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Abstract Many all-speed Roe schemes have been proposed
to improveperformance in termsof lowspeeds.Among them,
the F-Roe and T-D-Roe schemes have been found to get
incorrect density fluctuation in low Mach flows, which is
expected to be with the square of Mach number. Asymp-
totic analysis presents the mechanism of how the density
fluctuation problem relates to the incorrect order of terms
in the energy equation ρ̃ãŨΔU . It is known that changing
the upwind scheme coefficients of the pressure-difference
dissipation term DP and the velocity-difference dissipation
term in the momentum equation DρU to the order of O(c−1)

and O(c0) can improve the level of pressure and velocity
accuracy at low speeds. This paper shows that correspond-
ing changes in energy equation can also improve the density
accuracy in low speeds. We apply this modification to a
recently proposed scheme, TV-MAS, to get a new scheme,
TV-MAS2. Unsteady Gresho vortex flow, double shear-layer
flow, low Mach number flows over the inviscid cylinder, and
NACA0012 airfoil show that energy equation modification
in these schemes can obtain the expected square Ma scal-
ing of density fluctuations, which is in good agreement with
corresponding asymptotic analysis. Therefore, this density
correction is expected to be widely implemented into all-
speed compressible flow solvers.
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1 Introduction

When with low-speed flow configurations [1–4], numerical
schemes developed for compressible flows suffer because
the non-physical behavior deteriorates the solution accuracy
and because there is a large disparity between the speed
of fluid and acoustic wave. There is also a stiffness prob-
lem leading to slow calculation. Low-speed preconditioning
techniques have been developed to overcome issue of com-
pressible flow solvers in the incompressible limit [5,6]. Later,
the non-physical behavior was demonstrated by asymptotic
analysis by Guillard and Viozat in Ref. [7]. As pointed out
in the asymptotic analysis, discrete equations of the shock-
capturing schemes lead to pressure field P fluctuation with
P (x, t) = P0 (t) + M∗P1 (x, t), but the true physical pres-
sure should scale as P (x, t) = P0 (t) + M2∗ P1 (x, t), where
M is the local Mach number, x and t denote space and time.

During recent years, some new attempts to improve the
accuracy of conservative schemes in the low-speed limit
have been proposed, which focus on dissipation character-
istics of flux functions and are different from the previous
preconditioning idea. Among the conservative schemes, the
Roe scheme [8] is a widely used method for solving com-
pressible flows due to its high resolution for discontinuities
and contact shear waves. Many Roe-type schemes with
low Mach improvement have been proposed for all speed
flows [9]. The work of Li and Gu [10] investigated the
joint mechanism of many improved schemes, which include
all-speed Roe (A-Roe) [11,12], Thornber-Drikakis-Roe (T-
D-Roe) by Thornber and Drikakis [13], LMRoe by Rieper
[14], Fillion-Roe (F-Roe) by Fillion et al. [15]. To construct
satisfactory schemes showing the correct asymptotic behav-
ior, Li and Gu [10] found three rules for low speeds through
asymptotic theoretical analysis. Based on these disciplines,
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improvements for low speeds have been applied to schemes
include Harten, Lax, and van Leer (HLL) [10,16], Roe [17],
Toro-Vázquez flux splitting [18]. Another group of popu-
lar upwind methods are AUSM-family schemes [19,20], and
their lowMach numbermodification [21,22] based on a care-
ful design of dissipation also have been proposed. Besides
the accuracy problem, some authors [23,24] also investigated
preconditioned implicit time integrationmethods for efficient
calculation of low-speed flows.

However, the proposed schemes only concern the non-
physical behavior of pressure and the checkerboard problem
(i.e. correction of pressure and velocity fields), without con-
cerning the correct asymptotic behavior of density field,
which is also important as all-speed schemes are mostly
applied to density variable flows (lowMach flows [25,26]) or
compressible field with low-speed zones (mixed compress-
ible incompressible flows [27]). In the low Mach number
speeds, the pressure field gradually decouples with density
as the Mach number decreasing to zero, so the asymptotic
density variations of these schemes must also be considered
in addition to pressure problems.

The rules for low speed flows developed by Li et al. only
concern terms in momentum and continuity equations. In the
original T-D-Roe [13] and F-Roe [15] schemes, the energy
equation is untouched, while Li and Gu [10] add fixed terms
to the energy equation for uniformity, which is just like the
formof themomentumequation, and concluded that themod-
ification has little effect on the energy equation. However, it
has been found that the correction terms in the energy equa-
tion are related closely to the density fluctuation of the flow
field in our numerical experiments. These things motivate
us to understand the mechanism of density fluctuation with
the correction terms in the energy equation and then to find
the rules to improve the schemes that have not considered
density effects, such as the recently proposed TV-MAS [18].

The outline of this paper is as follows. Section 2 presents
the governing equations. Section 3 briefly reviews theRoe, T-
D-Roe, F-Roe schemes and the recently proposed TV-MAS
method. Their density enhanced versions are also discussed
in this section. Section 4 discusses the density fixmechanism
with energy equation underlying these schemes and conducts
an asymptotic analysis to demonstrate it. The resulting rules
of the density fix mechanism are applied to the TV-MAS
scheme. Section 5 presents the numerical experiments to sup-
port the theoretical analysis and prediction. Finally, Sect. 6
closes the paper with some conclusions.

2 Governing equations

Firstly, the compressible Euler equations in 2D can bewritten
as the following form

∂q
∂t

+ ∇ · F (q) = 0, (1)

where F = ( f (q) , g (q)) and is defined as follows

q =

⎡
⎢⎢⎣

ρ

ρu
ρv

ρE

⎤
⎥⎥⎦ , f =

⎡
⎢⎢⎣

ρu
ρu2 + p
ρuv

ρuH

⎤
⎥⎥⎦ , g =

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p
ρvH

⎤
⎥⎥⎦ , (2)

with density ρ, velocity u = (u, v)T, pressure p, total spe-
cific energy E = e + 1

2

(
u2 + v2

)
where internal energy

e = p/ρ (γ − 1), and total specific enthalpy H = E + p/ρ.
To close the equations, the perfect gas law is used

p = (γ − 1)

[
ρE − 1

2
ρ
(
u2 + v2

)]
, (3)

where the specific heat ratio γ = 1.4.
The finite volume discretization of Eq. (1) can be written

as

qn+1
i j = qni j − Δt

Ωi j

N f∑
k=1

FkΔSm, (4)

where Ωi j is the 2D finite volume, ΔSm is the edge length,
N f is the total number of edges composing the finite cell, Fk
is the flux function at the edge normal.

3 Review of the schemes

3.1 The original Roe scheme

The original Roe–Pike [8] scheme can be expressed in the
following form

fRoec,il = 1

2

(
fc,i + fc,l

)− 1

2
R |Λ| αil , (5)

where R is the matrix of right eigenvector with the following
form

R =

⎡
⎢⎢⎢⎣

1 1 0 1
ũ − nx ã ũ −ny ũ + nx ã
ṽ − nyã ṽ nx ṽ + nyã

H̃ − ãŨ 1
2

(
ũ2 + ṽ2

) (
nx ṽ − nyũ

)
H̃ + ãŨ

⎤
⎥⎥⎥⎦ ,(6)

the wave strength αil is defined as

αil =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δp−ρ̃ãΔU
2ã2

Δρ − Δp
ã2

ρ̃Δv
Δp+ρ̃ãΔU

2ã2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (7)
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where a is the sound speed, n = (
nx , ny

)
is the face nor-

mal, Δ = ()i − ()l, (̃) means Roe average and the averaged
variables are given by

ρ̃ = √
ρLρR,

ũ = uL
√

ρL + uR
√

ρR√
ρL + √

ρR
,

H̃ = HL
√

ρL + HR
√

ρR√
ρL + √

ρR
,

Ũ = ũnx + ṽny,

q̃2 = ũ2 + ṽ2,

ã =
√

(γ − 1)(H̃ − q̃2/2). (8)

The Λ is a diagonal matrix consisting of the relevant eigen-
values:

λ1 = Ũ − ã,

λ2 = λ3 = Ũ ,

λ4 = Ũ + ã. (9)

3.2 The F-Roe scheme

Fillion et al. [15] propose a lowMach Roe scheme by adding
a pressure correction to the momentum flux as follows

f F−Roe = f Roe + 1

2
(1 − f (M))

⎛
⎜⎜⎝

0
ρ̃ãnxΔU
ρ̃ãnyΔU

0

⎞
⎟⎟⎠ , (10)

where f (M) is a function of local Mach number and is
defined as

f (M) = min(M, 1), M = max

⎛
⎝
√

u2
L

aL
,

√
u2
R

aR

⎞
⎠ . (11)

This F-Roe scheme is further investigated by Qu et al.
[28,29] in supersonic heating problems and Reynolds aver-
agedNavier Stokes (RANS) simulations. There are no energy
fix terms in the original F-Roe scheme, and this would
result in incorrect density fluctuation which will be shown
in asymptotic and numerical experiment. The density cor-
rection term is added to energy equation as follows and the
scheme is called F-Roe2:

f F−Roe2 = f Roe + 1

2
(1 − f (M))

⎛
⎜⎜⎝

0
ρ̃ãnxΔU
ρ̃ãnyΔU
ρ̃ãŨΔU

⎞
⎟⎟⎠ . (12)

3.3 The T-D-Roe scheme

In order to improve the Roe scheme, Thornber and Drikakis
[13] modified the right eigenvector as follows

fT−D−Roe
c,il = 1

2

(
fc,i + fc,l

)− 1

2
RT−D−Roe |Λ| αil , (13)

RT−D−Roe =

⎡
⎢⎢⎣

1 1 0 1
ũ − nx ã′ ũ −ny ũ + nx ã′
ṽ − nyã′ ṽ nx ṽ + nyã′
H̃ − ãŨ 1

2

(
ũ2 + ṽ2

) (
nx ṽ − nyũ

)
H̃ + ãŨ

⎤
⎥⎥⎦ .

(14)

The modified acoustic speed ã′ is scaled by the function
f (M)

ã′ = ã f (M). (15)

The T-D-Roe with modified energy equation is as follows

RT−D−Roe2 =

⎡
⎢⎢⎣

1 1 0 1
ũ − nx ã′ ũ −ny ũ + nx ã′
ṽ − nyã′ ṽ nx ṽ + nyã′
H̃ − ã′Ũ 1

2

(
ũ2 + ṽ2

) (
nx ṽ − ny ũ

)
H̃ + ã′Ũ

⎤
⎥⎥⎦ .

(16)

In Eq. (16), the acoustic terms in RT−D−Roe2(4, 1) and
RT−D−Roe2(4, 4) are also scaled by f (M), while in the orig-
inal T-D-Roe they are the same as Roe scheme.

Through mathematical transformation, the T-D-Roe2 can
be written as the form of F-Roe2 as follows

f T−D−Roe2 = f Roe + 1

2
(1 − f (M))

⎛
⎜⎜⎜⎜⎝

0
ρ̃ãnxΔU + Ũ Δp

ã nx

ρ̃ãnyΔU + Ũ Δp
ã ny

ρ̃ãŨΔU + Ũ2 Δp
ã

⎞
⎟⎟⎟⎟⎠

.

(17)

As we can see fromEq. (17), the T-D-Roe2 has a very similar
form of F-Roe2 in Eq. (12), which implies that theymay have
similar performance at low speeds.

3.4 The TV-MAS scheme

Based on the idea that velocity and pressure should be sep-
arately treated owing to the different physics between the
convective and acoustic waves, new flux vector splitting
(FVS) schemes have been developed. These methods rely
on some forms of splitting procedures. Up to now, there
mainly exist procedures of Liou-Steffen [19], Zha-Bigen
[30], and Toro-Vázquez [31] to split the Euler equations
into the advection system and pressure system. Further dis-
cussions and developments for these methods can be found
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in Refs. [18,32–34]. The main differences between those
splitting procedures lie in the energy equation of the convec-
tive system: Liou-Steffen’s total enthalpy, Zha-Bigen’s total
energy, and Toro-Vázquez’s kinetic energy respectively.

The TV-MAS scheme proposed by Sun et al. [18] based
on Toro-Vázquez’s splitting is reviewed here, and the TV-
MAS has been claimed as an all-speed scheme in the original
paper. In the Toro-Vázquez’s splitting, advection system has
no pressure terms, and it only appears in pressure system,
moreover, this splitting allows direct use of Godunov-type
methods to the separated system. These characteristics make
the splitting procedures attractive.

Following Toro-Vázquez’s splitting, the flux vector of
Eq. (1) is split into the advection system and pressure system:

F(q) = A(q) + P(q), (18)

where

A(q) =

⎛
⎜⎜⎝

ρ

ρu
ρv

ρ
(
u2 + v2

)
/2

⎞
⎟⎟⎠ , P(q) =

⎛
⎜⎜⎝

0
nx p
ny p

U (ρe + p)

⎞
⎟⎟⎠ . (19)

The interface numerical flux then can be written as

F1/2 = 1

2
(AL+AR) − δA 1

2
+1

2
(PL+PR) − δP 1

2
. (20)

The advection system is solved by simply upwinding, and
the convective dissipation vector is

δA 1
2

= Mk

⎛
⎜⎜⎝

ρ

ρu
ρv

ρ
(
u2 + v2

)
/2

⎞
⎟⎟⎠

k

ak, (21)

k =
{
L , if Ū � 0,
R, if Ū < 0,

(22)

where Ū = (uL + uR)/2 and

MK =
⎧⎨
⎩

Ū
Ū−SL

, Ū � 0,
Ū

Ū−SR
, Ū < 0,

(23)

ak =
{
UL − SL , Ū � 0,
UR − SR, Ū < 0,

(24)

SL = min(0,UL − aL , Ũ − ã), (25)

SR = min(0,UR + aR, Ũ − ã). (26)

The pressure system is dealt with using an HLL-type [35]
Riemann solver, and then the authors follow an isoentropy

transformation in AUFS scheme [36], and the resulting pres-
sure dissipation vector is written as

δP 1
2

= SR + SL
2 (SR − SL )

(PR−PL ) + SR + SL
(SR − SL ) ā2

×

⎛
⎜⎜⎜⎝

pL − pR
f (M)[(pu)L − (pu)R]
f (M)[(pv)L − (pv)R]

ā2
(γ−1) (pL − pR) + 1

2 [(p(u2 + v2))L − (p(u2 + v2))R]

⎞
⎟⎟⎟⎠ ,

(27)

where ā = aL+aR
2 . As we can see, the TV-MAS scheme has

applied the rules proposed by Li and Gu [10] to pressure dis-
sipation terms, which modifies the pressure-difference terms
in momentum equations by the factor f (M), but apparently
the energy equation is neglected by the original authors.

4 Asymptotic analysis

Under the adiabatic compression condition, pressure and
density are related to each other as p

ργ = const [37], so
the density field would have the same fluctuation pattern as
the pressure. To find the mechanism for how the correction
term in the energy equation influences density fluctuation,
an asymptotic analysis, which has been widely used in
Refs. [7,10,11,14], is performed. Previous asymptotic analy-
sis of continuous Euler equation has found that pressure field
fluctuates with the square of Mach number, and the asymp-
totic analysis of the discrete equations with Roe scheme has
revealed the terms related to the pressure fluctuation. This
time we will find the density related terms in the discrete
equations.

Following Ref. [7], the parameters ρ∗, u∗, and a∗ are
used to normalize the compressible Euler equations, which
are defined as ρ∗ = max (ρi (x)) , u∗ = max (|ui (x)|),
and the acoustic speed a∗ = √

γ max (pi (x))/ρ∗, where
ρi (x), ui (x), and pi (x) are the initial values of the discrete
domain. The normalized variables are listed in the following
form

ρ̃ = ρ

ρ∗ , ũ = u

u∗ , ṽ = v

u∗ , p̃ = p

ρ∗(a∗)2
,

ẽ = e

(a∗)2
, x̃ = x

δ∗ , ỹ = y

δ∗ , t̃ = tu∗

δ∗ ,

M∗ = u∗/a∗. (28)

Here M∗ is the reference Mach number and δ∗ is the charac-
teristic mesh element size. Then all normalized variables are
asymptotically expanded into powers of the reference Mach
number M∗

φ̃ = φ̃(0) + M∗φ̃(1) + M2∗φ̃(2) + O
(
M2∗
)

, (29)
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Table 1 Symbols in asympototics

Symbol Illustration

i = (i, j) Index vector for cell

l =
(i ± 1, j) , (i, j ± 1)

Index vector for neighboring cells

il Index for the interface between cell i and l

υ (i) =
{(i ± 1, j) , (i, j ± 1)}

Index set for neighboring cells of cell i

δil Mesh size of cell interface il

Δil (·) = (·)i − (·)l Difference operator

nil = (
nx , ny

)T
il Unit outer normal vector from cell i to l

til = (
nx , ny

)T
il Unit transverse vector from cell i to l

u = (u, v)T Velocity components with Cartesian
coordinates

U = u · n =unx + vny Normal component of velocity vector u

where φ̃ represents all the physical variables (ρ̃, ũ, ṽ, p̃, ẽ)
respectively. In the following sections, we will drop the tilde
˜ for convenience and all the symbols used in analysis are
presented in Table 1.

Inserting the asymptotic expansion Eq. (29) into the F-
Roe scheme, we collect terms with the same power of M∗.
In Ref. [14], Rieper has analyzed the terms with the order
of 1/M2∗ , 1/M∗, and M0∗ , and has found the mechanisms to
get the correct pressure field. This correction also fixes the
Mach contours of the flows. However, the pressure has a
limited influence on density in lowMach number. So further
analysis must be conducted upon the asymptotic expansion
of pressure to find the density enhancemechanism.Wegather
the terms with order M1∗ in continuity and energy equations
as follows
continuity equation:

1

2

∑
l∈ν(i)

ρil
(0)Uil

(0)

ail (0)
ΔilU

(0)δil + Ai
d

dt
ρ

(1)
i

+1

2

∑
l∈ν(i)

⎧⎨
⎩pg

Δil p(2)

a(0)
il

+ (ρlul)
(1) · nil

+
⎡
⎢⎣(|Uil | Δilρ)(1) − (|Uil | Δil p)(1)(

a(0)
il

)2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

δil = 0, (30)

energy equation:

1

2

∑
l∈ν(i)

[(
U 2

il
(0)

ail (0)
Δil p

(0)

)
+ ρil

(0)ail
(0)Uil

(0)ΔilU
(0)

+ρil
(0)Uil

(0)

ail (0)
hil

(0)ΔilU
(0)

]
δil

+Ai
d

dt
(ρi ei )

(1) + 1

2

∑
l∈ν(i)

{
[hilΔil p](2)

a(0)
il

+
[
(ρl elul)

(1) + (plul)
(1)
]

· nil
⎫⎬
⎭ δil = 0. (31)

According to the analysis of terms with 1/M2∗ , 1/M∗, and
M0∗ , the following results hold

ρ(0) = const,

p(0) = const,

p(1) = const,

∇ · u(0) = 0. (32)

Let Eq. (30)multiply hil (0) and subtractwith Eq. (31), getting
the equation

1

2

∑
l∈ν(i)

ρil
(0)ail

(0)Uil
(0)ΔilU

(0)δil

+Ai
d

dt
(ρi ei )

(1) − Ai
d

dt
ρ

(1)
i hil

(0)

+1

2

∑
l∈ν(i)

[
γ p(0)

γ − 1
ul

(1) · nil − ρl
(0)hil

(0)ul
(1) · nil

−|Uil |(0)Δilρ
(1)hil

(0)

⎤
⎦ δil = 0. (33)

Using the energy asymptotic equation [14]

(ρe)(1) = p(1)

γ − 1
, h(0) = γ

γ − 1

p(0)

ρ(0)
. (34)

Equation (33) can be simplified as

Aihil
(0) d

dt
ρ

(1)
i + R = 1

2

∑
l∈ν(i)

ρil
(0)ail

(0)Uil
(0)ΔilU

(0)δil ,

R = 1

2

∑
l∈ν(i)

{|Uil |(0)hil (0)Δilρ
(1)}δil .

(35)

Note that for a simple entropy conservative shear flow
with constant density and pressure, R only has the trans-
port term for ρ(1). An excessive damping of the ρ(1) origins
from the underline term in Eq. (35). In the F-Roe2 and T-
D-Roe2 schemes, this term is lifted with the f (M) function
(ΔilU (0) → 0), and reduces the artificial viscosity to the
correct level. This density correction effects will be shown
in the following numerical experiments.

That is to say, fix terms also should be applied to the
energy equation to get the right density fluctuation, based
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on the pressure fix added to momentum equations. The non-
physical phenomenon of upwind schemes at low speed can
be cured following the rules of Li and Gu [10], and now we
have shown that extra fix terms in the energy equation needed
to be considered based on a similar form of momentum cor-
rection. According to this theory, we propose the TV-MAS2
scheme,which fixes the energy equationwith the f (M) func-
tion upon the original TV-MAS scheme. In order to get the
correct density fluctuation, the energy equation in δP 1

2
is

modified as the way in momentum equations, resulting the
following TV-MAS2 scheme

δP 1
2

= SR + SL
2 (SR − SL )

(PR−PL ) + SR + SL
(SR − SL ) ā2

×

⎛
⎜⎜⎜⎝

pL − pR
f (M)[(pu)L − (pu)R ]
f (M)[(pv)L − (pv)R ]
ā2

(γ−1) (pL − pR)+ 1
2 f (M)

[
(p(u2+v2))L−(p(u2+v2))R

]

⎞
⎟⎟⎟⎠ .

(36)

5 Numerical results

5.1 Gresho vortex

In their work, Gresho and Chan [38,39] proposed a time-
independent solid body rotating vortex flow. In this unsteady
moving flow, the vortex can be transported without distortion
by the background flow. We choose a computation domain
of [0, 1] × [0, 1], and periodic conditions are applied on the
horizontal direction, while characteristic conditions are on
the vertical edges. The domain is first initialized with a uni-
form background flow of density ρ0, pressure P0, and given
Mach M0 as follows

ρ0 = 1.0, u0 = (u0, 0)
T, p0 = 1.0,

c0 = √
γ p0/ρ0 = √

γ , u0 = M0c0.
(37)

A perturbed initial condition permitting different Mach
numbers is proposed in Ref. [14]. At the time t = 0 of the
perturbed flow, a vortex is located at (x0, y0) = (0.5, 0.5)
with the radius R = 0.4. At the position r = R, the vortex
tangential velocity decreases to zero. This perturbed vortex
is added to the background flow as follows

ur (r) = u0

⎧⎨
⎩
2r/R, if 0 � r < R/2,
2 (1 − r/R) , if R/2 � r < R,

0, if R � r,
(38)

p (r) = p0 + u20

⎧⎨
⎩
2r2/R2 + 2 − log 16, 0 � r < R/2,
2r2/R2 − 8r/R + 4 log (r/R) , R/2 � r < R,

0, R � r,

(39)

r =
√

(x − x0)2 + (y − y0)2, (40)

where the ur (r) denotes the radial velocity and we obtain
the Cartesian components by

u (x, y) = u0 − y − y0
r

ur (x, y) ,

v (x, y) = x − x0
r

ur (x, y) . (41)

According to the initial condition, the pressure field has
the following fluctuation relation

p = p0+u20 p
(2). (42)

The original incompressible test case is extended to a weakly
compressible one by introducing the adiabatic compression
p = ργ , which makes the initial density field have a similar
form to pressure fluctuations

ρ = ρ0+u20ρ
(2). (43)

We use a Cartesian grid of [120 × 120], and all simula-
tions are run until one domain passage is reached. The strong
stability preserving a three-stage third-order Runge-Kutta
(SSP-RK3) [40] scheme is used for temporal discretization.

In Ref. [9], the evolution of a normalized pressure field
p̃ f ∈ [0, 1] is used to characterize the accuracy of the com-
putations in incompressible limit. The normalized pressure
field p̃ f is expressed as

p̃ f (x) = p(x) − pmin

pmax − pmin
, (44)

where pmin represents the minimum static pressure in the
flow field, and pmax is the maximum. We define similar nor-
malized density field as

ρ̃ f (x) = ρ(x) − ρmin

ρmax − pmin
. (45)

In the Gresho vortex test case, the normalized pressure and
density field should be unchanged during transportation inde-
pendent of initialMach number. Thus, we use this to evaluate
the quality of different schemes in the simulation of Gresho
vortex.

Figure 1 shows the normalized pressure fluctuation field
of the Gresho vortex for Ma = 0.1. Figure 2 shows the
corresponding normalized density fluctuation field. As we
can see, the original Roe scheme holds the initial maxi-
mum Pf of 50%–60% after one domain passage due to the
strong dissipation; on the contrary, all others plotted in the
figures have preserved the original maximum Pf . All the
improved schemes (T-D-Roe, F-Roe, TV-MAS, T-D-Roe2,
F-Roe2, TV-MAS2) have achieved the same contour on Pf

as F-Roe, thus not all of them are plotted in the figure. How-
ever, the difference lies in the density field. Schemes in the
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Fig. 3 Vorticity contours of double shear-layer by F-Roe2 schemes at Mach 0.01. a t = 0. b t = 4.0. c t = 8.0

y

v

Reference solution

Fig. 4 Velocity v profiles along x = π at t = 8.0 of double shear layer
cases

groupwith no energy correction (T-D-Roe, F-Roe, TV-MAS)
show excessive dissipation to density fluctuation. The origi-
nal Roe preserves 30% of the maximum ρ f after one domain
passage, while F-Roe is 40%, TV-MAS is 20%. The schemes
with energy fix terms (T-D-Roe2, F-Roe2, TV-MAS2) have
almost constant density fluctuation as the initial field. This
shows the importance of the energy equation fix to get the
correct density field in low Mach speeds.

The T-D-Roe series have similar formulas and numerical
results as corresponding schemes in F-Roe series, and that

ρ

y

Reference solution

Fig. 5 Density profiles along x = π at t = 8.0 of double shear layer
cases

is verified in the following numerical examples. So in some
sections, only the F-Roe results are listed in the discussion.

5.2 Double shear-layer

The “double shear-layer” problem is a typical 2D unsteady
inviscid flow.Wemostly follow the setup of Ishiko et al. [41]
andKitamura andHashimoto [42],whichmakes this problem
a weakly compressible flow. Initially, two shear layers are
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a b

c

Fig. 6 Mach contours for simulations of flow around inviscid cylinder at Mach 0.001. a TV-MAS scheme. b TV-MAS2 scheme. c Roe scheme

a b

c

Fig. 7 Pressure contours for simulations of flow around inviscid cylinder at Mach 0.001. a TV-MAS scheme. b TV-MAS2 scheme. c Roe scheme

generated by fluids with opposite velocity (Fig. 3a), then as
time progresses, the initial layers will gradually roll up and
develop a strong vortical flow structure (Fig. 3b, c) [42]. This
vortical structure developed by shear-layer is very different
to Gresho’s vortex flow,which possesses a consistent pattern.
Thus, we conduct it to highlight further the characteristics of
density correction.

The initial conditions for velocity components are

u(x, y) =
{
U∞ tanh[(y − π/2)/δ1], y ≤ π,

U∞ tanh[(3π/2 − y)/δ1], y >π,
(46)

v(x, y) = δ2 sin(x), (47)

where U∞ = 1.0, δ1 = π/15, δ2 = 0.05. The density is
set to be ρ = 1.0 and the pressure is chosen to satisfy a
Mach number of M∞ = 0.01 with p = 1/

(
γ M2∞

)
. The

computational domain is [0, 2π] × [0, 2π] and consists of

1282 grid cells. A periodic boundary condition is adopted at
all directions of the computational domain. The simulations
are run up to t = 8.0with the SSP-RK3 time scheme at a time
step of δt = 5.0 × 10−5. The reference solution is achieved
with Roe scheme at a very fine grid of 5122 cells. “At this
level of resolution, the flux functions have no influence on
the results” [42].

The differences of all simulated schemes are compared in
Fig. 4, in which velocity v profiles are listed along x = π

slice. In Fig. 5, the density profiles along x = π are plot-
ted. As we can see from Fig. 4, all the low-Mach enhanced
schemes get a more precise velocity v profile than the origi-
nal Roe, and there aremarginal differences among themselfs.
This proves that the momentum fix can recover the velocity
and pressure profile at low Mach limit. However, in Fig. 5,
the density profile is very different. The F-Roe and TV-MAS
have density jump glitches at the position of strong shear
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Fig. 8 Density contours for simulations of flow around inviscid cylinder at Ma = 0.001. a F-Roe scheme. b F-Roe2 scheme. c TV-MAS scheme.
d TV-MAS2 scheme. e Roe scheme
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Fig. 9 Convergence comparison of NACA0012 test case at Ma =
0.01

effect, while the fixed F-Roe2 and TV-MAS2 can recover
correct density profile compared to the reference solution.

5.3 Inviscid cylinder

The Euler flow over a two-dimensional cylinder is a typical
low speed flow of blunt body. In this case, the size of the
computational domain is Ω = [r0, r1] × [φ0, φ1], which
is [0.5, 20] × [0, 2π] in details, where r0 is the radius of a

cylinder surface and r1 is the radius of exterior boundary. The
adopted mesh is O-type and contains 301(cuicumference) ×
401 (radius) grid points. The inflow Mach numbers Minf =
0.001 with initial conditions of ρ = 1.0, p = 1/

(
γ M2∞

)
.

The farfield condition is used at the outer boundary, and the
slip wall condition is applied at the cylinder wall.

Figure 6 shows the Mach contours of the TV-MAS, TV-
MAS2, and Roe schemes, while Fig. 7 shows the pressure
contours. As we can see, in this condition, the TV-MAS and
TV-MAS2 get the physical Mach and pressure field, while
the original Roe scheme gets nonphysical contours. The T-
D-Roe and F-Roe series have the same Mach and pressure
results, so are not plotted here. In Refs. [10,18], it has been
shown that the Mach and pressure fields can be solved by the
momentum corrections together, so only the pressure fields
are used for comparison in the following. Figure 8 shows
the density contours of the F-Roe, F-Roe2, TV-MAS, TV-
MAS2, and Roe schemes. The Roe, F-Roe, and TV-MAS
get diffusive density field, while the TV-MAS2 and F-Roe2
can recover the correct density field. It also can be noticed
that the F-Roe and TV-MAS get more diffusive density field
than original Roe scheme.

5.4 Inviscid NACA0012 airfoil

The inviscid flow over NACA0012 airfoil is a typical test
case at the low-speed condition. An O-type mesh that con-
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a b

d e

c

f

g

Fig. 10 Pressure contours for simulations of inviscid flow around NACA0012 at Ma = 0.01. a F-Roe scheme. b F-Roe2 scheme. c T-D-Roe
scheme. d T-D-Roe2 scheme. e TV-MAS scheme. f TV-MAS2 scheme. g Roe scheme

tains points of 241 (airfoil) × 121 (normal) is used for the
following computations. The discretization domain extends
19 chord lengths from the airfoil wall, the farfield condition
is used at the exterior boundary and the slip wall condition
is applied to the airfoil surface. The flow results with several
inflow Mach numbers Minf = 0.1, 0.01, 0.001 at a zero-
degree angle of attack are investigated to assess the density
fix effects. In addition, the flow simulations are conducted
by the implicit LU-SGS approach [43] withCFL=5 for over
100,000-time iterations, which achieve at least five orders of
the density residual reduction (L2− norm). Though the pre-
conditioned implicit LU-SGS [23] is a better choice, we still
use LU-SGS since we mainly focus on the flux functions.

Figure 9 shows the convergence history of inflow Mach
number 0.01 by different schemes. The T-D-Roe serial
schemes perform similarly to F-Roe and are not shown in
the figure for clarity. We can see clearly in the convergence
history that schemes without the energy correction stall after

five orders of residual reduction. The schemes with corre-
sponding corrections can continue with the residual drop.

The results of pressure profiles with inflow Mach 0.01
are plotted in Fig. 10, and density fields of the solutions are
presented in Fig. 11. It is important to note that although
T-D-Roe, F-Roe, and TV-MAS schemes can obtain accu-
rate pressure flow fields at low speeds, but fail in density
fluctuation fields. The schemes with corrections in energy
equation can get the accurate density field corresponding to
the pressure field. However, in Fig. 11f, the density field of
TV-MAS2 seemsmore diffusive than F-Roe2 and T-D-Roe2,
especially in the wake region. This may owe to the inherent
dissipation characteristic of HLLRiemann solver solving the
pressure system, which is more diffusive than the Roe Rie-
mann solver in nature.
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a b

d e
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f

g

Fig. 11 Density contours for simulations of inviscid flow around NACA0012 atMa = 0.01. a F-Roe scheme. b F-Roe2 scheme. c T-D-Roe scheme.
d T-D-Roe2 scheme. e TV-MAS scheme. f TV-MAS2 scheme. g Roe scheme
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Fig. 12 Comparison of pressure fluctuations computed by different
schemes versus inflow Mach number

FollowingRef. [17], we define twofluctuation coefficients
as follows

I nd (p) = (pmax − pmin)/pmax, (48)

I nd (ρ) = (ρmax − ρmin)/ρmax. (49)

x

x

x

(ρ
)

x
y=x2

Fig. 13 Comparison of density fluctuations computed by different
schemes versus inflow Mach number

Figure 12 shows pressure fluctuations I nd(p) versus inflow
Mach number for inviscid flows over NACA0012 airfoils.
Figure 13 shows corresponding density fluctuations I nd(ρ).
From these figures, we can draw the conclusions as follows:
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(1) T-D-Roe, F-Roe, and TV-MAS schemes are perfectly
consistent with the theoretical asymptotic analysis that
the pressure fluctuations scale with the square of the
Mach number [7], but fails with the theoretical predic-
tion of density fluctuation.

(2) T-D-Roe2, F-Roe2, and TV-MAS2 schemes are able to
obtain the correct scaling of both pressure and density
fluctuations. Thus, they can simulate low Mach number
flows more concisely.

6 Conclusion

In this work, we have presented a comprehensive study of
the enhancement to a low-speed density fluctuation accuracy
problem. The asymptotic analysis has shown the relation of
density fluctuationwith terms of ρ̃ãŨΔU in energy equation
at lowMach number limit of Roe-type schemes. Applying fix
terms in momentum and energy equations at the same time
not only can get the expected pressure fluctuations scales
of square Mach number and the physical velocity fields,
but also can correct the density field into the correct square
Mach number scale. An improved TV-MAS scheme, i.e. TV-
MAS2, is proposed based on these study. Unsteady Gresho
vortex flow, double shear-layer, lowMach number flows over
an inviscid cylinder and the NACA0012 airfoil show that
energy enhancement terms effectively obtain the expected
square ofMach number scaling of density fluctuations,which
is in good agreement with corresponding asymptotic anal-
ysis. In summary, the energy correction is recommended
for low-speed enhancement of upwind schemes when using
compressible flow solvers.
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