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Abstract The present work introduces a novel concur-
rent optimization formulation to meet the requirements of
lightweight design and various constraints simultaneously.
Nodal displacement of macrostructure and effective thermal
conductivity of microstructure are regarded as the constraint
functions, which means taking into account both the load-
carrying capabilities and the thermal insulation properties.
The effective properties of porous material derived from
numerical homogenization are used formacrostructural anal-
ysis. Meanwhile, displacement vectors of macrostructures
from original and adjoint load cases are used for sensitivity
analysis of the microstructure. Design variables in the form
of reciprocal functions of relative densities are introduced
and used for linearization of the constraint function. The
objective function of total mass is approximately expressed
by the second order Taylor series expansion. Then, the pro-
posed concurrent optimization problem is solved using a
sequential quadratic programming algorithm, by splitting
into a series of sub-problems in the form of the quadratic
program. Finally, several numerical examples are presented
to validate the effectiveness of the proposed optimization
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method. The various effects including initial designs, pre-
scribed limits of nodal displacement, and effective thermal
conductivity on optimized designs are also investigated. An
amount of optimized macrostructures and their correspond-
ing microstructures are achieved.

Keywords Concurrent design · Topology optimization ·
Homogenization · Thermal insulation ·Nodal displacement ·
Independent continuous mapping method

1 Introduction

Structural topology optimization is intended to place the
given material to achieve best structural performance. The
pioneer work can be traced to Bendsøe and Kikuchi [1],
the topology optimization has developed in a variety of
directions with the emergence of substantial approaches
including homogenization method, solid isotropic material
with penalization (SIMP) method [2,3], evolutionary struc-
tural optimizationmethod [4] and bi-directional evolutionary
structural optimization (BESO) method [5], level set method
[6–8] and phase fieldmethod [9].With the aimof establishing
a direct link between topology optimization and a computer
aided design (CAD) modeling system, more recently, an
explicit topology optimization approach based on a moving
morphable components (MMC) concept was presented by
Guo et al. [10–15]. Compared with the traditional method,
the MMC method can render the solution containing more
geometry andmechanical information in optimized topology.
Comprehensive reviews on a specific method or compar-
ison of various methods and their applications are given
in Refs. [16–18]. Meanwhile, topology optimization with
inverse homogenization technique was proposed initially in
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microstructural design of porous and composite materials
[19,20]. The increasing advancement of additive manufac-
turing technology makes it possible to fabricate various
man-made materials, such as porous material with nega-
tive Poisson’s ratio over large deformations [21], orthotropic
material for negative or zero compressibility [22]. The state-
of-the-art for material design via topology optimization can
be referenced in Ref. [23].

To date, the mentioned research is confined to individ-
ual macrostructural optimization or micro-scale material
optimization, i.e. designing the macrostructures composed
of optional materials or designing the microstructures for
the expected or extreme properties individually. Concur-
rent design of structure and material becomes one of the
hardest tasks in the fields of structural engineering and
materials engineering, which has attracted the attention of
many researchers. Rodrigues et al. [24] firstly addressed a
hierarchical optimization formulation for optimizing mate-
rial distribution in both macrostructure and microstructure.
Later, this hierarchical approach was extended to 3D elastic
structures by Coelho et al. [25]. In their methods, optimal
microstructures may vary from point to point, which leads
to high computational cost and manufacture difficulties. To
address these problems, Liu et al. [26] suggested a concurrent
computational procedure that the porous material is uniform
and periodically distributed inmacrostructure. The extension
of this approach for maximum primary frequency and min-
imum compliance of thermo-elastic structures was given by
Niu et al. [27] and Deng et al. [28] successively. Then Guo
et al. [29] presented a robust concurrent optimization for-
mulation emphasized on uncertainties of loads. Optimized
topologies ofmicrostructure tend to be isotropic andKagome
structure under such uncertainties. The work of Huang et
al. [30] used the BESO method for realizing the concurrent
optimization design with the unambiguous configurations on
both macro- and micro-scales. Nowadays, the BESO algo-
rithm has been developed to achieve multifunctional designs
[31] and to maximize natural frequency with a given mass
[32]. Also, Xu et al. [33–35] furthered the BESO method to
concurrent topology optimization in regard tomaterial distri-
bution in macrostructure and periodic microstructure under
harmonic, transient, and random excitations. Zhang and Sun
[36] revealed the size effect of materials and structures in the
integrated two-scale optimization approach. More recently,
Xia andBreitkopf [37,38] proposed an FE2 resolution frame-
work focused on nonlinearity for the concurrent design. The
studyby Jia et al. [39] presented ahierarchical designof struc-
tures and multiphase material cells. Furthermore, Long et al.
[40] introduced a two-scale topology optimization method
formaximizing the frequencyofmacrostructure that are com-
posed of periodic composite units consisting of two isotropic
materials with distinct Poisson’s ratios. The work of Chen et

al. [41] presents concurrent designmethod based on themov-
ing iso-surface threshold concept.

Volumeormass fraction ofmacrostructure or/andmicrost-
ructure is taken as the constraint to improve general conver-
gence in above concurrent optimization studies. As indicated
by Sigmund and Maute [18], the volume constraint is
regarded as the basic constraint for the academic interest.
However, most real life applications have to meet various
design demands, which come in the form of constraint in the
optimization problem. Meanwhile, the minimization of the
totalmasswould be of practical importance for the purpose of
lightweight design. Compared with the existing concurrent
optimization models [27,32,41] aiming at finding optimal
configurations of macrostructures and microstructures with
maximum structural stiffness or fundamental frequency, this
paper aims to develop a novel concurrent optimization for-
mulation based on the independent, continuous and mapping
(ICM) method [42–44], in which the total mass of struc-
ture is minimized considering simultaneously load-carrying
capabilities and thermal insulation properties. Structural
responses at macro- and micro-levels are regarded as mul-
tiple constraints. Hence, the selection of weight coefficient
in multi-objective design for multifunctional design can be
avoided in previous study [28,31]. By introducing the recip-
rocal variables, the objective function and constraint function
can be explicitly approximated by the Taylor-series expan-
sion method. Then the optimal problem can be effectively
updated by sequential quadratic programming (SQP) algo-
rithm, by setting up a series of sub-problemswith the second-
order sensitivities. Some factors and parameters affecting the
macrostructure or microstructure are also investigated.

The rest of this paper is structured as follows. Section 2
formulates the concurrent topology optimization problem of
minimization of total mass with multiple constraints. Sec-
tion 3 describes the homogenization procedure for effective
material properties and sensitivity analysis with respect to
macro- and micro-scale density variables. Section 4 intro-
duces the design variables to conduct the standard quadratic
programming. Section 5 describes the filtering schemes to
eliminate numerical instabilities. Section 6 presents 2D and
3D numerical examples to validate the effectiveness of the
proposed optimization method. Section 7 draws the conclud-
ing remarks.

2 Concurrent topology optimization for
minimization of total mass with multiple
constraints

In this paper, it is assumed that the macrostructure is com-
posed of periodic cellular units (PCUs) as indicated in
Fig. 1. Both macrostructure and microstructure are dis-
cretized by finite element (FE). Each element onmacro-scale
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Fig. 1 An illustration of a structure composed of periodic cellular units: a macrostructure; b periodic cellular units; c unit cell (microstructure)

or micro-scale level is assigned an exclusive density, namely
macro-elemental density Pi (i = 1, 2, . . . , M) or micro-
elemental density r j ( j = 1, 2, . . . , N ), where M and N
are the total number of FE in macrostructure and microstruc-
ture, respectively. In the PCU, r j = 1 indicates that the j th
element is occupied by base material while r j = 0 when
the j th element is void. Pi = 1 means the i th element is
porous and Pi = 0 represents the i th element is void what-
ever value of r j . In the concurrent optimization, two sets of
relative densities will be integrated into one system through
homogenization theory.

The total mass of the structure m can be calculated as

m =
M∑

i=1

mi =
M∑

i=1

PiViρ
H
i , (1)

where Vi is the i th elemental volume, and ρH
i is the homog-

enized density in the macrostructure which is expressed as

ρH
i =

∑N
j=1 Vjr jρ

Vi
, (2)

whereVj denotes the j th elemental volume in themicrostruc-
ture. ρ denotes the density of base material.

The FE equation of the static equilibrium can bewritten as

KU = F, (3)

where U and F represent the applied load vector and the
nodal displacement vector of the macrostructure, respec-
tively. K represents the global stiffness matrix of the
macrostructure which can be assembled by the elemental
stiffness matrix Ki

K =
M∑

i=1

Ki =
M∑

i=1

∫

Vi
BTDMABdVi , (4)

where B is the strain-displacement matrix of the macrostruc-
ture.At themacro scale, the i th elemental elasticmatrix DMA

is defined by

DMA = Pα
i DH, (5)

where α is the exponent of penalizationwith the typical value
α = 4 in this paper. DH is the effective elasticity matrix
which can be computed through numerical homogenization.

The rigidity of the macrostructure can be measured in
terms of nodal displacement, which can be calculated by
multiplying a unit virtual load vector Γ and displacement
vector.

d = Γ TU . (6)

Then we define a auxiliary vector as

Γ = {0, 0, . . . , 1, 0, . . .}T , (7)

whereΓ is a vector consisting of zeros except for the position
a, corresponding to the concerned d.o.f., where its value is
one.

For the orthotropic material, the heat conduction capabil-
ity can be evaluated in accordance with the summation of
the diagonal elements in the effective thermal conductivity
matrix. The thermal insulation constraint function for the 2D
or 3D porous material can be stated as
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2,3∑

s=1

κH
ss � κ̄, (8)

where κH
ss is the sth diagonal element in the effective thermal

conductivity matrix. κ̄ is the upper bound for the final design.
For anisotropic material, the non-diagonal elements can be
non-zero. In this study, geometrical symmetries on both x
and y axis are imposed on the microstructure for the design
of orthotropic material.

In this study, the concurrent topology optimization aims at
finding theminimization of total mass considering rigidity of
macrostructure and thermal insulation capabilities of porous
material simultaneously. The optimization problem can be
mathematically stated as

Minimize: m =
M∑
i=1

mi , i = 1, 2, . . . , M,

Subject to: dk � d̄k, k = 1, 2, . . . , K ,
2,3∑
s=1

κH
ss � κ̄,

0 < Pmin � Pi � 1, 0 < rmin � r j � 1,

(9)

where dk and d̄k denote the nodal displacement and the
corresponding upper bound for the kth constraint function
respectively. Pmin(= 0.01) and rmin(= 0.01) are the lowest
densities to ensure numerical non-singularity in FE analysis
and numerical homogenization.

FromEq. (9), we can observe that the objective function of
total mass depends on both the macro-scale and micro-scale
density variables. The constraint functions also include both
macrostructural responses dk and effective thermal conduc-
tivity related to the microstructure. It is a typical two-scale
topology optimization problem where the optimized topolo-
gies ofmacrostructure andmicrostructure should be achieved
simultaneously.

3 Homogenization and sensitivity analyses on both
the macro-scale and micro-scale

The micro-elemental elastic matrix and thermal conductivity
matrix are interpolated by SIMP scheme as

DMI = rβ
j D0, (10a)

κMI = rβ
j κ0, (10b)

where β represents the micro penalization power with the
value of 4 in this work. D0 and κ0 denote the elasticity matrix
and the thermal conductivity matrix when the corresponding
element is solid. When the PCU is small enough in compar-
ison to the size of the macrostructure, the effective elasticity
matrix DH in Eq. (5) can be calculated through homogeniza-
tion theory [45]

DH = 1

V

∫

V
(I − bu)TDMI(I − bu)dV, (11)

where |V | is the volume of PCU; I is identity matrix; b and u
are the strain-displacement matrix and displacement vector
for the microstructure, respectively.

To obtain the displacement vector u, the PCU is analyzed
by applying the periodic boundary conditions

(∫

V
bTDMIbdV

)
u =

∫

V
bTDMIdV . (12)

The right-hand side term of Eq. (12) denotes the external
forces caused by the uniform strain fields, e.g. two normal
unit strains in x and y directions and one shear unit strain for
2D cases.

Similarly, the homogenized heat conductivity matrix can
be calculated as

κH = 1

V

∫

V
(Is − χ)TκMI(Is − χ)dV, (13)

where Is denotes identity matrix for thermal conductivity
homogenization, χ represents the induced temperature gra-
dient field, which can be computed from uniform gradient
temperature.

For numerical homogenization expressed byEqs. (11) and
(13), more details on implementation can be referenced in
Ref. [45].

With the aid of interpolation scheme in Eq. (10), the sen-
sitivity of the homogenized elasticity tensor and thermal
conductivity with respect to r j can be conducted as

∂DH

∂r j
= βrβ−1

j

V

∫

V
(I − bu)TD0(I − bu)dV, (14a)

∂κH

∂r j
= βrβ−1

j

V

∫

V
(Is − χ)Tκ0(Is − χ)dV . (14b)

The sensitivities of nodal displacement with respect to the
macro-density Pi and micro-density r j are obtained through
adjoint method as [46]

∂d

∂Pi
= −ŪT ∂K

∂Pi
U,

∂d

∂r j
= −ŪT ∂K

∂r j
U, (15)

where Ū represents the adjoint displacement vector of
macrostructure, which can be obtained via solving the fol-
lowing adjoint equation

KŪ = Γ . (16)

In Eq. (15), the sensitivities of global stiffness matrix K
with respect to Pi and r j can be given based on Eqs. (4), (5),
(11), and (14)
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∂K
∂Pi

= αPα−1
i

∫

Vi
BTDHBdVi , (17a)

∂K
∂r j

=
M∑

i=1

Pα
i

∫

Vi
BT ∂DH

∂r j
BdVi . (17b)

4 Introduction of design variables and formulation
of quadratic programming

We notice that multiple constraints are present in Eq. (9),
which needs to be solved by a mathematical programming
algorithm. In this section, we will introduce design variables
to make the constraint functions linearization by means of
Taylor series expansion.

In this study, the design variables are defined as the recip-
rocal function of density variables, i.e.

xi = 1

Pα
i

, y j = 1

rβ
j

, i = 1, 2, . . . , M; j = 1, 2, . . . , N .

(18)

Then we have

Pi = x−1/α
i , r j = y−1/β

j ,

i = 1, 2, . . . , M; j = 1, 2, . . . , N . (19)

The derivations of Pi or r j with respect to design variables
are expressed by

∂Pi
∂xi

= − 1

α
x−(1/α+1)
i , i = 1, 2, . . . , M, (20a)

∂r j
∂y j

= − 1

β
y−(1/β+1)
j , j = 1, 2, . . . , N . (20b)

The approximate expression of dk can be given using the
first-order Taylor series expansion as

dk ≈ d(b)
k +

M∑

i=1

∂dk
∂xi

∣∣∣∣
b
(xi − x (b)

i ) +
N∑

j=1

∂dk
∂y j

∣∣∣∣
b
(y j − y(b)

j ),

(21)

where superscript (b) is the number of the optimization iter-
ation.

In the same way, we have

κH
ss ≈ κH(b)

ss +
M∑

i=1

∂κH
ss

∂xi

∣∣∣∣
b
(xi − xbi )+

N∑

j=1

∂κH
ss

∂y j

∣∣∣∣
b
(y j − y(b)

j ).

(22)

In Eqs. (21) and (22), the sensitivities of dk and κH
ss with

respect to the design variables are calculated by the chain
rule as follows

∂dk
∂xi

= ∂dk
∂Pi

· ∂Pi
∂xi

,
∂dk
∂y j

= ∂dk
∂r j

· ∂r j
∂y j

, (23a)

∂κH
ss

∂xi
= 0,

∂κH
ss

∂y j
= ∂κH

ss

∂r j
· ∂r j
∂y j

. (23b)

According to Eqs. (1) and (18), the total mass m can be
rewritten as

m =
M∑

i=1

mi =
M∑

i=1

Pi

⎛

⎝
N∑

j=1

Vjr jρ

⎞

⎠

=
M∑

i=1

x−1/α
1

⎛

⎝
N∑

j=1

Vj y
−1/β
j ρ

⎞

⎠ . (24)

Two sets of design variables are combined as

z =
{
x
y

}
. (25)

Thus, the total mass can be rewritten as

m ≈ m(b) + GT z + 1

2
zTHz, (26)

where G and H are the first order derivative matrix and the
Hessian matrix, respectively.

The first-order and second-order derivatives of the total
mass with respect to design variables can be calculated as
follows

∂m

∂xi
= −ρ

α
x−(1/α+1)
i

( N∑

j=1

Vj y
−1/β
j

)
, (27a)

∂m

∂y j
= −ρVj y

−(1/β+1)
j

β

M∑

i=1

x−1/α
i , (27b)

∂2m

∂x2i
= (α + 1)ρ

α2 x−(1/α+2)
i

( N∑

j=1

Vj y
−1/β
j

)
, (27c)

∂2m

∂y2j
= (β + 1)

β2 ρVj y
−(1/β+2)
j

M∑

i=1

x−1/α
i , (27d)

∂2m

∂xi∂y j
= ρVj

αβ
x−(1/α+1)
i y−(1/β+1)

j . (27e)

In Eq. (26), the constantm(b) can be omitted for objective
function. By combining Eqs. (21), (22), and (26), the math-
ematical optimization model determined by Eq. (9) can be
rewritten as
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Minimize: GT z + 1
2 z

THz,
Subject to: dk � d̄k, k = 1, 2, . . . , K ,

2,3∑
s=1

κH
ss � κ̄,

1 � xi � P−α
min, i = 1, 2, . . . , M,

1 � y j � r−β
min, j = 1, 2, . . . , N .

(28)

It is worth pointing out that Eq. (28) is in the form of a
standard quadratic programming problem. Optimum values
of design variables are updated by SQP algorithm efficiently.
Then the macrostructure and microstructure are rebuilt by
renewed densities according to Eq. (19) until the following
criterion is satisfied as
∣∣∣m(b+1) − m(b)

∣∣∣ /m(b+1) � ε, (29)

where ε is the precision of convergence.

5 Elimination of numerical instabilities

To avoid unfavorable phenomena in topology optimiza-
tion, i.e. checkerboard patterns and mesh dependence, the
sensitivity filter technique is widely used in topology opti-
mization. In this paper, instead of filtering the sensitivity of
the objective function in SIMP method, the first term of con-
straint function in Eq. (21) is taken as the filtered variable
as

eik,x = ∂dk
∂xi

xi , e jk,y = ∂dk
∂y j

y j , k = 1, 2, . . . , K . (30)

The filter is implemented by solving the Helmholtz partial
differential equation (PDE) with Neumann boundary condi-
tions [47]

−r21 �2 ẽk,x + ẽk,x = ek,x ,
∂ ẽk,x
∂n = 0, (31a)

−r22 �2 ẽk,y + ẽk,y = ek,y,
∂ ẽk,y
∂n = 0, (31b)

where ẽk,x and ẽk,y denotes the filtered fields for eik,x and
e jk,y . And r1 and r2 are PDE parameters for macrostructure
and microstructure, which play a similar role as the filter
radius in the original filter.

It can be proved that

M∑

i=1

ẽik,x =
M∑

i=1

eik,x ,
N∑

j=1

ẽ jk,y =
N∑

j=1

e jk,y . (32)

From Eq. (32), the sum of filtered variables before and after
filtering remains the same. The optimization procedure can
benefit from such preserving feature which leads to a sta-
ble convergence. After filtering, the modified sensitivities

expressed in Eq. (33) will replace the original sensitivities to
update design variables.

∂ d̃k
∂xi

= ẽik,x
xi

,
∂ d̃k
∂y j

= ẽ jk,y
y j

. (33)

The similar procedure can be applied for the sensitivities
∂κH

ss

∂xi
and

∂κH
ss

∂y j
, the details are omitted here for simplicity.

The filtering scheme brings blur boundary in final topolo-
gies on both macro- and micro-scales. To eliminate the
immediate density, the filtering programs are terminated after
convergence and the optimization procedure proceeds until
meeting the condition described in Eq. (29) again. For the
whole process, ε is prescribed to be 0.1% and 0.01% before
and after filtering.

6 Numerical examples and discussions

It is a usual practice in macro-scale topology optimization to
adopt uniformly distributed material as the initial design to
avoid local optimal solutions. However, it is infeasible in the
inverse homogenization because the homogeneous sensitiv-
ity field generated byperiodic boundary conditionswill result
in the halt of the optimization procedure. Following Amsturz
et al. [48], the domain of PCU is assumed to be square with
the edge length l. A circular region with the diameter D com-
posed of softer material is defined at the center of PCU as
shown in Fig. 2.

To illustrate the capability and effectiveness of the pro-
posed method, we present several numerical examples, for
concurrently designingmacrostructures andmicrostructures.

Fig. 2 Density distribution of initial design
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The followingmaterial parameters are used for isotropic base
material: Young’s modulus E = 210 GPa, Poisson’s ratio
ν = 0.3, density ρ = 7800 kg/m3, and heat conductivity
k = 40 W/(m · K). For comparison, the normalized objec-
tive function m/m0 is used, in which m and m0 denote the
total mass of the optimal structure and the initial structure
full of materials, respectively. All numerical examples are
run on a desktop computer with an Intel i7 2.93GHz proces-
sor.

6.1 Example I

In the first example, a short cantilever beam is optimized
to illustrate the effect of initial design on finial topologies.
Figure 3 shows the admissible design domain in macrostruc-
ture with length L = 120cm, height H = 60cm, and
thickness T = 1cm undergoing a concentrated vertical
load F = 100 kN at the center of the right edge. The left
side is fully constrained. The 2D design domain is dis-
cretized into 4-node plane strain elements with an edge
length of 1 cm. The following constraints should be satis-
fied: (1) nodal displacement at point A in the y direction,
i.e. uA � −0.8cm; (2) the effective conductivity con-
straint, i.e.

∑2
s=1 κH

ss � 25W/(m · K ). Three different initial
distributions of material are investigated with the diame-
ter D = 5l/8, l/2, and 3l/8. The PCU is discretized into
80 × 80 4-node quadrilateral elements. The density is dis-
tributed uniformly with the value of 0.9 and 0.45 outside and
inside the circle for three initial designs. No symmetric con-
straints are imposed on macrostructure and microstructure in
this example. The optimized macrostructure, microstructure,
and the corresponding material properties are summarized in
Table 1.

From Table 1, the results give the similar macrostruc-
ture, but distinct microstructure compared to each other. As

Fig. 3 2D macro-structural design domain for the concurrent opti-
mization in Example I, with the dimension: length L = 120 cm, height
H = 60 cm with thickness T = 1 cm. The left side is fully constrained
and a concentrate vertical load F = 100 kN is applied at the center of
the right edge

expected, optimized topologies of both macrostructure and
microstructure possess geometric symmetry. In all cases, the
resulting nodal displacement constraint and effective conduc-
tivity agreewell with prescribed values. Threemass fractions
of the final design are close to each other. Therefore, it can
be inferred that optimized topologies of microstructure are
affected by initial design, which has similarities to material
design. Results from the first initial design provide the min-
imum mass and its corresponding microstructure is simpler
than two others.

To illustrate the effectiveness of the proposed method, the
conventional SIMPmethod is adopted, i.e. Eq. (9) is updated
directly by the Method of Moving Asymptotes (MMA) [49].
Initial design inTable 1with the diameter D =5l/8 is adopted.
Optimized topologies of macrostructure and microstructure
shown in Fig. 4 are similar to those obtained by the proposed
method. These results verify the effectiveness of the present
approach.

6.2 Example II

This example is the extension of Example I, which intends to
reveal the influence of the nodal displacement constraint on
the final results. The effective conductivity constraint is fixed
as

∑2
s=1 κH

ss � 30W/(m · K). The low bound of nodal dis-
placement uA varies from−1.2 to−0.6cm.Other parameters
are the same as those chosen in Example I. Figure 5 presents
the mass fraction for various low bounds of nodal displace-
ment with optimal macro and micro topologies inserted.

From Fig. 5, we can observe that optimized topolo-
gies of microstructure share similar configurations when the
thermal-insulating capability of porous material is set to be
a constant. In contrast, macrostructure depends obviously on
different displacement constraint values imposed at point A.
It is seen that a larger mass fraction can be achieved with a
more strict control on the displacement of macrostructure. It
is intuitively easy to understand because the structure with
a larger mass fraction possesses sufficient rigidity to resist
elastic deformation.

6.3 Example III

This example is also the extension of Example I, which is
considered in an attempt to reveal the influence of effec-
tive conductivity constraint on the final results. The nodal
displacement constraint is fixed as uA � −0.5 cm. The
upper bound for the effective conductivity varies from 36
to 48 W/(m · K). Other parameters are the same as those
chosen in Example I. Figure 6 shows the mass fraction for
various upper bounds of the effective thermal conductivity
with typical topologies of macrostructure and microstructure
inserted.

123



322 K. Long, et al.

Table 1 Optimal results for different initial design

Fig. 4 Optimized topologies obtained from MMA algorithm for:
a macrostructure; b microstructure

Fig. 5 Evolution history of the total mass with the increasing upper
boundof effective thermal conductivity and the corresponding structural
evolution for Example II

In this example, we can find that optimized topologies
of macrostructure share similar configurations for different
conductivity constraint values when the nodal displacement
constraint is fixed. However, the conductivity constraint
values have a greater impact on the mass fraction of
macrostructure and the volume fraction and optimal topol-
ogy of microstructure. The mass fraction of macrostructure
decreases monotonously with the increase of the conduc-
tivity constraint values, in contrast to the increase in the
volume fraction of microstructure. Compared with results

Fig. 6 Evolution history of the total mass with the increasing low
bound of nodal displacement, and the corresponding structural evo-
lution for Example III

in Fig. 5, because more emphasis is placed on thermal insu-
lating properties of porous material, more material is shifted
from micro level to macro level automatically. The optimal
results have demonstrated that the proposed concurrent opti-
mization method can distribute the base material between
macrostructure and microstructure to meet the requirements
of lightweight design and various constraints simultaneously.

6.4 Example IV

This example optimizes the same structure as illustrated
in Example I except that the concentrated vertical load is
imposed on the bottom corner on the right side, aiming to
further demonstrate the feasibility of the proposed method
in asymmetric loading condition. We set the effective con-
ductivity constraint as

∑2
s=1 κH

ss � 30 W/(m · K). The
low bound of nodal displacement uB varies from −0.8 to
−1.4 cm. Other parameters are the same as those chosen in
Example I. The symmetries in x and y directions are enforced
on themicrostructure for obtaining orthotropic material. Fig-
ure 7 presents the mass fraction for various low bounds of
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Fig. 7 Evolution history of the total mass with the increasing low
bound of nodal displacement, and the corresponding structural evo-
lution for Example IV

nodal displacementwith optimalmacro andmicro topologies
inserted.

From Fig. 7, it can be seen that the mass fractions for
various low bounds of nodal displacement show the same
tendency as that previously reported in Example 1. How-
ever, a slight difference can be found in optimized topologies
of microstructure, which implies that, in spite of the same
thermal insulation constraint, the microstructure may be
affected by the variation of prescribed nodal displacements
in macrostructure.

6.5 Example V

This example is the extension ofExample II, specifically used
for evaluating the effect of multiple nodal displacement con-
straints on optimized topologies. As depicted in Fig. 3, two
concentrated loads, acting in opposite directions, are imposed
on point B (downward) and point C (upward) for loading
case I and II, respectively. In loading case I, the constraint
value of vertical displacement on point C is prescribed as
uC � 0.9cm as the first constraint. In loading case II, the
low bound for the vertical displacement on point B are inves-
tigated which varies from −0.8 to −1.1cm. The symmetries
in x and y directions are enforced on the microstructure for
obtainingorthotropicmaterial.Other parameters are the same
as those chosen in Example II. Figure 8 presents the mass
fraction for various low bounds of nodal displacement with
optimal macro and micro topologies inserted.

Apparently, optimal topology of macrostructure is sym-
metric onlywhen nodal displacement constraint is prescribed
to be symmetric in different loading cases. With more
stringent requirements for the stiffness concerned with the
macrostructure, the mass fraction increase monotonously
at the macro level while the resulting topologies of the
microstructure haveno significant difference fromeachother.

Fig. 8 Evolution history of the mass fraction with the increasing low
boundof nodal displacement, and the corresponding structural evolution
for Example V

Seeking for a lightweight design, both load-carrying capa-
bilities of the macrostructure in multiple loading cases and
requirement of thermal insulation related to cellular material
can be balanced by the proposed method.

6.6 Example VI

This example optimizes a typical 3D structure, aiming to
illustrate the feasibility of the proposed approach in 3D
structure. Figure 9 shows the admissible design domain
in macrostructure, which is discretized by brick elements
with the size: length L = 48 cm, width B = 30 cm, and
height H = 6 cm. The size of the elements is 1cm. The
microstructure is discretized into 26 × 26 × 26 solid ele-
ments. The left surface is fully constrained and a concentrate
force F = 1 × 104 kN is applied on the centre of the right
surface.

When we fixed the effective conductivity constraint as∑3
s=1 κH

ss � 30 W/(m ·K), the low bound of nodal displace-
ment uA can vary from −0.4 to −0.8 cm. Figure 10 presents
the mass fraction for various low bounds of nodal displace-
ment with optimal macro and micro topologies inserted. For
easier identification, the configurations with a cross section
are presented.

When we fixed the low bound of nodal displacement as
uA � −1.0 cm, the upper bound for the effective conductiv-
ity varies from 30 to 40 W/(m · K). Figure 11 presents the
mass fraction for various upper bounds of the effective ther-
mal conductivity with optimal macro and micro topologies
inserted. The final microstructure is symmetrical.

Similar to 2D cases, Figs. 10 and 11 also demonstrate
that the two-scale optimal design is a compromising solution
between the thermal insulation of materials and struc-
tural stiffness at macro level. The weight fractions of final
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Fig. 9 3Dmacrostructural design domain for the concurrent optimiza-
tion in Example VI, with the dimension: length L = 48 cm , width
B = 30 cm and height H = 6 cm. The left surface is fully constrained
and a concentrate force F = 1× 104 kN is applied on the centre of the
right surface

Fig. 10 Evolution history of the mass fraction with the increasing low
boundof nodal displacement, and the corresponding structural evolution
for Example VI

design share the similar tendency as those illustrated in 2D
cases.

It is worth pointing out that topology optimization of
3D structure is time-consuming. In the present concurrent
optimization model, there are six numerical homogenization
analyses involving mechanical properties and three numeri-
cal homogenization analyses involving thermal properties for
each iteration step. Table 2 provides a comparison of the iter-
ation steps and computational cost (CPU time in seconds) for
six different FE discretizationmeshes. The optimized topolo-

Fig. 11 Evolution history of the mass fraction with the increasing
upper bound of effective thermal conductivity and the corresponding
structural evolution for Example VI

Table 2 Iteration steps and CPU time for different FE discretization
meshes

Discretization Iteration steps CPU time (s)

22 × 22 × 22 70 6864.7

26 × 26 × 26 64 10398.6

30 × 30 × 30 70 18807.4

34 × 34 × 34 69 28363.1

38 × 38 × 38 70 42088.3

42 × 42 × 42 70 63333.6

gies of microstructure for different discretization meshes are
also shown in Fig. 12. As can be seen from Table 2, the CPU
time increases dramatically as mesh density increases. It is
normal for optimization methods to need more design itera-
tions, when increasing the mesh density [46], especially for
3D structure. However, the presented method can provide a
solution in which number of iterations is independent of dis-
cretization mesh. Figure 12 also demonstrates that optimized
topologies are independent of the discretization mesh. The
slight difference between these topologies is that the bound-
ary becomes smoother with finer mesh.

7 Conclusion

In this present paper, a novel concurrent topology optimiza-
tion formulation for minimization of total mass considering
load bearing in macrostructure and thermal insulation of
porous material simultaneously is proposed, which is dis-
tinct with the existing concurrent topology optimization
approaches. For a typical two-scale optimization problem,
the objective function of total mass involves the macro-
scale and micro-scale density. The material properties from
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Fig. 12 Optimized topologies for different FE discretization meshes: a 22×22×22; b 26×26×26; c 30×30×30; d 34×34×34; e 38×38×38;
f 42 × 42 × 42

homogenization of microstructure are applied tomacrostruc-
tural analysis, while the sensitivities of the microstructure
are related to the displacement vectors of macrostructures
obtained from original and adjoint load cases.With the intro-
duction of reciprocal variables, the constraint functions are
linearized while the objective function is approximated as
the second order Taylor expansion. Then the established
optimization model can be solved efficiently using SQP
algorithm, by setting up a series of sub-problems in the
form of a quadratic program with second-order sensitivi-
ties.

As highlighted in the provided numerical examples, the
proposed concurrent optimization method can automati-
cally allocate the base material between macrostructure and
microstructure to meet the requirements various constraints
simultaneously to achieve a lightweight design. Because of
its generality, this method can be extended to the structural
design considering other design requirements, such as the
frequency constraints.

Acknowledgements The project was supported by the National Nat-
ural Science Foundation of China (Grants 11202078, 51405123) and
the Fundamental Research Funds for the Central Universities (Grant
2017MS077).We are thankful for Professor Krister Svanberg forMMA
program made freely available for research purposes.

References

1. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in
structural design using a homogenization method. Comput. Meth-
ods Appl. Mech. Eng. 71, 197–224 (1988)

2. Bendsøe, M.P.: Optimal shape design as a material distribution
problem. Struct. Optim. 1, 193–202 (1989)

3. Zhou, M., Rozvany, G.I.N.: The COC algorithm, Part II: topo-
logical, geometrical and generalized shape optimization. Comput.
Methods Appl. Mech. Eng. 89, 309–336 (1991)

4. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for struc-
tural optimization. Comput. Struct. 49, 885–896 (1993)

5. Huang, X., Xie, Y.M.: Convergent andmesh-independent solutions
for the bi-directional evolutionary structural optimization method.
Finite Elem. Anal. Des. 43, 1039–1049 (2007)

6. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural
topology optimization. Comput. Methods Appl. Mech. Eng. 192,
227–246 (2003)

7. Sethian, J.A., Wiegmann, A.: Structural boundary design via level
set and immersed interface methods. J. Comput. Phys. 163, 489–
528 (2000)

8. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using
sensitivity analysis and a level-set method. J. Comput. Phys. 194,
363–393 (2004)

9. Zhou, S., Wang, M.Y.: Multimaterial structural topology opti-
mization with a generalized Cahn–Hilliard model of multiphase
transition. Struct. Multidiscip. Optim. 33, 89 (2007)

10. Guo, X., Zhang, W., Zhong, W.: Doing topology optimization
explicitly and geometricallyła newmovingmorphable components
based framework. J. Appl. Mech. 81, 081009 (2014)

123



326 K. Long, et al.

11. Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topol-
ogy optimization based onmovingmorphable components (MMC)
with curved skeletons. Comput. Methods Appl. Mech. Eng. 310,
711–748 (2016)

12. Zhang,W., Zhang, J., Guo, X.: Lagrangian description based topol-
ogy optimization—a revival of shape optimization. J. Appl. Mech.
83, 041010 (2016)

13. Zhang, W., Yang, W., Zhou, J., et al.: Structural topology opti-
mization through explicit boundary evolution. J. Appl. Mech. 84,
011011 (2016)

14. Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimen-
sional topology optimization via moving morphable void (MMV)
approach. Comput. Methods Appl. Mech. Eng. 322, 590–614
(2017)

15. Guo, X., Zhou, J., Zhang, W., et al.: Self-supporting structure
design in additive manufacturing through explicit topology opti-
mization. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017)

16. Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum
structures: a review. J. Appl. Mech. Appl. Mech. Rev. 54, 331–390
(2001)

17. Rozvany, G.I.N.: A critical review of established methods of
structural topology optimization. Struct. Multidiscip. Optim. 37,
217–237 (2009)

18. Sigmund, O., Maute, K.: Topology optimization approaches.
Struct. Multidiscip. Optim. 48, 1031–1055 (2013)

19. Sigmund, O.:Materials with prescribed constitutive parameters: an
inverse homogenization problem. Int. J. Solids Struct. 31, 2313–
2329 (1994)

20. Sigmund,O.: Tailoringmaterialswith prescribed elastic properties.
Mech. Mater. 20, 351–368 (1995)

21. Clausen, A., Wang, F., Jensen, J.S., et al.: Topology optimized
architectures with programmable Poisson’s ratio over large defor-
mations. Adv. Mater. 27, 5523–5527 (2015)

22. Xie,Y.M.,Yang,X., Shen, J., et al.:Designing orthotropicmaterials
for negative or zero compressibility. Int. J. Solids Struct. 51, 4038–
4051 (2014)

23. Wang, X., Xu, S., Zhou, S., et al.: Topological design and additive
manufacturing of porous metals for bone scaffolds and orthopaedic
implants: a review. Biomaterials 83, 127–141 (2016)

24. Rodrigues, H., Guedes, J.M., Bendsoe, M.P.: Hierarchical opti-
mization of material and structure. Struct. Multidiscip. Optim. 24,
1–10 (2002)

25. Coelho, P.G., Fernandes, P.R., Guedes, J.M., et al.: A hierarchical
model for concurrent material and topology optimisation of three-
dimensional structures. Struct. Multidiscip. Optim. 35, 107–115
(2008)

26. Liu, L., Yan, J., Cheng, G.: Optimum structure with homoge-
neous optimum truss-likematerial. Comput. Struct. 86, 1417–1425
(2008)

27. Niu, B., Yan, J., Cheng, G.: Optimum structure with homogeneous
optimum cellular material for maximum fundamental frequency.
Struct. Multidiscip. Optim. 39, 115–132 (2009)

28. Deng, J., Yan, J., Cheng, G.: Multi-objective concurrent topology
optimization of thermoelastic structures composed of homoge-
neous porous material. Struct. Multidiscip. Optim. 47, 583–597
(2013)

29. Guo, X., Zhao, X., Zhang, W., et al.: Multi-scale robust design
and optimization considering load uncertainties. Comput.Methods
Appl. Mech. Eng. 283, 994–1009 (2015)

30. Huang, X., Zhou, S.W., Xie, Y.M.: Topology optimization
of microstructures of cellular materials and composites for
macrostructures. Comput. Mater. Sci. 67, 397–407 (2013)

31. Yan, X., Huang, X., Sun, G., et al.: Two-scale optimal design of
structures with thermal insulation materials. Compos. Struct. 120,
358–365 (2015)

32. Liu, Q., Chan, R., Huang, X.: Concurrent topology optimization of
macrostructures andmaterialmicrostructures for natural frequency.
Mater. Des. 106, 380–390 (2016)

33. Xu, B., Jiang, J.S., Xie, Y.M.: Concurrent design of composite
macrostructure and multi-phase material microstructure for mini-
mum dynamic compliance. Compos. Struct. 128, 221–233 (2015)

34. Xu, B., Xie, Y.M.: Concurrent design of composite macrostruc-
ture and cellularmicrostructure under randomexcitations.Compos.
Struct. 123, 65–77 (2015)

35. Xu, B., Huang, X., Xie, Y.M.: Two-scale dynamic optimal design
of composite structures in the time domain using equivalent static
loads. Compos. Struct. 142, 335–345 (2016)

36. Zhang, W., Sun, S.: Scale-related topology optimization of cellular
materials and structures. Int. J. Numer.Methods Eng. 68, 993–1011
(2006)

37. Xia, L., Breitkopf, P.: Concurrent topology optimization design
of material and structure within FE2 nonlinear multiscale analysis
framework. Comput. Methods Appl. Mech. Eng. 278, 524–542
(2014)

38. Xia, L., Breitkopf, P.: Recent advances on topology optimization
of multiscale nonlinear structures. Arch. Comput. Methods Eng.
24, 227–249 (2016)

39. Jia, J., Cheng, W., Long, K., et al.: Hierarchical design of struc-
tures and multiphase material cells. Comput. Struct. 165, 136–144
(2016)

40. Long, K., Han, D., Gu, X.: Concurrent topology optimization of
composite macrostructure and microstructure constructed by con-
stituent phases of distinct Poisson’s ratios for maximum frequency.
Comput. Mater. Sci. 129, 194–201 (2017)

41. Chen,W., Tong,L., Liu, S.:Concurrent topologydesign of structure
and material using a two-scale topology optimization. Comput.
Struct. 178, 119–128 (2017)

42. Sui, Y., Peng, X.: The ICM method with objective function trans-
formed by variable discrete condition for continuum structure.Acta
Mech. Sin. 22, 68–75 (2006)

43. Sui,Y.,Yang,D.:Anewmethod for structural topological optimiza-
tion based on the concept of independent continuous variables and
smooth model. Acta Mech. Sin. 14, 179–185 (1998)

44. Sui, Y.: Modelling, Transformation and Optimizationł New Devel-
opments of Structural Synthesis Method. Dalian University of
Technology Press, Dalian (1996)

45. Andreassen, E., Andreasen, C.S.: How to determine compos-
ite material properties using numerical homogenization. Comput.
Mater. Sci. 83, 488–495 (2014)

46. Zuo, Z.H., Xie, Y.M.: Evolutionary topology optimization of con-
tinuum structures with a global displacement control. Comput.
Aided Des. 56, 58–67 (2014)

47. Lazarov, B.S., Sigmund, O.: Filters in topology optimization based
on Helmholtz-type differential equations. Int. J. Numer. Methods
Eng. 86, 765–781 (2011)

48. Amstutz, S.,Giusti, S.M.,Novotny,A.A., et al.: Topological deriva-
tive for multi-scale linear elasticity models applied to the synthesis
of microstructures. Int. J. Numer. Methods Eng. 84, 733–756
(2010)

49. Svanberg, K.: Themethod ofmoving asymptotes-a newmethod for
structural optimization. Int. J. Numer. Methods Eng. 24, 359–373
(1987)

123


	Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously
	Abstract
	1 Introduction
	2 Concurrent topology optimization for minimization of total mass with multiple constraints
	3 Homogenization and sensitivity analyses on both the macro-scale and micro-scale
	4 Introduction of design variables and formulation of quadratic programming
	5 Elimination of numerical instabilities
	6 Numerical examples and discussions
	6.1 Example I
	6.2 Example II
	6.3 Example III
	6.4 Example IV
	6.5 Example V
	6.6 Example VI

	7 Conclusion
	Acknowledgements
	References




