = 1, 2, . . . , L − 1.

(64)

Then, Eq. (56) can be written as

C · u
(0) − 2u(1) + u(2)

(�x3)2
+ K̄u(1) = F(1), (65)

C · u
(1) − 2u(2) + u(3)

(�x3)2
+ K̄u(2) = F(2), (66)

C · u
(2) − 2u(3) + u(4)

(�x3)2
+ K̄u(3) = F(3), (67)

...

C · u
(L−2) − 2u(L−1) + u(L)

(�x3)2
+ K̄u(L−1) = F(L−1). (68)

The corresponding matrix form is

1

(�x3)2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H C
C H C

C H C
. . .

. . .
. . .

C H C
C H

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

u(1)

u(2)

u(3)

...

u(L−2)

u(L−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(1) − Cu(0)

(�x3)2

F(2)

F(3)

...

F(L−2)

F(L−1) − Cu(L)

(�x3)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (69)

where

H = − 2C + (�x3)
2K̄. (70)

Let

E = 1

(�x3)2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H C
C H C

C H C
. . .

. . .
. . .

C H C
C H

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (71)

U =
[
u(1)T ,u(2)T ,u(3)T , . . . ,u(L−2)T ,u(L−1)T

]T
, (72)

R=
⎡

⎣
(
F(1)− Cu(0)

(�x3)2

)T

, F(2)T, F(3)T, . . . , F(L−2)T ,

(
F(L−1) − Cu(L)

(�x3)2

)T
⎤

⎦
T

. (73)
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Equation (69) can be simplified as

EU = R. (74)

By solving Eq. (74), we can obtain the potential of nodes
on each layer Ω(k), k = 1, 2, . . . , L − 1. Then the potential
of any nodes in the domain [a, c] can be obtained using linear
interpolation method. Let�x3 = x (k+1)

3 − x (k)
3 , u(x3) can be

expressed as

u(x3) = x3 − x (k)
3

�x3
u(x (k)

3 ) + x (k+1)
3 − x3

�x3
u(x (k+1)

3 ). (75)

4 Example problems

Four example problems are selected to demonstrate the effec-
tiveness and advantages of the DSEFG method presented in
this paper. The convergence of the DSEFG method is dis-
cussed by analyzing the final potential function values under
different nodes distribution and different scaling factors. The
numerical results of these examples are compared with ana-
lytical solutions and the ones of the IEFG method.

In this section, Gaussian quadrature scheme with 4 × 4
points is used for numerical integrations on each cell of the
background mesh. The cubic spline function is used as the
weight function, and the linear basis function is selected.

4.1 Laplace’s equation with Dirichlet boundary
conditions on a cube

As the first example, we consider Laplace’s equation

∇2u(x) = ∂2u(x)

∂x21
+ ∂2u(x)

∂x22
+ ∂2u(x)

∂x23
= 0, x ∈ Ω,

(76)

with boundary conditions

u = sin(πx2) sin(πx3), x1 = 0, (77)

u = 2 sin(πx2) sin(πx3), x1 = 1, (78)

u = 0, x2 = 0, x2 = 1, x3 = 0, x3 = 1, (79)

The problem domain is Ω = [0, 1] × [0, 1] × [0, 1].
The analytical solution is

u = sin(πx2) sin(πx3)

sinh(π
√
2)

[2 sinh(π √
2x1)

+ sinh(π
√
2(1 − x1))]. (80)

Depending on the boundary conditions, the domain Ω is
divided into L equal parts along x1 direction. Uniform node
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Fig. 1 Results obtained by the DSEFG method with different node
distributions
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Fig. 2 Results obtained by the DSEFG method with different dmax

distribution is used in the plane Ox2x3. That is, the domainΩ

can be represented asΩ = L−1∪
k=0

Ω(k) ×[x (k)
1 , x (k+1)

1 ]∪Ω(L).

Results obtained with the DSEFG method with different
node distributions and different dmax along the direction x1
are shown in Figs. 1 and 2.

The convergence of the DSEFG method with different
node distributions and different dmax along the direction x1
are shown in Figs. 3 and 4. In Fig. 3, the domainΩ is divided
into L equal parts in direction x1, and the node distribution
in the plane Ox2x3 is 10 × 10, that is, the node distribution
in the problem domain Ω is (L + 1) × 10 × 10.

From Figs. 1–4, we can observe that the DSEFG method
has greater computational precision under the node distribu-
tion 19 × 10 × 10 when dmax = 1.3.

The relationship between the relative error norm and the
CPU time of the DSEFG and IEFG methods under different
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Fig. 3 The convergence of the DSEFG method with different node
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Fig. 4 The convergence of the DSEFG method with different dmax

Table 1 The relative error norm andCPU time of the DSEFG and IEFG
methods under different node distributions

Number of nodes Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

10 × 10 × 10 0.0048 0.013 1.37 53.84

11 × 10 × 10 0.0037 0.0135 1.48 55.83

12 × 10 × 10 0.0028 0.0173 2.064 56.23

13 × 10 × 10 0.0022 0.0126 1.75 56.62

14 × 10 × 10 0.0016 0.0125 1.88 57.65

15 × 10 × 10 0.0012 0.0169 1.95 58.7

16 × 10 × 10 8.17×10−4 0.0199 2.1 60.07

17 × 10 × 10 5.40×10−4 0.0178 2.2 60.05

18 × 10 × 10 3.46×10−4 0.0164 2.4 61.29

19 × 10 × 10 2.80×10−4 0.0147 2.5 62.05

20 × 10 × 10 3.46×10−4 0.0145 2.579 62.72

21 × 10 × 10 4.60×10−4 0.0155 2.7 63.96

Table 2 The relative error norm and CPU time of the DSEFG and IEFG
methods under different dmax

dmax Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

1.2 0.0022 0.0143 2.5 58.99

1.26 8.08×10−4 0.0147 2.49 64.33

1.3 2.80×10−4 0.0147 2.5 63.74

1.36 8.24×10−4 0.0149 2.65 63.31

1.4 1.10×10−3 0.0152 2.63 64.06

1.46 1.50×10−3 0.016 2.63 68.57

1.5 1.60×10−3 0.0167 3.1 76.67
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Fig. 5 The results of the DSEFG and IEFGmethods along the direction
x1

node distributions and different dmax are shown in Tables 1
and 2.

From Tables 1 and 2, we can see that the DSEFG
method has higher accuracy and computational efficiency
than the IEFG method under the same node distribution
and dmax.

Figures 5–7 show thenumerical solutions obtainedbyboth
the IEFG method and DSEFG method along the three axes
with the node distribution 19 × 10 × 10 and dmax = 1.3.
We can observe that the result of the DSEFGmethod and the
IEFG method are in agreement with the analytical solution,
and the DSEFG method has greater computational precision
and efficiency than the IEFG method.

4.2 Poisson’s equation with Dirichlet boundary
conditions

As a second example,we solve a three-dimensional Poisson’s
equation
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Fig. 6 The results of the DSEFG and IEFGmethods along the direction
x2
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Fig. 7 The results of the DSEFG and IEFGmethods along the direction
x3

∇2u(x) = f (x), x ∈ Ω, (81)

f (x) = −
(
1 + 1

4
+ 1

9

)
π2 sin(πx1) sin

πx2
2

sin
πx3
3

,

(82)

with Dirichlet boundary conditions

u(x) = 0, x ∈ Γ , (83)

where Ω = [0, 1] × [0, 2] × [0, 3].
The analytical solution of this problem is

u(x) = sin(πx1) sin
πx2
2

sin
πx3
3

. (84)

Using the IEFG method to solve this problem, 9 × 21 × 17
regular nodes are distributed in the problem domain Ω and
dmax = 1.22. The relative error is 0.0025 and CPU time is
68.3 s.

Then using the DSEFGmethod to solve this problem, and
three cases in which different splitting direction is selected
are discussed.

(1) The splitting direction is x1. For the first case, the prob-
lem domain Ω is divided into 8 planes equally along the
direction x1. And on each plane Ox2x3, 21 × 17 nodes
are regularly chosen. It means that the integral node dis-
tribution is 9×21×17. And dmax = 2.1, α = 3.0×103.
Then the relative error is 0.0091 and the CPU time is
7.06 s.

(2) The splitting direction is x2. For the second case, the prob-
lem domainΩ is divided into 20 planes equally along the
direction x2. And on each plane Ox1x3, 9×17 nodes are
regularly chosen. Thismeans that the integral node distri-
bution is also 9×21×17 and dmax = 1.7, α = 3.0×103.
Then the relative error is 0.0016 and the CPU time is
5.24 s.

(3) The splitting direction is x3. For the third case, the prob-
lem domain Ω is divided into 16 planes equally along
the direction x3. On each plane Ox1x2, 9 × 21 nodes
are regularly chosen. This means that the integral node
distribution is also 9 × 21 × 17. And dmax = 1.13,
α = 3.0 × 103. Then the relative error is 0.0013 and
the CPU time is 4.55 s.

From the discussion above, we can see that splitting direc-
tion will influence the computational accuracy. Thus, we
should select the apposite splitting direction according to the
control equations and boundary conditions.

In this paper,we choose x3 as the splitting direction and the
better result can be obtained. Figures 8–10 show the numeri-
cal solutions obtained with the IEFGmethod and the DSEFG
method along the three axes under the same node distribu-
tion 9 × 21 × 17. From these figures, we can observe that
the numerical results obtained with the IEFGmethod and the
DSEFG method are in agreement with the analytical ones.
The CPU time of theDSEFG is less than the one for the IEFG
method.

4.3 Laplace’s equation with Neumann boundary
conditions on a cube

As a third example, we study Laplace’s equation

∇2u(x) = 0, x ∈ Ω, (85)

with Neumann boundary conditions

∂u(0, x2, x3)

∂x1
= ∂u(1, x2, x3)

∂x1
= 0, (86)

∂u(x1, 0, x3)

∂x2
= ∂u(x1, 1, x3)

∂x2
= 0, (87)
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Fig. 8 The results of the DSEFG and IEFGmethods along the direction
x1
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Fig. 9 The results of the DSEFG and IEFGmethods along the direction
x2
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Fig. 10 The results of the DSEFG and IEFG methods along the direc-
tion x3
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Fig. 11 The results of the DSEFG and IEFG methods along the direc-
tion x1

∂u(x1, x2, 0)

∂x3
= cos(πx1) cos(πx2), (88)

∂u(x1, x2, 1)

∂x3
= 0, (89)

where Ω = [0, 1] × [0, 1] × [0, 1].
The analytical solution of this problem is

u(x) =
[
sinh(

√
2πx3)√
2π

− cosh(
√
2πx3)√

2π tanh(
√
2π)

]

× cos(πx1) cos(πx2). (90)

For this example, we select x3 as the splitting direction and
the uniform node distribution is also adopted. Figures 11–13
show the numerical results obtained with the IEFG method
and the DSEFG method along the three axes under the node
distribution 11 × 11 × 11 and dmax = 1.19. For the IEFG
method, the error is 0.0072, and the CPU time is 9.56 s. For
the DSEFG method, the error is 0.0043, and the CPU time is
0.613s. Comparing both methods, the computation accuracy
and computation speed of the DSEFG method is higher than
IEFG method.

4.4 Laplace’s equation with Dirichlet boundary
conditions on a half-torus cylinder

As a fourth example, we study Laplace’s equation

∇2u(x) = 0, r ∈ [1, 2], θ ∈ [0,π], x3 ∈ [0, 1], (91)

with Dirichlet boundary conditions

u(1, θ, x3) = sin θ + x3, (92)

u(2, θ, x3) = x3, (93)
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Fig. 12 The results of the DSEFG and IEFG methods along the direc-
tion x2
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Fig. 13 The results of the DSEFG and IEFG methods along the direc-
tion x3

Fig. 14 Node distribution in two-dimensional sub-domain of a half-
torus

u(r , 0, x3) = x3, (94)

u(r ,π, x3) = x3, (95)

u(r , θ, 0) = 4

3

(
1

r
− r

4

)
sin θ, (96)
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Fig. 15 The results of the DSEFG and IEFG methods along the direc-
tion x3
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Fig. 16 The results of the DSEFG and IEFG methods along the radial
direction r

u(r , θ, 1) = 4

3

(
1

r
− r

4

)
sin θ + 1. (97)

The analytical solution of this problem is

u(r , θ, x3) = 4

3

(
1

r
− r

4

)
sin θ + x3. (98)

For this example, the problem domain is divided into 20
equal parts along the x3 direction. 9×31 nodes are distributed
on a half-torus domain of two-dimensional problem. Nine
nodes are laid along the radial direction r in a 1.1 proportion
and 31 nodes are uniformly laid along the angle axis θ as
shown in Fig. 14. It means that the integral node distribution
is 9 × 31 × 21, and dmax = 1.2, α = 1.0 × 104.

Figures 15–17 show the results obtained using the IEFG
method and the DSEFG method. It can be found that the
results of two methods are in agreement with the analytical
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Fig. 17 The results of the DSEFG and IEFG methods along the angle
axis θ

solution. Under similar precision, the CPU time of the IEFG
method is 224.57 s, and the one for the DSEFG method is
3.74 s. Then the DSEFG method has greater computational
efficiency than the IEFG method.

5 Conclusions

This paper presents a new fast meshless method to solve the
three-dimensional potential problems. The main idea of the
DSEFG method is that a three-dimensional problem can be
transformed into a series of two-dimensional problems. We
only need to solve a two-dimensional problem in each sub-
domain. For two-dimensional problems, the IEFG method
is applied, which uses an orthogonal function system with a
weight function as the basis functions. It is efficient to avoid
an ill-conditioned system of equations. Then, the finite dif-
ference method is selected for the splitting direction. From
numerical results obtained by the DSEFG method, together
with comparisons with analytical solutions and the ones for
the IEFG method, we can observe that DSEFG method is
efficient to solve three-dimensional potential problems and
generally has greater computational precision and higher
computation speed than the IEFG method.
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