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Abstract
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external
excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with
inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed
using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the
material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of
the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these
expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude
on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-
parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we
demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested.
We also illustrate that the damping and load resistance affect the initiation excitation threshold.

Keywords Parametric and external excitations · Nonlinear distributed parameter model · Nonlinear dynamic response ·
Energy harvesting · Harmonic balance method

1 Introduction

Harvesting energy from ambient vibrations by using the
direct piezoelectric effect has received significant attention
over the last two decades [1–3]. This focus is due to the
need for low-power consumption devices, such as micro-
electromechanical systems and sensors [4]. Many review
papers have summarized the literature of piezoelectric energy
harvesting [5–8]. The most common configuration for piezo-
electric energy harvesting has been either a unimorph or
a bimorph piezoelectric cantilever beam. Many researchers
have focused on themathematical modeling of this harvester.
A reliable mathematical model may allow studying different
aspects of energy harvesting, predicting the electrical out-
puts, moreover, optimizing the harvester in order to obtain
the maximum electrical output for a given input. The lin-
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ear models of piezoelectric energy harvesters are available
in many papers. For example, Erturk and Inman [3] pre-
sented a distributed parameter electromechanical model of
cantilevered piezoelectric energy harvester with the Euler–
Bernoulli beam assumptions. Closed-form expressions of the
voltage, current, and power outputs, as well as the mechani-
cal response were obtained under the base excitation. Some
linear models have been validated experimentally and show
good agreement between theory and experiment [9–11]. The
study of Tang and Wang [12] presented a modified model
of cantilevered piezoelectric energy harvester with tip mass
offset and a dynamic magnifier by using the generalized
Hamilton’s principle. Themodifiedmodel was demonstrated
by parametric studies. The results show that the harvesting
power can be dramatically enhanced with proper selection
of the design parameters of the dynamic magnifier and tip
mass offset. However, these validations are very low levels
of excitation and not necessarily valid in all applications.
In practical application, it is likely that linear models of
the energy harvester will be unable to predict accurately
the resonance frequency, leading to inaccurate prediction
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for the performance of the harvester due to frequency shift.
It is advisable to take into account the nonlinear behav-
ior of energy harvesters in the design, particularly if the
energy harvester is subjected to high levels of excitation. The
paper by Daqaq et al. [13] identified the primary limitations
associated with linear vibration harvesters and presented
a critical review of recent research focused on the use of
nonlinearity to improve the performance of vibration har-
vesters.

A work by Mahmoodi et al. [14–16] presented an analyt-
ical model of nonlinear vibration response for cantilevered
piezoelectric beams. The Galerkin decomposition method
was used to derive the equations of motion. The multiple
scales method was utilized to obtain analytical solutions
of the system. Also, Stanton et al. [17] studied the influ-
ence of piezoelectric material nonlinearities on the dynamic
response of a geometrically linear piezoelectric energy
harvester using a theoretical model and experimental vali-
dation. Work by Abdelkefi et al. [18] presented a nonlinear
distributed-parameter model of cantilevered piezoelectric
beam energy harvesters with tip mass under direct exci-
tation. The presented model included geometric, inertia,
and piezoelectric nonlinearities. The Galerkin decomposi-
tion method and the multiple scales method were used to
determine analytical expressions of the harvester. In their
study, Triplett and Quinn [19] investigated the effect of non-
linear piezoelectric coupling on a vibration energy harvester,
which included mechanical damping, stiffness nonlineari-
ties, and the nonlinear piezoelectric constitutive relationship.
The response of the harvesting system was approximated
using Poincare–Lindstedt perturbation analysis. Work by
Neiss et al. [20] provided analytical solutions of the output
power and bandwidth of nonlinear energy harvester based
on a lumped-parameter model of cantilevered piezoelectric
beam. The results were verified by numerical simulations.
The stability of the simply supported piezoelectric lami-
nated rectangular plate under simultaneous transverse and
inplane excitations was studied by Mousa et al. [21]. The
multiple scales method was used to achieve the second-order
approximation. The work by Mahmoudi et al. [22] investi-
gated the performance of a novel hybrid nonlinear vibration
energy harvester based on piezoelectric and electromag-
netic transductions. Furthermore, Friswell et al. [23] derived
the electromechanical equations of nonlinear piezoelectric
vibration energy harvesting from a vertical cantilever beam
with tip mass. The presented equations were investigated
using the method of numerical simulation and experimen-
tal validation. The bistable piezoelectric inertial generators,
which can produce large-amplitude motions under ambient
excitations, have attracted more attention of researchers [24–
29]. Thus, Karami and Inman [26] presented a unified
approximation method to study the performance of linear,
softly nonlinear, and bi-stable nonlinear energy harvesters.

Then Stanton et al. [27] used the harmonic balance method
to investigate analytically the influence of parameter varia-
tions on the intrawell and interwell oscillations of bistable
piezoelectric inertial generator. A mathematical model of
the multi-stable magnetic attraction energy harvester, which
was composed of a bimorph cantilever beam with soft mag-
netic tip and two external permanentmagnets, was developed
based on the nonlinear Euler–Bernoulli beam theory and
linear piezoelectricity [28]. Based on arrays of coupled lev-
itated magnets, Abed et al. [29] proposed a multi-modal
vibration energy harvesting method. The presented differ-
ential equations of motion were solved using the harmonic
balance method combined with the asymptotic numerical
method.

The parametric resonance theory predicts that the vibra-
tion energy harvesters using parametric resonancewill obtain
significant performance enhancement. One of the key prob-
lems of parametric resonance is the presence of a certain
initiation threshold, which must be overcome prior to reach-
ing parametric resonance. Therefore, Daqaq et al. [30]
studied the energy harvester of parametric excitation. In their
approach, a lumped-parameter nonlinear model was pre-
sented to study the nonlinear dynamics of a parametrically
excited cantilever-type harvester. Then Jia et al. [31–34] used
a novel design and working mechanism in order to over-
come the limitation of initiation threshold amplitude and
reduce the shortcomings of a parametrically excited vibra-
tion energy harvester. The study by Abdelkefi et al. [35]
presented a global nonlinear distributed-parameter model
for a piezoelectric energy harvester under parametric exci-
tation. Also, Bitar et al. [36] presented a discrete model
for the collective dynamics of periodic nonlinear oscilla-
tors under simultaneous parametric and external excitations,
which was suitable for several physical applications. The
study by Chiba et al. [37] investigated the dynamic stability
of a vertically standing cantilever beam under simultaneous
horizontal and vertical excitations. To the best knowledge
of the authors, few research has been reported for the
nonlinear vibration response of a cantilevered piezoelec-
tric beam under parametric and external excitations. In
their work, Kacem et al. [38,39] and Jallouli et al. [40]
investigated the benefits and applications of the nonlinear
resonator simultaneously subjected to external and paramet-
ric excitations.

In this paper, the nonlinear dynamics of a cantilevered
piezoelectric beam is investigated under simultaneous para-
metric and external excitations. The beam is composed of
a substrate and two piezoelectric layers and assumed as
the Euler–Bernoulli model with inextensible deformation.
A nonlinear distributed-parameter model of the cantilevered
piezoelectric beam is developed by use of the generalized
Hamilton principle. The derived model accounts for geo-
metric nonlinearities, but neglects the material nonlinearities
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Fig. 1 Configuration of the cantilevered piezoelectric beam for an energy harvester

by assuming linear constitutive equations. The Galerkin
decomposition method is employed to transform nonlinear
partial differential equations of motion into a set of nonlin-
ear ordinary differential equations in the time domain. We
focus on the first mode of the beam. The harmonic balance
method is used to obtain analytical solutions for the vertical
displacement, output voltage, and power output amplitude.
The influences of the damping, load resistance, and electro-
mechanical coupling coefficient on the frequency–response
curves are investigated.

2 Mathematical model of energy harvester
system

We consider a uniform bimorph cantilever beam with length
L under its base horizontal and vertical excitations as shown
in Fig. 1.

The beam is composed of a substrate and two piezoelectric
layers. The piezoelectric layers are bounded by two in-plane
electrodes of negligible thickness connected to the load resis-
tance RL. The beam is treated as the Euler–Bernoulli beam
with length L , width b, and height hb = ts + 2tp, and shear-
ing deformation and rotatory motion are neglected. ts is the
thickness of the substrate layer and tp is the thickness of
each piezoelectric layer. Setting the oxy as the inertia coor-
dinate system, the clamped end displacements of the beam
are wx (t) and wy(t) in the horizontal and vertical direction,
respectively. The o′x ′y′ is the base-fixed coordinate system
(moving with the base). s is the coordinate along the middle
plane of the beam. u(s, t) and v(s, t) are the displacements
of the beam relative to the o′x ′y′ coordinate system. u(s, t) is

in the x ′ direction and v(s, t) in the y′ direction. We assume
that the beam is inextensible [35]

(
1 + u′)2 + v′2 = 1, (1)

where prime (′) indicates the derivative with respect to the
arc length, s. Using Taylor’s expansion, there are

u′ ≈ −1

2
v′2, u = −1

2

∫ s

0
v′2dη. (2)

The constitutive relations of the substrate and piezoelec-
tric layers of the beam can be expressed as

T s
1 = YsS

s
1,

T p
1 = Yp

(
Sp1 − d31E3

)
,

D3 = d31T
p
1 + εT33E3, (3)

where Y is Young’s modulus, S1 is the strain, T1 is the stress,
d31 is the piezoelectric strain constant, D3 is the electric
displacement and εT33 is the permittivity and superscript T
represents constant stress, subscript/superscript p and s stand
for the piezoelectric and substrate layers, respectively; the 1
and 3 directions are coincident with the x and y directions,
respectively (where 1 is the direction of axial strain and 3
is the direction of polarization). E3(t) = −V (t)/(2tp) is
the electric field for series connection of piezoelectric lay-
ers. V (t) = RLdq/dt is the electric voltage. q is the electric
charge.

In what follows, a nonlinear distributed parameter mathe-
matical model of cantilevered piezoelectric vibration energy
harvesting system will be derived by using the generalized
Hamilton variational principle. Considering the inextensible
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beam condition in Eq. (1) and the Lagrange’s multiplier λ,
the modified energy functional can be expressed as

Π = T −Ue + We +
∫ L

0
λ[1 − v′2 − (1 + u′)2]ds, (4)

where T is the kinetic energy, Ue is the potential energy, We

is the electrical energy.
The kinetic energy of the beam is

T = 1

2

∫ L

0
m
{[(

v̇(s, t) + ẇy(t)
)]2

+ [(u̇(s, t) + ẇx (t))]
2
}
ds, (5)

where dot (·) indicates the derivative with respect to time,
t,m = 2ρptpb+ρstsb, ρp and ρs are the density of the piezo-
electric and substrate layers, respectively.

The total potential energy of the substrate and piezoelec-
tric layers is

Ue = 1

2

∫

Vs
T s
1 S

s
1dVs + 1

2

∫

Vp
T p
1 S

p
1dVp, (6)

where Vs and Vp are the volumes of the substrate and piezo-
electric layers, respectively.

Considering the geometric nonlinearities, the strain of the
beam can be expressed as follows [35]

Ss1 = Sp1 = −y

(
v′′ + 1

2
v′′v′2

)
. (7)

Substituting Eqs. (3) and (7) into Eq. (6), we obtained

Ue = 1

2

∫ L

0

{

Y I

[
v′′
(
1 + 1

2
v′2
)]2

−Ypbd31RL

(
h + tp

2

)
v′′
(
1 + 1

2
v′2
)
dq

dt

}

ds, (8)

where Y I = Ys Is + 2
3Ypb

(
3h2tp + 3ht2p + t3p

)
,Ys Is is the

bending stiffness of the substrate layer, h = ts/2.
The electric energy of the piezoelectric layers is given by

We = 1

2

∫

Vp
E3D3dVp. (9)

The permittivity component at constant strain is replaced
by the permittivity component at constant stress. The electric
field is replaced by the electric charge. There are

εS33 = εT33 − d231Yp, E3 = − RL

2tp

dq

dt
. (10)

Substituting Eqs. (3) and (10) into Eq. (9), the following
expression is obtained

We = 1

2
Ypbd31RL

(
h + tp

2

)∫ L

0
v′′
(
1 + 1

2
v′2
)
dq

dt
ds

+ 1

2
bLεS33

(
R2
L

2tp

)(
dq

dt

)2

. (11)

ThegeneralizedHamilton variational principle of the elec-
tromechanical coupling beam can be expressed as

δ

∫ t1

t0

{
(T −Ue + We + W )

+
∫ L

0
λ
[
1 − v′2 − (1 + u′)2

]
ds

}
dt = 0,

δu(x, t) = δv(x, t) = 0,

δq(t) = 0, 0 � x � L, t = t0, t1, (12)

whereW is the electrically extracted work and the work done
by the damping force. δW is given by

δW = −
∫ L

0
cv̇ δvds − RL

dq

dt
δq, (13)

where c is linear viscous air damping coefficient.
The variations of the kinetic energy, the potential energy,

and the electrical energy can be expressed as

δ

∫ t1

t0
T dt

= −m
∫ t1

t0

∫ L

0

{
(v̈ + ẅy)δv + (ü + ẅx )δu

}
dsdt, (14)

δ

∫ t1

t0
Uedt

=
∫ t1

t0

∫ L

0
Y I

[
v′′
(
1 + 1

2
v′2
)]

δ

[
v′′
(
1 + 1

2
v′2
)]

dsdt

− 1

2
Ypbd31RL

(
h + tp

2

)∫ t1

t0

∫ L

0
v′′
(
1 + 1

2
v′2
)

δ

(
dq

dt

)
dsdt

− 1

2
Ypbd31RL

(
h + tp

2

)∫ t1

t0

∫ L

0

(
dq

dt

)
[H (s) − H (s − L)] δ

×
[
v′′
(
1 + 1

2
v′2
)]

dsdt, (15)

δ

∫ t1

t0
Wedt

= 1

2
Ypbd31RL

(
h + tp

2

)∫ t1

t0

∫ L

0
v′′
(
1 + 1

2
v′2
)

δ

(
dq

dt

)
dsdt

+ 1

2
Ypbd31RL

(
h + tp

2

)∫ t1

t0

∫ L

0

(
dq

dt

)
[H (s) − H (s − L)] δ
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×
[
v′′
(
1 + 1

2
v′2
)]

dsdt

+ bLεS33

(
R2
L

2tp

)∫ t1

t0

(
dq

dt

)
δ

(
dq

dt

)
dt . (16)

In Eqs. (15) and (16), H(s) is the Heaviside step function
which is related to the Dirac delta function. They have the
following relation

dH(s)

ds
= δ(s),

∫ ∞

−∞
dnδ(s − s0)

dsn
f (s)ds = (−1)n

d f n(s0)

dxn
. (17)

Applying Eq. (10) and the generalized Hamilton principle of
Eq. (12), performing a series of variationalmanipulations and
taking up to the cubic order of v, the governing differential
equations of motion can be obtained as follows

m[v + wy],t t + cv,t

+Y I
(
v′′′′ + v′2v′′′′ + 4v′v′′v′′′ + v′′3)

+ [
v′′(L − s) − v′]mwx,t t

+ 1

2
m

[
v′
∫ s

0

(
v′2)

,t t
dη − v′′

∫ L

s

∫ ξ

0

(
v′2)

,t t
dηdξ

]

−αV

{(
1 + 1

2
v′2
)[

dδ(s)

ds
− dδ(s − L)

ds

]

+ v′′v′ [δ (s) − δ (s − L)]

}
= 0, (18)

α

∫ L

0

[
v′′
(
1 + 1

2
v′2
)]

,t
ds + CpV,t + V

RL
= 0, (19)

where α = Ypbd31
(
h + tp

2

)
, C̄p = bεS33

2tp
,Cp = C̄pL . α is

the electromechanical coupling coefficient. Cp is the capac-
itance of the piezoelectric layers. The above equations are
a mathematical model of nonlinear distributed-parameter
cantilevered piezoelectric energy harvesting system under
simultaneous parametric and external excitations. The hor-
izontal external excitation is transformed into parametric
excitation. By removing the nonlinear terms and the base
horizontal excitation, the direct excited linearmodel is recov-
ered [3]. Without considering electromechanical coupling,
Eq. (18) is similar to the governing equation of motion of the
slender beam presented by Chiba et al. [37].

For the purpose of generality, the following dimensionless
quantities are introduced into Eqs. (18) and (19)

s̄ = s/L, ξ̄ = ξ/L, η̄ = η/L, v̄ = v/L,

w̄x = wx/L, w̄y = wy/L,

ω0 =
√
Y I/mL4, τ = ω0t, c̄ = c/(mω0),

ωv = Ωv/ω0, ωh = Ωh/ω0,

V = ω0L
√
m/C̄pV̄ , α = ω0L

2
√
mC̄pᾱ, (20)

where Ωh and Ωv are the horizontal and vertical excited
frequencies, respectively.

Equations (18) and (19) can be represented in non-
dimensional form as

¨̄v + c̄ ˙̄v + v̄′′′′ + v̄′2v̄′′′′ + 4v̄′v̄′′v̄′′′ + v̄′′3

+ [
v̄′′ (1 − s̄) − v̄′] ¨̄wx + v̄′

∫ s̄

0

( ˙̄v′ ˙̄v′ + v̄′ ¨̄v′) dη̄ − v̄′′

∫ 1

s̄

[∫ ξ̄

0

( ˙̄v′ ˙̄v′ + v̄′ ¨̄v′) dη̄
]

dξ̄ (21)

− ᾱV̄

{(
1 + 1

2
v̄′2
)[

dδ(s̄)

ds̄
− dδ(s̄ − 1)

ds̄

]

+ v̄′′v̄′ [δ(s̄) − δ(s̄ − 1)]

}
= − ¨̄wy,

˙̄V + μV̄ + ᾱ

∫ 1

0

[
˙̄v′′ + 1

2
v̄′2 ˙̄v′′ + v̄′′v̄′ ˙̄v′

]
ds̄ = 0, (22)

where μ = 1
RLω0Cp

, (·) indicates the derivative with respect
to the time variable, τ .

3 Reduced-order model

To develop a reduced-order model of cantilevered piezoelec-
tric energy harvesting system, the modal Galerkin decom-
position method is used to transform the nonlinear partial
differential equations (21) and (22) into a set of coupled
second order nonlinear ordinary differential equations. The
transverse deflection v̄(s̄, τ ) is decomposed into a summa-
tion of N generalized displacement amplitude Am(τ ) and
orthogonal basis function Xm(s̄) as follows

v̄(s̄, τ ) =
N∑

m=1

Am (τ ) Xm (s̄). (23)

The orthogonal basis functions utilized in this analysis
are the linear mode shape functions for the Euler–Bernoulli
beam with fixed-free boundary conditions. The normalized
mode shape function is given as follows:

Xm (s̄) = cosh β̄ms̄ − cos β̄ms̄ + ᾱm
(
sin β̄ms̄ − sinh β̄ms̄

)
,

(24)

ᾱm = cos β̄m + cosh β̄m

sin β̄m + sinh β̄m
, (25)
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where β̄2
m = ω̄m, ω̄m = ωm/ω0, ωm is the mth eigen-

frequency of a cantilever beam, β̄m satisfies the following
frequency equation

1 + cosh β̄m cos β̄m = 0. (26)

Inserting Eq. (23) into Eqs. (21) and (22), multiplying
Eq. (21) by Xn(s̄), considering the orthogonality conditions
of the mode shape functions and subsequently integrating
over the length of the beam, we yield a set of nonlinear ordi-
nary differential equations of motion (form = 1, 2, . . . , N ).

Äm + 2c̃ Ȧm + ω̄2
m Am +

N∑

m=1

2σ̄nm ¨̄wx Am

+
N∑

m,k,�=1

βnmk�Am Ak A�

+
N∑

m,k,�=1

κnmk�Am( Ȧk Ȧ� + Ak Ä�)

− ᾱ

⎛

⎝ζnm +
N∑

m,k=1

γnmk Am Ak

⎞

⎠ V̄ = −λ̄nm ¨̄wy, (27)

˙̄V + μV̄

+ ᾱ

N∑

m=1

⎛

⎝ηm +
N∑

k,�=1

χmk�Ak A�

⎞

⎠ Ȧm = 0, (28)

where

c̃ = 1

2
c̄, σ̄nm = b3nm − b4nm − b6nm

2b1nn
,

βnmk� = b2nmk�

b1nn
, κnmk� = b7nmk� − b5nmk�

b1nn
,

ζnm = b9n
b1nn

, γnmk = b10nmk − 2b11nmk

2b1nn
,

λ̄nn = b8n
b1nn

, ηm = b12m, χmk� = 3

2
b13mk�,

a1k�(s̄) =
N∑

k,�=1

∫ 1

s̄

(∫ ξ̄

0
X ′
k X

′
�dη̄

)

dξ̄ ,

a2k�(s̄) =
N∑

k,�=1

∫ s̄

0
X ′
k X

′
�dη̄,

b1nm =
∫ 1

0
XmXnds̄,

b2nmk� =
∫ 1

0

(
β̄4

� XmX ′
k X

′
� + 4X ′

m X ′′
k X

′′′
� + X ′′

m X ′′
k X

′′
�

)
Xnds̄,

b3nm =
∫ 1

0
X ′′
m Xnds̄,

b4nm =
∫ 1

0
s̄ X ′′

mXnds̄, b5nmk� =
∫ 1

0
a1k�(s̄)X

′′
m Xnds̄,

b6nm =
∫ 1

0
X ′
m Xnds̄, b7nmk� =

∫ 1

0
a2k�(s̄)X

′
mXnds̄,

b8n =
∫ 1

0
Xnds̄, b9n = dXn(s̄)

ds̄

∣
∣
∣
∣
s̄=1

b10nmk = d
[
X ′
m(s̄)X ′

k(s̄)Xn(s̄)
]

ds̄

∣
∣
∣
∣
∣
s̄=1

b11nmk = X ′
m(1)X ′′

k (1)Xn(1),

b12m =
∫ 1

0
X ′′
mds̄, b13mk� =

∫ 1

0
X ′
m X ′

k X
′′
�ds̄. (29)

Assuming the excitation frequency is very close to the
nth modal frequency, we focus on the nth vibration mode of
the beam and neglect the interactions with any of the other
modes. Considering only the nth term of the orthogonal basis
functions and m = k = � = n, there are

b1nn =
∫ 1

0
XnXnds̄ = 1,

b12n =
∫ 1

0
X ′′
nds̄ = dXn(s̄)

ds̄

∣∣∣∣
s̄=1

= b9n,

b13nnn =
∫ 1

0
X ′
n X

′
n X

′′
nds̄ = 1

3
X ′3

n(1),

b10nnn = d
[
X ′

n(s̄)X ′
n(s̄)Xn(s̄)

]

ds̄

∣∣∣∣∣
s̄=1

= 2Xn(1)X
′
n(1)X

′′
n(1) + X ′3

n(1),

ηn = ζnn, χnnn = γnnn . (30)

For the nth mode, Eqs. (27) and (28) can be rewritten as
follows

Än + 2c̃ Ȧn +
(
ω̄2
n + 2σ̄n ¨̄wx

)
An + βn A

3
n

+ κn

(
Ȧ2
n + An Än

)
An − ᾱ

(
ζn + γn A

2
n

)
V̄ = − λ̄n ¨̄wy,

(31)
˙̄V + μV̄ + ᾱ

(
ζn + γn A

2
n

)
Ȧn = 0, (32)

where σ̄n = σ̄nn, βn = βnnnn, κn = κnnnn, γn = γnnn,

λ̄n = λ̄nn, ζn = ζnn .
The term βn A3

n is used to describe cubic geometric non-
linearity, κn( Ȧ2

n + An Än)An represents inertia nonlinearity.
2σ̄n ¨̄wx and λ̄n ¨̄wy are parametric and external excitations,
respectively. Equation (31) is theMathieu equationwith non-
linear stiffness and inertia terms as well as with the external
force term and voltage. It describes the nonlinear dynam-
ics of cantilevered piezoelectric beams of a single mode
approximation under simultaneous parametric and external
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excitations. Equations (31) and (32) are similar to the nonlin-
ear lumped parameter model presented by Daqaq et al. [30].
But the electromechanical coupling terms include nonlinear-
ity, which is different from the nonlinear lumped-parameter
model.

4 Harmonic balance analysis

The harmonic balance method has been extensively used to
analyzeperiodic solutions of nonlinear differential equations.
Using Fourier series, the nonlinear differential equations in
the time variables are transformed into a set of nonlinear
algebraic equations in the frequency variables. The number
of Fourier series terms dictates the accuracy of the intended
solution. The resulting algebraic equations are solved iter-
atively. When nonlinearities are complicated, the derivation
of the algebraic system becomes very cumbersome. Works
by Souayeh and Kacem [41], Kacem et al. [42], and Jal-
louli et al. [43] used the harmonic balance combined with
the asymptotic numerical method to analyze the nonlinear
problem of resonant sensors at large amplitudes. For a low
level of nonlinearity, a single-term harmonic balance solu-
tion is sufficient to approximate the steady state response to
harmonic excitation. Stanton et al. [27] applied the harmonic
balance method to analyze the existence, stability, and influ-
ence of parameter variations of bistable piezoelectric inertial
generator.

For an analytical solution of the presented problem, har-
monic excitations are considered

¨̄wx (τ ) = ε cosωhτ, ¨̄wy (τ ) = δ cos (ωvτ + ψ) , (33)

where ε and δ are the non-dimensional amplitudes, respec-
tively.

In the present analysis, assuming that the first bending
mode of the beam should be the dominant mode of the sys-
tem, only one mode (n = 1) is retained and the other modes
are neglected. A single-term harmonic balance solution is
sufficient to approximate the steady state response to har-
monic excitation for a low level of nonlinearity.

In what follows, the subscripts on the different variables
will be omitted for the sake of simplicity. Using Eq. (33),
Eqs. (31) and (32) can be rewritten as follows

Ä + 2c̃ Ȧ +
(
ω̄2 + 2ε̄ cosωhτ

)
A + βA3

+ κ
(
Ȧ2 + AÄ

)
A − ᾱ

(
ζ + γ A2

)
V̄

= − δ̄ cos(ωvτ + ψ), (34)
˙̄V + μV̄ + ᾱ

(
ζ + γ A2

)
Ȧ = 0, (35)

where ε̄ = σ̄ ε, δ̄ = λ̄δ.

In order to achieve parametric resonance, it has been
shown that the first-order (principal) parametric resonance
can be attained when the parametric excited frequency
is twice the natural frequency [30,31,37]. Introducing the
non-dimensional excitation frequencyω,ωh, andωv are pre-
sented as

ωh = 2ω, ωv = ω. (36)

The steady-state displacement and voltage responses are
assumed as

A(τ ) = a1 sinωτ + b1 cosωτ = w̄ cos (ωτ + ϕ1) ,

w̄ =
√
a21 + b21, (37)

V̄ (τ ) = a2 sinωτ + b2 cosωτ = V̄ cos (ωτ + ϕ2) ,

V̄ =
√
a22 + b22. (38)

Substituting Eqs. (37) and (38) into Eqs. (34) and (35), and
applying the harmonic balance method, the resulting alge-
braic equations can be written as

a1 (Z + ε̄) + 2c̃ωb1 + ᾱζa2

+ ᾱγ
( 3
4a2a

2
1 + 1

4a2b
2
1 + 1

2a1b1b2
) = − δ̄ sinψ,

b1 (Z − ε̄) − 2c̃ωa1 + ᾱζb2

+ ᾱγ
( 3
4b2b

2
1 + 1

4b2a
2
1 + 1

2a1a2b1
) = δ̄ cosψ,

(39)

ωb2 − μa2 + ωᾱ
(
ζ + 1

4γ w̄2
)
b1 = 0,

ωa2 + μb2 + ωᾱ
(
ζ + 1

4γ w̄2
)
a1 = 0,

(40)

where

Z =
(
1 + 1

2
κw̄2

)
ω2 − ω̄2 − 3

4
βw̄2. (41)

Solutions of Eq. (40) can be obtained as follows

a2 = ᾱω
μ2+ω2

(
ζ + 1

4γ w̄2
)
(μb1 − ωa1) ,

b2 = − ᾱω
μ2+ω2

(
ζ + 1

4γ w̄2
)
(ωb1 + μa1) .

(42)

Substituting Eq. (42) into Eq. (39), Eq. (39) can be rewritten
as

Δaa1 + Δbb1 = − δ̄ sinψ,

Δcb1 − Δba1 = δ̄ cosψ,
(43)

where

Δ1 = Z − ωζ̃ − 3

4
ωγ̃ , Δa = Δ1 + ε̄,

Δb = 2c̃ω + μζ̃ + 1

4
μγ̃ , Δc = Δ1 − ε̄,
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ζ̃ = ζ
ᾱ2ω

μ2 + ω2

(
ζ + 1

4
γ w̄2

)
,

γ̃ = γ
ᾱ2ω

μ2 + ω2

(
ζ + 1

4
γ w̄2

)
w̄2. (44)

Solution of Eq. (43) can be expressed as follows

a1 = − (Δc sinψ + Δb cosψ) δ̄

ΔaΔc + Δ2
b

,

b1 = (−Δb sinψ + Δa cosψ) δ̄

ΔaΔc + Δ2
b

. (45)

The nonlinear algebraic equation of the frequency–
response curves can be expressed in terms of the displace-
ment amplitude and excitation frequency as

w̄2
(
ΔaΔc + Δ2

b

)2

= δ̄2
(
Δ2

b + Δ2
1 + ε̄2 + 2ε̄Δ1 cos 2ψ − 2Δbε̄ sin 2ψ

)
.

(46)

The frequency–response curves can be determined by
numerically finding the positive real roots of the above equa-
tion in a range of excitation frequencies. The dimensionless
response voltage can be written in terms of the mechanical
amplitude as follows

V̄ =
√
a22 + b22 = ᾱω

√
μ2 + ω2

(
ζ + 1

4
γ w̄2

)
w̄. (47)

The power amplitude frequency–response is given as

P = V 2

RL
= mω2

0L
3

CpRL

ᾱ2ω2

μ2 + ω2

(
ζ w̄ + 1

4
γ w̄3

)2

. (48)

Substituting the solution of Eq. (46) into Eqs. (47) and
(48), the frequency–response curve of the voltage and power
amplitude can be obtained.

5 Results and discussion

In the previous section, the theoretical model and analytical
method have been described for determining the harmonic
solutions of the cantilevered piezoelectric energy harvesters
under simultaneous parametric and external excitations. In
this section, the frequency–response curves of the energy
harvesting system will be given and discussed in detail.

Using n = m = 1, the influence of the model param-
eter variations on the performance of the energy harvester
is investigated. These parameters are parametric and exter-
nal excitation amplitudes ε and δ, damping coefficient c̄,

Table 1 Geometric and material properties of the energy harvester

Parameter Value

Mass of the beam per unit length mt 96 g/m

Beam width b 20 mm

Beam length L 50 mm

Each piezo-layer thickness tp 0.2 mm

Beam substrate layer thickness ts 0.2 mm

Young’s modulus of piezo-layer Yp 61 GPa

Young’s modulus of substrate layer Ys 20 GPa

Piezo-strain constant d31 − 320 × 10−12 C/N

Permittivity at constant stress εT33 3.98 × 10−8 F/m

load resistance parameter RL and electro-mechanical cou-
pling coefficient ᾱ. The base excitations are considered as
harmonic excitation. ψ = 0 is assumed. In the absence of
specified cases, the results presented in this paper are cal-
culated with the geometric and material parameters given
in Table 1. Using the geometric and material coefficients
defined in Table 1, all parameters of Eqs. (34) and (35) are
as follows

σ̄ = − 0.7854, β = 40.4407, κ = 4.5968,

ζ = 2.7530, γ = 10.4326, λ̄ = 0.7830,

ᾱ = − 0.4119, ω̄ = 3.5160,

ω0 = 188.9150, Cp = 8.3884 × 10−8.

5.1 Only under parametric excitation

In this section, using the presented analytical expression, the
numerical results under parametric excitation are obtained.
Figure 2 gives the frequency–response curves of the deflec-
tion and output power amplitude in the case of different
parametric excited amplitude ε when δ = 0, c̄ = 0.01, and
RL = 500 �. Figure 2 shows thatwhen δ = 0 (only paramet-
ric excitation), electrical energy can only be harvested within
a certain range of excitation frequencieswhere the non-trivial
solutions exist. Outside of this range, only the trivial solution
w̄ = 0 exists and no electrical energy can be harvested.

Figure 2 shows the nonlinear hardening effect. The
frequency–response peak curves are hysteretic and shifted to
the high frequencies. The nonlinear hardening effect results
in an enhancement of the bandwidth of the energy harvester.
The bandwidth enhancement can be reachable when the
energy harvester is excited beyond its critical amplitude [44–
46]. The critical electrical resistance characterizes the upper
bound limit of the linear dynamic range of the harvester.

Figure 3 gives the steady-state resonant peak curves of
the deflection and output voltage under parametric excita-
tion at various excitation levels for different parameters c̄
when RL = 500 �, RL = 500 k�, and δ = 0. w̄max is
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Fig. 2 Frequency–response curves of the deflection and output power for different parameters ε when RL = 500 �, δ = 0, and c̄ = 0.01
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Fig. 3 The steady-state resonant peak curves of the deflection and output voltage under parametric excitation at various excitation levels for different
parameters c̄ and RL. a, b RL = 500 �, and c, d RL = 500 k� when δ = 0

the dimensionless peak deflection, V̄max is the dimensionless
peak voltage. Figure 3 shows that only in the case of the
parametric excitation, the energy harvesting system has an

initiation threshold. When the excited amplitude ε exceeds
the initiation threshold, a rapid growth of the resonant peak
deflection and peak output voltage is obtained. The mechan-
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Fig. 4 The steady-state resonant peak curves of the deflection and output power at various parametric excitation levels for different external excited
amplitude δ when c̄ = 0.01, RL = 500 �

ical damping and load resistance have significant influence
on the initiation threshold, which must be overcome prior to
accessing parametric resonance.

A steep jump of the nonlinear peak response curves is
observed at high parametric excited amplitude ε in Fig. 3.
For this behavior, a reasonable theoretical explanation can
be obtained from the view of mechanics. When paramet-
ric excited amplitude ε is very small, the beam is in the
state of axial deformation and the state of stable equilib-
rium, the beam deflection is equal to zero and no energy
is harvested. When parametric excited amplitude ε reaches
a certain critical value, the state of axial deformation of the
beam is transformed to the bending deformation and the state
of the beam buckling. The beam deflection increases rapidly
and the harvested power is raised dramatically. Buckling of
the beam results in significant stresses and produces large
output power. However, if the beam’s buckling is not con-
trolled, the beam will be damaged. To prevent the beam’s
damage, the bending deformations of the beam must be con-
strained within a limited range in practical application.

Parametric resonance converges to a zero steady-state
response below the initiation threshold. With excitation
amplitudes increasing beyond this threshold barrier, it is
able ultimately to obtain higher response amplitude. Figure 3
shows that this initiation threshold is relatively larger value,
whereas the ambient vibration available for energy harvester
is usually very small. Accordingly, this initiation threshold
must be minimized in order to use the advantages of para-
metric resonance in practical application.

5.2 Simultaneous parametric and external
excitations

Figure 4 gives the steady-state resonant peak curves of the
deflection and output power at varying parametric excita-

tion levels for different external excited amplitude δ when
c̄ = 0.01, RL = 500 �. w̄max is the dimensionless resonant
peak deflection, V̄max is the dimensionless resonant peak out-
put voltage. In the case that the excited amplitude ε is below
the initiation threshold, Fig. 4 shows that when δ equals con-
stant, the frequency–response curves rapidly enlargewith the
parametric excited acceleration level increasing.

Figure 5 gives the frequency–response curves of the
deflection and output power for different parameter ε and
RL when δ = 0.22 and c̄ = 0.01. Figures 4 and 5 also
show that although parameter ε is below the initiation thresh-
old, the peak deflection and peak output voltage increase
with the parameter ε increasing. This is because the exter-
nal excitation (δ �= 0) pushes the system out of axial stable
equilibrium and an initial non-zero displacement is obtained.
When parameter ε exceeds the initiation threshold, a rapid
growth of the peak deflection and peak output voltage is
obtained.

In the case of simultaneous parametric and external exci-
tations, the external excitation pushes the system out of
axial stable equilibrium, the initial non-zero deflection is
obtained. Accordingly, the deflection, the harvested power
and frequency bandwidth increase dramatically along with
parametric excited amplitude increasing when the excited
amplitude ε is below the initiation threshold.

Figure 6 gives the effect of damping coefficient on the
amplitude of the steady-state deflection, output voltage.
When damping coefficient is relatively small, the response
curves bend to a higher frequency direction corresponding to
the hardening behavior. The larger damping will weaken the
effect of nonlinearity.

In what follows, we will investigate the effect of the
electro-mechanical coupling coefficient change on energy
harvesting performance. Electro-mechanical coupling coef-
ficient is related to the piezoelectric strain constant d31,
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Fig. 5 Frequency–response curves of the deflection and output voltage for different parameters ε and RL. a, b RL = 500 � and c, d RL = 500 k�
when δ = 0.0055 and c̄ = 0.01

the width of the piezo-layer, the thickness of the piezo-
layer and the Young’s modulus of the piezo-layer. Different
piezoelectric materials have different piezoelectric strain
constants. Assuming that the piezoelectric strain constant
is changed and the other parameters remain the constant,
electro-mechanical coupling coefficient ᾱ will be changed.

Figure 7 gives the frequency–response curves for dif-
ferent electro-mechanical coupling ᾱ when ε = δ =
0.0165, RL = 500 �, RL = 500 k�, and c̄ = 0.01.
The peak value of the deflection amplitudes, with increas-
ing electro-mechanical coupling ᾱ, decreases because some
of the harvesting energy suppresses the deformation of the
beam. The peak values of the output power amplitude do
not increase as one would expect. This can be explained by
examining Eq. (48). For a given load resistance, the out-
put power is affected by three major parameters which are
the electromechanical coupling, the excited frequency and
the deflection amplitude. If the electromechanical coupling
increases and the deflection amplitude holds constant, then
the output power will increase. However, Fig. 7a, c clearly

indicate that when the electromechanical coupling increases,
the deflection amplitude reduces. Obviously, there is an opti-
mal electromechanical coupling which makes the harvested
energy maximization. This result agrees with the previous
findings of Daqaq et al. [30]. Figure 7 describes that the out-
put power increases initially as electromechanical coupling
increases, exhibits amaximum at an optimal electromechani-
cal coupling and drops again beyond the optimal value. In the
short-circuit resonance, Fig. 7a, b shows that the shift of the
resonance frequency is relatively small. In the open-circuit
resonance, Fig. 7c, d shows that the resonance frequency has
a slightly larger shift to the right side along with the electric–
mechanical coupling ᾱ increasing.

The effect of the load resistance RL on the displace-
ment and power frequency–response curves, with ε =
δ = 0.0165 and c̄ = 0.01, is shown in Fig. 8. The load
resistance affects the performance of the energy harvester
when the base excitation, the damping and the electro-
mechanical coupling remain constant. Figure 8a shows that
the frequency–response curves have the two resonant ranges
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Fig. 6 Frequency–response curves of the deflection and output voltage for different parameters c̄. a, c RL = 500 � and b, d RL = 500 k� when
δ = ε = 0.022

which are the open-circuit resonance and the short-circuit
resonance. When RL is between 100 and 10 k�, the electri-
cal net work approaches the short-circuit resonance. For RL

is greater than 50 k�, the electrical net work approaches the
open-circuit resonance. The change of the load resistance is
similar to the change of the damping and the frequency of the
given system. The electro-mechanical coupled damping and
resonance frequency can be shown as a function of the load
resistance. In the case of near the short-circuit resonance, the
peak of the deflection frequency–response curves decreases
with the increasing load resistance. In the case near the
open-circuit resonance, the peak of the deflection frequency–
response curves increases with increasing load resistance. In
these twocases, Fig. 8bdemonstrates that the power increases
initially as the load resistance increases, exhibits a maximum
at an optimal load resistance and drops again beyond the opti-
mal value. It can be inferred that there exists an optimal load
resistance to extract maximumpower for a certain set of exci-
tation, damping and electro-mechanical parameter.

5.3 Comparison of distributed-parameter and
lumped-parameter models

In this section, we study the difference between the
distributed-parameter and lumped-parameter models.
Equations (31) and (32) of nonlinear distributed-parameter
model of cantilevered piezoelectric energy harvesting sys-
tem are similar to the nonlinear lumped parameter model
presented by Daqaq et al. [30]. But the electromechanical
coupling terms include nonlinearity, which is different from
the nonlinear lumped-parameter model. The electromechan-
ical terms of Eq. (31) are proportional to the voltage, as
well as the square of the generalized displacement ampli-
tude. The electromechanical terms of Eq. (32) are propor-
tional to the rate of the generalized displacement amplitude
and the square of the generalized displacement amplitude.
γ = 0 corresponds to the nonlinear lumped-parametermodel
[30]. γ �= 0 indicates the nonlinear distributed-parametric
model. Figure 9 shows the effect of nonlinear electro-
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Fig. 7 Frequency–response curves of the deflection and output power for different ᾱ. a, b RL = 500 � and c, d RL = 500 k� when δ = ε =
0.0165, c̄ = 0.01
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Fig. 8 Frequency–response curves of the deflection and output power for different load resistance RL when δ = ε = 0.0165 and c̄ = 0.01

mechanical coupling termon the frequency–response curves.
For RL = 500 � (the short-circuit resonance), Fig. 9a, b
shows that for these two models, the hardening characteris-

tics of the frequency–response curves are not changed. For
RL = 500 k� (the open-circuit resonance), Fig. 9c, d illus-
trates that for the nonlinear distributed-parametric model,
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Fig. 9 Comparison of frequency–response curves of the deflection and output power between distributed-parameter and lumped-parameter models
for different load resistance RL. a, b RL = 500 � and c, d RL = 500 k� when δ = ε = 0.022 and c̄ = 0.01

the frequency–response curves bend to the higher fre-
quency direction, which reflects the effect of the nonlinear
electro-mechanical coupling term on the hardening behav-
ior. Compared with the nonlinear lumped parameter model,
the nonlinear distributed-parametric model reduces slightly
the amplitude of the deflection and the output power of
energy harvester, but enhances the frequency bandwidth of
the energy harvester.

Figures 9 and 10 compare with the resonant peak curves
of the deflection and output voltage between the lumped-
parameter model presented by Daqaq et al. [30] and the
proposed distributed-parameter model. For varying excited
acceleration level ε, Fig. 10 shows that in the short-circuit res-
onance (RL = 500 �), there are small differences between
the resonant peak curves of two models. In the open-circuit
resonance (RL = 500 k�), there are larger differences
between the resonant peak curves of the two models. This
physical phenomenon can be explained as the damping of the
electro-mechanical coupling system increases with the load
resistance increasing. The initiation thresholds of the two
models are not changed. This phenomenon can be explained

as when the energy harvester is the state of axial stable
equilibrium there is no bending deformation and geometric
nonlinearity.

6 Conclusions

In this study, a nonlinear distributed parameter model of
piezoelectric cantilevered beam harvesters under external
and parametric excitations has been developed by the gen-
eralized Hamilton principle. Analytical expressions of the
frequency–response curves have been presented by use of
the Galerkin method and harmonic balance method. Utiliz-
ing the resulting expressions, we have discussed the effects
of the damping, load resistance, electromechanical coupling,
and excitation amplitude on the frequency–response curves.
We have also studied the difference between the nonlin-
ear lumped-parameter and nonlinear distributed-parameter
model for predicting the performance of the energy harvest-
ing system. Several main conclusions are as follows:
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Fig. 10 Comparison of resonant peak curves of the deflection and output voltage between distributed-parameter and lumped-parameter models for
different load resistance RL. a, b RL = 500 � and c, d RL = 500 k� when δ = 0 and c̄ = 0.01

(1) The presented nonlinear distributed parameter model,
which includes the nonlinear electro-mechanical cou-
pling term, is different from the nonlinear lumped-
parameter model. In the case of the short-circuit reso-
nance, the nonlinear electromechanical coupling term
does not affect the hardening characteristics of the
frequency–response curves. In the case of the open-
circuit resonance, the frequency–response curves bend
to the higher frequency direction, which reflects the
effect of the nonlinear electro-mechanical coupling term
on the hardening behavior.

(2) The peak of the deflection frequency–response curves,
in the case of the short-circuit resonance, decreases
with the load resistance increasing. The peak of the
deflection frequency–response curves, at the case of
the open-circuit resonance, increases with the load
resistance increasing. In these two cases, the output
power increases initially as the load resistance increases,
exhibiting a maximum at an optimal load resistance and

dropping again beyond the optimal value. For a certain
set of excitation and electro-mechanical coupling, there
exists an optimal load impedance to extract maximum
power.

(3) The peak of the deflection frequency–response curves
decreases with the electromechanical coupling coeffi-
cient increasing. The peak of power frequency–response
curves increases initially with electromechanical cou-
pling coefficient increasing, reaches a maximum at an
optimal electromechanical coupling and drops again
beyond the optimal value.

(4) In the case of parametric resonance, the energy har-
vesting system has an initiation excitation threshold
below this threshold no energy can be harvested. The
mechanical damping and load resistance have signifi-
cant influence on the initiation threshold.

(5) In the case of simultaneous parametric and external exci-
tations, the external excitation pushes the system out
of axial stable equilibrium, the initial non-zero deflec-
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tion is obtained. Accordingly, the deflection, harvested
power and frequency bandwidth increase dramatically
along with parametric excitation amplitudes increasing
although the parametric excitation amplitude is below
the initiation threshold.
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