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Abstract The impact problem of a flexible multibody sys-
tem is a non-smooth, high-transient, and strong-nonlinear
dynamic process with variable boundary. How to model
the contact/impact process accurately and efficiently is one
of the main difficulties in many engineering applications.
The numerical approaches being used widely in impact
analysis are mainly from two fields: multibody system
dynamics (MBS) and computational solidmechanics (CSM).
Approaches based on MBS provide a more efficient yet
less accurate analysis of the contact/impact problems, while
approaches based on CSM are well suited for particularly
high accuracy needs, yet require very high computational
effort. To bridge the gap between accuracy and efficiency in
the dynamic simulation of a flexible multibody system with
contacts/impacts, a partition method is presented consider-
ing that the contact body is divided into two parts, an impact
region and a non-impact region. The impact region is mod-
eled using the finite element method to guarantee the local
accuracy, while the non-impact region is modeled using the
modal reduction approach to raise the global efficiency. A
three-dimensional rod-plate impact experiment is designed
and performed to validate the numerical results. The prin-
ciple for how to partition the contact bodies is proposed:
the maximum radius of the impact region can be estimated
by an analytical method, and the modal truncation orders
of the non-impact region can be estimated by the highest
frequency of the signal measured. The simulation results
using the presented method are in good agreement with the
experimental results. It shows that this method is an effec-
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tive formulation considering both accuracy and efficiency.
Moreover, a more complicated multibody impact problem of
a crank slider mechanism is investigated to strengthen this
conclusion.
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1 Introduction

The accurate and efficient modeling of contact/impact is
one of the main difficulties in many engineering applica-
tions. The numerical approaches that are used widely in
contact/impact analysis can be divided into two categories:
approaches based on computational solid mechanics (CSM),
see Refs. [1–3], and approaches based on multibody system
dynamics (MBS), see Refs. [4–7].

In CSM, the finite element method (FEM) is most widely
used to model the deformations, and usually the node-to-
segment approach is used to discretize the contact surfaces.
It is of major interest to predict the strain and stress field in
the deformable bodies coming into contact. It is well suited
for particularly high accuracy needs, yet requires very high
computational effort.

Approaches based on MBS provide a more efficient yet
less accurate analysis of the contact/impact problems. These
approaches emphasize capturing the effect of impact on the
overall motion of the system for long simulation time. Usu-
ally, the floating reference frame formulation [8,9] is used
to separate the overall motion into the rigid motion of the
reference frame and a linear elastic deformation with respect
to the reference frame. In order to gain computational effi-
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ciency, formulations based on the modal superposition and
substructure methods have been used to reduce the number
of degrees of freedom (DOFs), and various modal reduction
techniques exist [10]. For themodeling of contact, some sim-
plifying assumptions are usually made in these approaches:
the contact interface is represented by two coincident points
and a local reference frame rather than a time-varying area, or
the contact force is modeled as a Hertz force element rather
than distributed forces.

We would like to bridge the gap between approaches
based on CSM, which can acquire results of high accu-
racy yet require excessively long computation times, and
approaches based on MBS, which cannot provide accurate
local deformation information yet acquire considerably less
computational burden. We thus start here with a survey of
different approaches toward the goal of accuracy vs. effi-
ciency trade-offs for contact/impact analysis in multibody
system.

Considering a lowvelocity impact, only the local region of
the flexible body immediately involved in the impact is sub-
ject to plastic or finite deformation.Based on this assumption,
some methods that maintain accuracy in the local impact
region yet reduce computational burden to a manageable
level have been developed. The work of Benson and Hal-
lquist [11] implemented a simple rigid body algorithm into
DYNA3D. The mesh outside the impact region is replaced
with a rigid body model to reduce the cost of the anal-
ysis with only a small loss in accuracy. Also, Ambrosio
et al. [12] derived the equations of motion of the partially
rigid-flexible body model and proposed the methodology for
co-simulation of multibody and finite element codes. Fur-
thermore, Lankarani and Nikravesh [13] used a multibody
model of the occupant with a nonlinear FEM model of the
lumbar spine for the crash dynamic simulation. InKim et al.’s
work [14] on contact problems of two flexiblemultibody sys-
tems, the components undergoing direct contact aremodelled
using the FEM that incorporates large rigid body displace-
ment,while the rest of the system is handled through the usual
flexible multibody formulation. The simulation strategy pre-
sented by Seifried et al. [15] and Dong et al. [16] pursues
a different approach. Different models of the flexible bodies
are implemented in flight and impact phase. The float frame
of reference formulation is used in the flight phase and FEM
is used in the impact phase.

In this paper, the partition method is presented for the
simulation ofmultibody systemwith impact. The non-impact
region is modelled using the modal reduction approach to
reduce the DOFs. The FEM is employed for modelling the
nonlinear and plastic deformation in the local impact region.
With this method, the computational efficiency of the whole
system and the computational accuracy in the local impact
region are both increased.

For the experimental investigations of impact problems,
the main difficulty is that the impact duration is very short
and the frequencies of impact responses are extremely high.
Early experimental investigation mainly focused on tran-
sient strain response, in which the measurement instruments
are mainly strain gauges [17]. Accelerometers were also
used in some impact experiments to measure points not
located close to the impacts [18,19]. With the advance of
laser techniques, some impact experiments were conducted
using laser-Doppler vibrometers (LDVs); however, these are
mainly for one-dimensional rod impact or two-dimensional
planar impact problems [15,16].

A three-dimensional impact of a hemispherical-tip rod
on a square plate is designed and performed to validate
the simulation results using the partition method. The rod-
plate impact problems have been investigated by several
researchers using either analytical method [20,21] or FEM
[22,23], but few of them are validated experimentally. In this
experiment strain gauges and LDVs are employed to mea-
sure the high-frequency impact responses. Both FEM and
the partition method are used to simulate the experimental
case, and a principle for how to partition the contact bodies
is proposed. The results show that the partition method is
an effective formulation considering both accuracy and effi-
ciency. Moreover, the partition method is applied to solve a
more complicated impact problem of a crank slider mecha-
nism, which is a typical flexible multibody system.

2 Partition method

In multibody dynamics with contact/impact, the rigidmotion
of a flexible body is described by a floating reference frame,
and the deformation ismodeled by relative deformation coor-
dinates. This section provides the derivation of the partition
method for contact/impact problem in a multibody system,
including the kinematic description and equations of motion.

2.1 Equations of motion using FEM

As shown in Fig. 1, a deformable body Bi is discretized by
lumped mass FEM; therefore, the mass of body is distributed
to each finite element node. The inertial reference frame is
represented by er , and the floating reference frame attached
to the body is denoted by eb. The position vector of eb with
respect to er is denoted as r . An arbitrary node position r P

of flexible body Bi is defined by (ignore the body mark i)

r P = r + ρP , (1)

where ρP = A
(
ρ′P

0 + u′P
)
represents the position of node

P in inertia frame, ρ′P
0 is the initial position, u′P is the
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Fig. 1 Kinematics of a flexible body using FEM

displacement in the floating frame, and A is the transfor-
mation matrix from the floating frame to the inertial frame.
Equation (1) follows the notation (∗)′, meaning that the quan-
tity (∗) is expressed in the floating frame.

DerivingEq. (1)with respect to time yields the nodal abso-
lute velocity, and deriving Eq. (1) twice results in the absolute
acceleration:

ṙP = ṙ − ρ̃Pω + Au̇′P , (2a)

ṙP = ṙ − ρ̃P ω̇ + Aü′P + ω̃ω̃ρP + 2ω̃Au̇′P , (2b)

where ω = [
ω1 ω2 ω3

]T
represents the angular velocity of

the floating frame, and

ω̃ =
⎡
⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (3)

Equation (2) is expressed in matrix form as

ṙP = BPv, (4a)

r̈P = BP v̇ + wP , (4b)

where v = [
ṙT ωT u̇′T ]T is the generalized velocity vector,

BPand wP are given by

BP = [
I3 −ρ̃P ACP

]
, (5a)

wP = ω̃ω̃ρP + 2ω̃Au′P , (5b)

where the matrix CP is a Boolean matrix, leading to u′P =
C Pu′.

Applying theprinciple of virtual power for thewhole body,
the equations of motion can be written as
∑
P

δ ṙPT
(
−mP r̈P + f P

)
− δu̇′T (CF u̇

′ + K Fu
′) = 0, (6)

where f P is the nodal external force vector, CF and K F are
the damping matrix and stiffness matrix assembled by FEM.

Substituting Eq. (3) into Eq. (6) yields:

δvT

⎛
⎜⎝−mv̇ −w + f ext − f int︸ ︷︷ ︸

f

⎞
⎟⎠ = 0, (7)

where m, w, f ext, and f int are given by:

m =
∑
P

mPBPTBP , (8a)

w =
∑
P

mPBPTwP , (8b)

f ext =
∑
P

BPTf P , (8c)

f int =
(
0T 0T

(
CF u̇′ + KFu′)T )T . (8d)

For a single flexible body, the coordinates are independent,
Eq. (7) can be written as

−mv̇ + f = 0. (9)

For the system containing n bodies connected by kine-
matic joints, if the joint constraints are gJ (p) = 0, p is
generalized displacement vector, the equations ofmotion can
be written as

[
M GT

J
GJ 0

] [
V̇
λJ

]
=
[
F
γ J

]
, (10)

where M = diag(m1,m2, . . . ,mn),V = [
vT1 , vT2 , . . . vTn

]T
F = [

f T1 , f T2 . . . f Tn
]T

,GJ = ∂gJ
∂p ·W ,W is matrix leading to

ṗ = WV , γ J = −ĠJV , and λJ represents the correspond-
ing Lagrange multipliers.

2.2 Equations of motion using partition method

As shown in Fig. 2, the contact body is decomposed into
two parts, namely, the non-impact region I and the impact
region II.

The deformation coordinate can be written as

u′ = [
u′T
I u′T

I I

]T
. (11)

The generalized velocity vector can be written as

v =
[
vTr u̇′T

I u̇′T
I I

]T
, (12)

where vr =
[
ṙT ω

T
]T

describes the rigid body motion.
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Fig. 2 Partition of a flexible body using partition method

In order to reduce the systemDOFs, the nodal coordinates
in non-impact region I are reduced by a small number ofmain
modes:

u′
I = Φ ′

Ia, (13)

where Φ is the modal matrix, comprising the eigenmodes of
the finite element structure and a is the modal coordinate,
which has much fewer degrees than that of nodal coordinate
u. The eigenvalues ωi and the associated eigenmodes ϕi are
derived from solving the eigenvalue problem (−ω2

i MF +
KF )ϕi = 0,MF is the mass matrix assembled in FEM. The
modal matrix of non-impact region ΦI is selected from the
entire modal matrix by node number.

Substituting Eq. (13) into Eq. (12), the generalized veloc-
ity becomes:

v̂ =
[
vTr ȧT u̇′T

I I

]T
. (14)

The relationship between v̂ and v can be written as

v = T v̂, T =
⎡
⎣
I6

Φ ′
I
III

⎤
⎦ , (15)

where T is the transformation matrix.
The mass matrix and force matrix can be written as

m̂ = TTmT , f̂ = TT f . (16)

The equation of motion of single body using partition
method can be obtained:

−m̂ ˙̂v + f̂ = 0. (17)

The equations of motion of the system can be written as

[
M̂ Ĝ

T
J

Ĝ J 0

][ ˙̂V
λ̂J

]
=
[
F̂
γ̂ J

]
. (18)

3 Modeling of contact force

For contact/impact dynamics of a discretized elastic body,
two typical methods are usually presented to model the
contact force: penalty method [1,15,24,25] and Lagrangian
method [1,16,26,27]. In the penalty method, the contact
force is defined by a force function of local penetration at the
contact point, because the non-penetration constraint is not
precisely satisfied during the contact process, the accuracy of
numerical simulation depends on the choice of the coefficient
of contact stiffness. In contrast, the Lagrangian method for
contact modeling, where constraint equations are appended
to dynamic equations to be solved together, reflects the non-
penetration condition without manually defined parameters.
In this section, the contact constraint equation is derived
using Lagrangian method.

In computational contact mechanics, mostly the node-to-
segment approach is used to discretize the contact surfaces,
as shown in Fig. 3. A node-to-segment element for the two
colliding bodies is defined by the four nodes M1–M4 on the
master body and by the penetrating node S on the slave body.
The other contact point M on the master surface can be iden-
tified according to the closest point projection [2].

The vector of contact gap is given as

gS = rSi − rMj . (19)

Then the normal distance between the two contact points
is gSN which can be written as

gSN = n · gS, (20)

where n is the normal vector of the master segment at the
point M . No impact occurs when gSN > 0, while gSN = 0
indicates an impact and gSN < 0 indicates an non-physical
penetration.

When contact occurs, according to the non-penetration
condition in the contact point, the locking of the free motion
in a normal direction is described by the following constraint
equation on position level:

gSN = n · gS = 0. (21)

S

M

ξ

ηSg

M2

M4

M3

M1

jB

iB

n
S
ir

M
jr

S

M

O

Sg

Fig. 3 A node-to-segment contact pair

123



486 J. Y. Wang, et al.

Deriving Eq. (21) yields the constraint equation on veloc-
ity level:

ġSN = n · ġS + ṅ · gS︸ ︷︷ ︸
=0

= 0. (22)

As ṅ is on the tangent plane, the second term in Eq. (22)
disappears. Deriving Eq. (22) yields the constraint equation
on acceleration level:

g̈SN = n · g̈S + ṅ · ġS︸ ︷︷ ︸
=0

= 0. (23)

Considering a normal contact, the relative velocity of the
contact pair in the tangential direction tends to be zero, thus
the second term in Eq. (23) can also be ignored. Substituting
Eq. (19) into Eq. (23), we obtain:

n ·
(
r̈Si − r̈Mj

)
= 0. (24)

Substituting Eq. (4b) into Eq. (24), we obtain:

n ·
(
BS
i v̇i − BM

j v̇ j
)

= n ·
(
−wS

i + wM
j

)
. (25)

For notation convenience, Eq. (25) can be expressed as

GS
C · V̇ = γ S

C . (26)

If there are m contact pairs, the system contact constraint
equations can be assembled as

GC · V̇ = γ C , (27)

where GC = [
G1T
C , G2T

C , . . . GmT
C

]T
, γ C =[

γ 1T
C , γ 2T

C , . . . γmT
C

]T
.

Then the system dynamic equations can be obtained using
partition method and the Lagrange multiplier technique

⎡
⎢⎣
M̂ Ĝ

T
J Ĝ

T
C

ĜJ 0 0
ĜC 0 0

⎤
⎥⎦

⎡
⎢⎣

˙̂V
λ̂J

λ̂C

⎤
⎥⎦ =

⎡
⎣
F̂
γ̂ J
γ̂ C

⎤
⎦ . (28)

It is to be noted that Eq. (28) is an ODE; therefore, we can
choose an arbitrary numerical integration approach. Here the
explicit central difference method is applied.

The time integration can be written in the following form
for a typical time step h:

V i+1/2 = V i−1/2 + hV̇ i , (29a)

pi+1 = pi + hWV i+1/2. (29b)

4 Experimental setup

A schematic diagram of the impact experiment is shown in
Fig. 4, and an overview of the experimental setup is shown
in Fig. 5. A cylindrical steel rod with hemispherical tip is
used to strike an aluminum plate. The two colliding bodies
are suspended by two sets of thin wires in a “V” shape at
two locations and are positioned horizontally by means of a
spirit level. The rod just contacts the plate’s center and the
rod’s axis is vertical to the plate’s surfacewhen in equilibrium
position. The plate remains still until a collision occurs. To
ensure the impact point is at the center of the plate, a pencil
is used to mark the accurate location, the rod head is painted
with red ink, and then adjustments are performed until an
imprint is produced exactly at the marked point of the plate.
After impact the imprint is also checked and the experimental
data is adopted only when the imprint is at the center.

The rod is set free from a specified height and impacts the
plate at a velocity of about 0.596 m/s measured by the LDV.
To determine the time of collision, we connect the two bodies
to a direct current source, the current signal comes out in the
contact process. For the investigated duration of 5 ms, the
motion of both bodies can be considered as a free horizontal
motion approximately.

Strain gauges

LDV

Rod

Plate

LDV

v=0.596 m/s
Point P2 Point P1

Fig. 4 Schematic diagram of the rod-plate impact experiment

S1

S2 S3

x

y

Fig. 5 Overview of the experimental setup
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Table 1 Geometrical and material parameters

Radius (mm) Length (mm) Width (mm) Thickness (mm) Modulus (GPa) Poisson ratio Density (kg/m3)

Rod 10 800 – – 205.8 0.28 7727

Plate – 250 250 5 59.1 0.32 2627
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Fig. 6 Comparisons between experiment and FEM simulation. a Velocity of point P1. b Velocity of point P2

The strains are measured with strain gauges. As shown in
Fig. 5, three gauges are bonded to the contact surface of the
plate in three directions 15 mm away from the center point,
the strain gauge S1 is located in the x-direction, the strain
gauge S3 is located in the y-direction, the strain gauge S2 has
a 45◦ angle with both S1 and S3. The used signal amplifier is
of type YE3817c made by Sinocera Piezotronics, Inc. In the
measurement the supplied constant voltage is set to 6 V and
the amplifier gain is set to 500.

For the measurement of velocities, two laser-doppler
vibrometers of type PSV-300F, made by Polytec GmbH are
used. The vibrometer utilizes an interferometric technique
to measure vibrational signals. The measurement range of
velocity is ±10 m/s, and the resolution reaches 10−6 m/s.
The back point of the rod and the center point of the plate are
measured in the normal impact experiment.

The material and geometrical parameters of the two col-
liding bodies are tabulated in Table 1.

5 Simulation and experimental results

5.1 Comparison between FEM simulation and
experiment

For numerical simulation using FEM, the commercial soft-
ware ANSYS is used here. The finite element type is an
8-node hexahedral element. The spatial discretization is an
essential factor. In impact dynamics, the mesh of the main

part should be small enough to get an accurate representation
of high frequency wave propagation. For the discretization
of the local impact region, additional considerations are
required. To represent sufficiently the deformation and stress
distribution in the impact region, the impact region must be
discretized in a much smaller size than the element length
required for the wave propagation.

In the rod-plate impact case, the mesh size is gradually
reduced until the simulation reaches convergence. The ele-
ment length of main part is about 5 mm and that of the
local region is less than 0.2 mm, and the total node amount
is 95218. Comparisons between experiment and simulation
using FEM are shown in Figs. 6 and 7. Figure 6 shows
the comparisons of velocities of the two measured points.
Figure 7a shows the experiment data of three strain gauges
and they agree with each other well because they are bonded
at the same distance from the center. It also verifies that the
contact point is the center of the plate. Take the strain gauge
S2 as an example to compare the experimental strain with the
simulated strain, as shown in Fig. 7b. The observation of the
comparisons indicates that the FEM approach predicts the
measured results very well when the spatial discretization is
conducted appropriately.

5.2 Comparison between FEM and partition method

As shown in Sect. 5.1, for a correct evaluation of the impact
process, the FEM leads to an inefficient numerical imple-
mentation due to the large number of DOFs. In this section,
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Fig. 7 Strain values. a Experiment data of three strain gauges. b Comparison between Experiment and FEM simulation

Non-impact Region

Impact Region

Fig. 8 Partition of the impact bodies

the partition method will be used to reduce the systemDOFs.
The partition method is implemented in the MATLAB.

The core idea of partition method is to use different coor-
dinates to describe the deformations of different regions. As
shown in Fig. 8, the contact bodies are divided into two
regions, the impact region is described by nodal coordinates
and the non-impact region is defined using modal coordi-
nates.

For the partition method, a very important problem is how
to divide the contact bodies to ensure the accuracy of the
simulation. That is to say, howmany nodes should be used to
describe the impact region, and how many orders of modes
should be applied to describe the non-impact region? In the
following, the principle for the partition schemeof the contact
bodies will be given.

In order to determine the size of impact region, the max-
imum contact radius should be estimated beforehand. Here
we use the Hertz contact law to simulate the impact case
firstly. It predicts a rough maximum force of 800 N. From
this the contact radius rc can be calculated by the Hertz law:

rc

Fig. 9 Maximum contact area
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Fig. 10 Amplitude-frequency response of velocity of point P1

rc =
[

3PR1R2

4(R1 + R2)

(
1 − μ2

1

E1
+ 1 − μ2

2

E2

)] 1
3

= 0.49 mm,

(30)
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Table 2 Partition schemes of the contact bodies

Partition
schemes

Nodes
(impact
region)

Truncation
frequency
(kHz)

Modes of rod and
plate (non-impact
region)

Scheme 1 250 5 21 + 30

Scheme 2 250 10 32 + 56

Scheme 3 250 20 54 + 124

Scheme 4 250 40 94 + 276

where P is the contact force, R is the curvature radius of the
contact surface, in this case R1 = 10 mm, R2 = ∞.

As shown in Fig. 9, the red points in the circle belong to
the impact region. In this rod-plate impact case, the impact
region consists of 250 nodes in total.

Since impacts are high-frequency phenomena, it is not suf-
ficient to retain only the lower ordermodes for the non-impact
region. The modal truncation frequency should be deter-
mined by the measurement. Here we perform a fast Fourier

Table 3 Comparison of efficiency between FEM and partition method

Nodes Modes DOFs CPU time (h)

FEM 95218 – 285654 > 20

Partition method 250 94 + 276 1120 0.973

transform (FFT) of the velocity response of the impact point
P1, as shown in Fig. 10. It can be seen that the frequency
mainly concentrates in the range from 0 to 10 kHz, and the
highest frequency of velocity response is up to 20 kHz.

We set the truncation frequency as 5, 10, 20, 40 kHz,
respectively, then we have four partition schemes as listed
in Table 2. The results of the four partition schemes using
partition method are compared with the result using FEM,
as shown in Fig. 11. It is shown that only keeping lower
order modes leads to a large deviation. As the modes in non-
impact region increase, the result becomes more accurate.
When the truncation frequency reaches 40 kHz, the result of
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Fig. 11 Comparisons between FEM and partition method. a Partition scheme 1. b Partition scheme 2. c Partition scheme 3. d Partition scheme 4
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Fig. 12 Impact of a crank slider mechanism

Table 4 Geometrical and material parameters

Radius (mm) Length (mm) Width (mm) Thickness (mm) Modulus (GPa) Poisson ratio Density (kg/m3)

B2 – 450 8 7 70 0.33 2700

B3 30 100 – – 96.5 0.36 8390

B4 30 20 – – 70 0.33 2700

partition method agrees very well with the result of FEM. It
means that in the impact process very high ordermodes of the
contact bodies are excited. In order to ensure the simulation
accuracy, the modal truncation frequency should be about
two times the highest frequency of measured signal. If there
is no measurement data, the frequency up to 50–100 kHz
have to be included in the reduction in impact dynamics, as
presented by Seifried et al. [15].

The comparison of efficiency between FEM and partition
method is listed in Table 3. In this impact case, the parti-
tion method uses 250 nodes and 276 + 94 = 370 modes
instead of 95218 nodes in FEM, the DOFs of the system is
highly reduced and the computational scale is correspond-
ingly reduced. When using the same numerical integration
algorithm, theCPU time of FEM is about 20 hwhile the parti-
tion method needs only 0.973 h. This shows that the partition
method greatly improves the simulation efficiency.

6 Impact of a crank slider mechanism

The impact between a crank slider mechanism and a block is
considered, as shown in Fig. 12. The crank slider mechanism
is composed of a rigid crank B1, flexible link B2, and two
impact blocksB3, andB4.The rigid crankB1 is homogeneous
and has a length of 150 mm, a mass of 0.234 kg. The link
B2 has a rectangle cross-section. The block B3 and B4 are
cylinders with spherical heads. The material and geometrical
parameters of flexible bodies are listed in Table 4. All the
flexible bodies are meshed with 8-node hexahedral element.

The crank B1 is driven with a constant angular velocity
ω = 10π rad/s, the initial angle θ = 0◦. The end of block
B4 is connected to a spring-damper with stiffness coefficient
k = 1×105 N/m and damping coefficient c = 1×103N·s/m.

All frictions are ignored. A rotation cycle of 0.2 s is simulated
and the block B3 will impact the block B4 at some moment
during the period.

The link B2 is modeled using a 20 orders of modal coor-
dinates, and the finite element model of B3 and B4 contains
9478 nodes. The presented partition method is applied to
reduce the DOFs of B3 and B4. The impact region consists
of 150 nodes. In the reduction of the non-impact region, the
modal truncation frequency is set as 100 kHz to guarantee
the accuracy, and the modal orders of B3 and B4 are 15 and
12 respectively. Therefore, we replace 9478 nodes with 27
modes and150nodes. The number of basic variables is highly
reduced and the computational burden is correspondingly
reduced.

Figure 13 shows the contact force between B3 and B4. It
can be seen that the contact force undergoes a sharp jump at
the impactmoment and then gradually comes into the contact
state. Figure 14 shows that themotion torque at the origin has
a large peak during the contact and high frequency response
is activated after impact. Figure 15 shows the velocity of the
center point of B2, and obviously high frequency vibration
is also excited due to the impact.

7 Conclusion

In this paper partition method for the description of multi-
body system with impacts is presented. With this method,
the contact bodies are divided into two regions called impact
region and non-impact region. The FEM is employed for
modelling the nonlinear deformation and high stress in the
local impact region. The non-impact region ismodelled using
the modal reduction approach to raise the solving efficiency.
Partition method bridges the gap between approaches based
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Fig. 13 Contact force between B3 and B4
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Fig. 15 Velocity of the center point of B2

on CSM, which can acquire results of high accuracy yet
require excessively long computation times, and approaches
based onMBS,which cannot provide accurate local deforma-

tion information yet acquire considerably less computational
burden.

For validation of the presented method, a three-dimen-
sional rod-plate impact experiment is performed with LDVs
and strain gauges. First, the FEM simulation results are com-
pared with the experimental results, and they are in good
agreement. Then, the results of partitionmethod using differ-
ent partition schemes are comparedwith theFEMresults. The
principle for how to partition the contact bodies is proposed:
for the impact region, the analytical method is used to pre-
dict the maximum contact radius; for the non-impact region,
the modal truncation frequency should be about twice of the
highest frequency ofmeasured signal. It is shown that the par-
tition method can effectively reduce the computational scale
and improve the computational efficiency. At last, the parti-
tion method is applied to solve a more complicated impact
problem of a crank slider mechanism, which is a typical flex-
ible multibody system.
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