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Abstract Using Reddy’s high-order shear theory for lam-
inated plates and Hamilton’s principle, a nonlinear partial
differential equation for the dynamics of a deploying can-
tilevered piezoelectric laminated composite plate, under the
combined action of aerodynamic load and piezoelectric
excitation, is introduced. Two-degree of freedom (DOF)
nonlinear dynamic models for the time-varying coefficients
describing the transverse vibration of the deploying lami-
nate under the combined actions of a first-order aerodynamic
force and piezoelectric excitation were obtained by selecting
a suitable time-dependent modal function satisfying the dis-
placement boundary conditions and applying second-order
discretization using the Galerkin method. Using a numerical
method, the time history curves of the deploying laminate
were obtained, and its nonlinear dynamic characteristics,
including extension speed and different piezoelectric excita-
tions, were studied. The results suggest that the piezoelectric
excitation has a clear effect on the change of the nonlin-
ear dynamic characteristics of such piezoelectric laminated
composite plates. The nonlinear vibration of the deploying
cantilevered laminate canbe effectively suppressed by choos-
ing a suitable voltage and polarity.
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1 Introduction

In recent years, axially deploying cantilevered composite
structures have been used [1,2] for novel variable-spanwings
of e.g. long-range missiles, extension of robot arms, and
other similar applications. Because these types of struc-
ture are often used in high-speed operating environments,
external disturbance or even their own axial motion can
induce large-amplitude vibrations and cause geometrically
nonlinear problems that affect both the stability and accurate
operation of the structure. The nonlinear dynamic character-
istics of the extension process of such cantilever structures
remain unknown and would be interesting to analyze.

To conduct theoretical dynamic analysis, such structures
are usually modeled as axially extendable cantilever lam-
inated composite beams or plates. The nonlinear dynamic
equation that describes their extension is usually a time-
varying partial differential equation or an ordinary differen-
tial equation. Unfortunately, in contrast to steady nonlinear
dynamic systems, no systematic solutions of such time-
varying nonlinear dynamic equations are available at present.
Therefore, investigations of this problem usually focus on
time-varying dynamic modeling and numerical simulation.
An equation for the motion of axially deploying cantilever
beams was found by Tabarrok et al. [3] based on Newton’s
second law, and the group studied the problemof linear vibra-
tion of a cantilever beam during its extension for constant
speeds. The small-deformation transverse vibrations of can-
tilever beams of equal annular cross-section during extension
at constant speed in an incompressible fluidwere investigated
by Taleb and Misra [4]. They also analyzed the effects of
relevant variables on the dynamic stability of the deploying
beam. A flexible robot arm was modeled by Wang and Wei
[5] as a removable slender cantilever beam, using Newton’s
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second law, to investigate its dynamic behavior during exten-
sion. An equation of motion for extendable flexible beams
was deduced by Behdinan et al. [6] using Hamilton’s princi-
ple, and the time-varying dynamical behavior of the axially
moving system investigated numerically. The dynamic prop-
erties of a deploying cantilever beam were investigated by
Deng et al. [7] under various deploying laws using a pre-
cision integration method. The exact forced response of a
translating string of arbitrarily varying length under constant
tension with general initial conditions and external exci-
tation was analyzed by Zhu and Zheng [8]. The stability
of an axially deploying beam in dense liquids was studied
by Gosselin et al. [9], who also deduced the equation of
motion for flexible slender cantilever beamswith equal annu-
lar cross-section during axial extension at constant speed
in a dense incompressible fluid. Furthermore, they analyzed
the effects of extension speed on the structural stability. The
vibration and stability of an axially moving cantilever beam
in dense liquids were studied by Wang and Ni [10]. The
nonlinear dynamic response of axially deploying cantilever
beams in supersonic flow was studied by Zhang et al. [11].
Variable-spanwingsweremodeled byHuang andQiu [12] as
extendable cantilever beams, and their transient aerodynamic
response and fluttering characteristics during a morphing
process under aerodynamic force investigated numerically.
The linear vibration of an extendable cantilever plate model
was studied byWang et al. [13], who deduced the partial dif-
ferential equation for its motion and analyzed the variations
in frequency and dynamic stability during motion. A non-
linear dynamic equation for axially deploying cantilevered
laminated composite plates under combined third-order non-
linear aerodynamic load and in-plane excitation was found
by Zhang et al. [14]. The group used Reddy’s high-order
shear theory, and studied the nonlinear dynamical behavior
of the time-varying structure using a numerical approach.
The equation governing an axially moving viscoelastic plate
was derived by Yang et al. [15] based on Newton’s sec-
ond law, who also studied the complex natural frequencies
for linear free vibrations as well as bifurcation and chaos
for forced nonlinear vibrations of the plate using the finite
difference method. The natural frequencies of nonlinear pla-
nar vibration of axially moving beams were investigated
numerically by Ding and Chen [16] using Galerkin meth-
ods. Various scholars have studied the dynamical behavior
of axially movable cantilever beam structures under external
loads using experimental techniques [17–19]. The results of
the above-mentioned studies show that such axially deploy-
ing cantilever structures show complex dynamical behavior
under external loads, and that nonlinear dynamic phenom-
ena such as vibration amplitude jumps and divergences can
readily occur in the vibration process. Therefore, control of
large-amplitude vibration of cantilever structures during their
extension remains a great challenge, and it would be highly

desirable to improve the design and development of such
structures.

Piezoelectric materials are widely used to study vibration
suppression for plate–shell structures [20]. A piezoelectric
laminated composite plate made of piezoelectric material
and fiber-reinforced composite benefits from the advantages
of the latter, including high specific strength and stiffness
and excellent fatigue resistance. Such structures also exhibit
improved controllability because the fiber-reinforced com-
posite and piezoelectric materials can be stacked in many
ways in the laminated composite plate structure. Studies
of the nonlinear dynamics of such piezoelectric laminated
composite plates have been carried out for many years. The
stretching and bending motions of piezoelectric laminated
composite plates were studied by Reddy and Mitchell [21]
using two different models. They developed a geometrically
nonlinear theory for laminated composite plates with piezo-
electric laminates. Thenonlinear free and forcedvibrations of
piezoelectric functionally graded shells under electrothermal
and third-order aerodynamic loads were studied by Rafiee
et al. [22]. The nonlinear dynamic response of a damaged
piezoelectric laminated composite plate was investigated by
Fu et al. [23] using a finite difference method. A dynamic
equation based on high-order shear deformation theory and
the vonKarman equationwas found byHuang and Shen [24].
They investigated the nonlinear free and forced vibrations
of a laminated composite plate with embedded piezoelec-
tric actuators under electrothermomechanical loads using
an improved perturbation method. A nonlinear vibration
equation for a laminated composite plate with an embed-
ded piezoelectric laminate was deduced by Dash and Singh
[25] by applying high-order shear deformation theory.A con-
trol equation for piezoelectric functionally graded shells in
a thermomagnetic environment was found by Wang et al.
[26]. The group used Reddy’s high-order shear plate theory
and Hamilton’s principle. The one-to-two internal resonance
problem of a piezoelectric laminated composite plate under
external load was studied by Zhang et al. [27]. The dynamic
behavior of axial and transverse vibrations of a piezoelec-
tric laminated composite plate was studied numerically by
Zhang and Shen [28]. Smart control of the vibration of a
piezoelectric laminated composite plate was investigated by
Wang et al. [29] using first-order shear deformation the-
ory. Active control of the vibration of laminated composite
shells containing piezoelectric fiber-reinforced composites
was studied by Ray and Reddy [30]. Some experimental
and theoretical studies on vibration control of piezoelec-
tric laminated composite plate structures were conducted by
Qiu et al. [31] and Dong et al. [32] using several methods.
In the present work, piezoelectric materials were used in
an axially extendable cantilever laminated composite plate
structure, and the nonlinear dynamic behavior of the deploy-
ing cantilever piezoelectric laminated composite plate, under
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the combined action of aerodynamic load and piezoelec-
tric excitation, was studied. Using Reddy’s high-order shear
deformation theory for laminates and Hamilton’s princi-
ple, a partial differential nonlinear model for the dynamics
of the deploying cantilever was obtained. Considering the
displacement boundary conditions of the structure, a time-
dependent modal function for structural vibration was found.
The ordinary differential form of the time-varying nonlinear
dynamic equation for the extendable cantilevered laminated
composite plate was obtained by truncating the partial dif-
ferential form of the nonlinear dynamic equation using the
Galerkinmethod. Then, the effects of variables such as piezo-
electric excitation and extension speed on the time-varying
nonlinear dynamic stability of the cantilevered piezoelectric
laminated composite plate during the extension process were
analyzed, considering the characteristic of the piezoelectric
material.

2 Equation of motion for deploying piezoelectric
laminated composite plate

We consider a model of an axially deploying rectangular
cantilevered piezoelectric laminated composite plate formed
by bonding a polyvinylidene fluoride (PVDF) piezoelectric
membranewith fiber-reinforced composites (Fig. 1). The ini-
tial length of the plate is l0, the width is b, the thickness
is h, and the Cartesian coordinate center Oxy is located at
the center of the plate. The rectangular cantilever piezoelec-
tric laminated composite plate extends along the x-axis at a
time-varying speed with the form V = V0 + Vd cos (Ω1t).
The external piezoelectric excitation can be described as
Ve = Vz cos (Ω2t). The structure is also subjected to a trans-
verse aerodynamic load �p; first-order linear piston theory
was employed to study the effect of the aerodynamic load on
the nonlinear dynamical behavior of the deploying cantilever
piezoelectric laminated composite plate.

Based on Reddy’s [33] third-order shear theory for lami-
nates, the displacement field of the laminated composite plate
can be described as

u(x, y, t) = u0 (x (t) , y, t) + z φx (x (t) , y, t)

−z3
4

3h2

(
φx +∂w0

∂x

)
, (1a)

v(x, y, t) = v0 (x (t) , y, t) + zφy (x (t) , y, t)

−z3
4

3h2

(
φy + ∂w0

∂y

)
, (1b)

w(x, y, t) = w0 (x (t) , y, t) , (1c)

where u0, v0, and w0 are the displacements of an arbitrary
point on the middle surface in x , y, and z directions, and φx

and φy are angles along the y- and x-axis, respectively.
Using von Karman’s geometry theory for the large defor-

mation of a plate, the relationship between the strain dis-
placement εi (i = xx, yy) and curvature displacement γi
(i = xy, yz, zx) can be expressed as

εxx = ∂u0
∂x

+ 1

2

(
∂w0

∂x

)2

, εyy = ∂v0

∂y
+ 1

2

(
∂w0

∂y

)2

,

γxy = 1

2

(
∂u0
∂y

+ ∂v0

∂x
+ ∂w0

∂x

∂w0

∂y

)
,

γyz = 1

2

(
∂v0

∂z
+ ∂w0

∂y

)
, γzx = 1

2

(
∂u0
∂z

+ ∂w0

∂x

)
. (2)

When introducing a piezoelectric laminate into the lam-
inated composite plate, the relationships between the strain
displacement εi (i = xx, yy) and curvature displacement γi
(i = xy, yz, zx) become

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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Fig. 1 Model of axially deploying piezoelectric cantilever plate
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where ei j is the piezoelectric constant and Ek is the electric
field strength. The stiffness coefficient Qi j can be expressed
as

Q11 = E1

1 − v12v21
, Q12 = v12E2

1 − v12v21
,

Q22 = E2

1 − v12v21
,

Q66 = G12, Q44 = G23, Q55 = G13. (4)

According to Hamilton’s principle, the nonlinear dynamic
equation for the deploying cantilevered piezoelectric lami-
nated composite plate can be expressed as

δ

∫ t2

t1
Ldt +

∫ t2

t1
δWdt = 0, (5)

where

L =
∫
V

1

2
ρu̇i u̇idV −

∫
V

1

2
H

(
εi j , Ei j

)
dV . (6)

In Eq. (6), the variation of the kinetic energy can bewritten
as

∫ t2

t1
δ

∫
V

1

2
ρu̇i u̇idV dt =

∫ t2

t1

∫
V

1

2
ρu̇iδu̇idV dt

=
∫
V

ρu̇iδu̇idV
∣∣t2
t1 −

∫ t2

t1

∫
V

ρüiδuidV dt. (7)

The potential energy of the piezoelectric laminate is

H(εi j , Ei ) = 1

2
Qi jklεi jεkl − ei jk Eiε jk − 1

2
ζi j Ei E j , (8)

where Qi jkl , ei jk , ζi j , and Ei are theYoung’smodulus, piezo-
electric constant, permittivity, and electric field strength,
respectively.

The relationship between the electric field strength, elec-
tric potential energy, stress, and electric displacement can be
described by the following formulas [21]

Ei = − ∂φ

∂xi
, σi j = ∂H

∂εi j
, Di = − ∂H

∂Ei
. (9)

Thus, the variation of the potential energy for a piezoelec-
tric laminated composite plate is

δ

∫
V

(
1

2
Qi jklεi jεkl − ei jk Eiε jk − 1

2
ζi j Ei E j

)
dV

= δ

∫
V

(
1

2
Qi jklεi jεkl − ei jk Eiε jk

)
dV

−
∫
V

ζi j EiδE jdV . (10)

The virtual work of the external force on the system is

∫ t2

t1
δWdt =

∫ t2

t1

(
δ

∫∫
�p δw0dxdy

−
∫ ∫

γ ẇ0δw0dxdy

)
dt, (11)

where γ is the structural damping coefficient.
By substituting Eqs. (7), (10), and (11) into Eq. (5) and

considering Hamilton’s principle, the nonlinear dynamic
equation for the deploying cantilevered piezoelectric lami-
nated composite plate can be obtained as

Nxx,x + Nxy,y = I0
d2x

dt2
+ I0ü0 + (I1 − c1 I3) φ̈x

−c1 I3
∂ẅ0

∂x
, (12a)

Nyy,y + Nxy,x = I0v̈0 + (I1 − c1 I3) φ̈y − c1 I3
∂ẅ0

∂y
,

(12b)
∂w0

∂x

(
Nxx,x + Nxy,y

) + ∂w0

∂y

(
Nyy,y + Nxy,x

)

+Nxx
∂2w0

∂x2
+ Nyy

∂2w0

∂y2
+ 2Nxy

∂2w0

∂y∂x

+Qx,x + Qy,y + c1
(
Pxx,xx + 2Pxy,xy + Pyy,yy

)
−c2

(
Rx,x + Ry,y

) + Δp − γ ẇ0

= I0ẅ0 + c1 I3

(
∂ ü0
∂x

+ ∂v̈0

∂x

)

+c1 (I4 − c1 I6)

(
∂φ̈x

∂x
+ ∂φ̈y

∂y

)

−c21 I6

(
∂2ẅ0

∂x2
+ ∂2ẅ0

∂y2

)
, (12c)

Mxx,x + Mxy,y − c1
(
Pxx,x + Pxy,y

) − (Qx − c2Rx )

= (I1 − c1 I3) ü0 +
(
I2 − 2c1 I4 + c21 I6

)
φ̈x

−c1 (I4 − c1 I6)
∂ẅ0

∂x
, (12d)

Myy,y + Mxy,x − c1
(
Pyy,y + Pxy,x

) − (
Qy − c2Ry

)
= (I1 − c1 I3) v̈0 +

(
I2 − 2c1 I4 + c21 I6

)
φ̈y

−c1 (I4 − c1 I6)
∂ẅ0

∂y
, (12e)
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where �p in Eq. (12c) denotes the transverse aerodynamic
load obtained by first-order piston theory [34]. Since the
length of the plate varies with time, the expression for the
first-order aerodynamic force applied on the deploying can-
tilevered plate can be formulated as

�p = −4qdλ

M∞

(
1

v

∂w0

∂x

dx

dt
+ ∂w0

∂y
+ 1

v

∂w0

∂t

)
. (13)

The moment of inertia can be calculated using the follow-
ing equation

Ii =
∫ h/2

−h/2
ziρ(z)dz, i = 0, 1, 2, 3, 4, 6. (14)

For an orthotropic piezoelectric laminated composite
plate, the internal forces can be expressed as

⎧⎨
⎩

Nx

Ny

Nxy

⎫⎬
⎭ =

⎧⎨
⎩

A11 A12 0
A21 A22 0
0 0 A66

⎫⎬
⎭

⎧⎪⎨
⎪⎩

ε
(0)
x

ε
(0)
y

γ
(0)
xy

⎫⎪⎬
⎪⎭ −

⎧⎨
⎩

N pz
xx

N pz
yy

N pz
xy

⎫⎬
⎭ ,

(15a)⎧⎨
⎩

Mx

My

Mxy

⎫⎬
⎭ =

⎧⎨
⎩

D11 D12 0
D21 D22 0
0 0 D66

⎫⎬
⎭

⎧⎪⎨
⎪⎩

ε
(1)
x

ε
(1)
y

γ
(1)
xy

⎫⎪⎬
⎪⎭

−c1

⎧⎨
⎩

F11 F12 0
F21 F22 0
0 0 F66

⎫⎬
⎭

⎧⎪⎨
⎪⎩

ε
(2)
x

ε
(2)
y

γ
(2)
xy

⎫⎪⎬
⎪⎭ −

⎧⎪⎨
⎪⎩

Mpz
xx

Mpz
yy

Mpz
xy

⎫⎪⎬
⎪⎭ , (15b)

⎧⎨
⎩

Px
Py
Pxy

⎫⎬
⎭ =

⎧⎨
⎩

F11 F12 0
F21 F22 0
0 0 F66

⎫⎬
⎭

⎧⎪⎨
⎪⎩

ε
(1)
x

ε
(1)
y

γ
(1)
xy

⎫⎪⎬
⎪⎭

−c1

⎧⎨
⎩

H11 H12 0
H21 H22 0
0 0 H66

⎫⎬
⎭

⎧⎪⎨
⎪⎩

ε
(2)
x

ε
(2)
y

γ
(2)
xy

⎫⎪⎬
⎪⎭ −

⎧⎪⎨
⎪⎩

Ppz
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Ppz
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Ppz
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⎫⎪⎬
⎪⎭ , (15c)

{
Qy

Qx

}
=

{
A44 0
0 A55

}{
γ

(0)
yz

γ
(0)
xz

}

−c2

{
D44 0
0 D55

} {
γ

(2)
yz

γ
(2)
xz

}
, (15d)

{
Ry

Rx

}
=

{
D44 0
0 D55

} {
γ

(0)
yz

γ
(0)
xz

}

−c2

{
F44 0
0 F55

} {
γ

(2)
yz

γ
(2)
xz

}
, (15e)

where N pz
i j , M

pz
i j , and Ppz

i j (i, j = x, y) denote the inter-
nal forces induced by the piezoelectric material. If only the
change of the electric field in the thickness direction is con-
sidered, these variables can be defined as

N pz
xx =

N∑
k=1

∫ z+1

z
e31Ezdz,

N pz
yy =

N∑
k=1

∫ z+1

z
e32Ezdz, N pz

xy = N pz
xz = N pz

yz = 0,

(16a)

Mpz
xx =

N∑
k=1

∫ z+1

z
ze31Ezdz,

Mpz
yy =

N∑
k=1

∫ z+1

z
ze32Ezdz, Mpz

xy = Mpz
xz = Mpz

yz = 0,

(16b)

Ppz
xx =

N∑
k=1

∫ z+1

z
z3e31Ezdz,

Ppz
yy =

N∑
k=1

∫ z+1

z
z3e32Ezdz, Ppz

xy = Ppz
xz = Ppz

yz = 0,

(16c)

where ei j is the piezoelectric constant, k is the number
of the piezoelectric laminate, and Ez is the electric field
strength. The relationship between the electric field strength
and applied voltage Ve is Ez = Ve/hz , where hz is the thick-
ness of the piezoelectric laminate.

Inserting Eqs. (15) and (16) into Eq. (12), the nonlinear
dynamic equation for the deploying cantilever piezoelectric
laminated composite plate, expressed in terms of generalized
displacement variables, can be obtained as

A11
∂2u0
∂x2

+ A66
∂2u0
∂y2

+ (A12 + A66)
∂2v0

∂x∂y

+ (A12 + A66)
∂w0

∂y

∂2w0

∂x∂y
+ A11

∂w0

∂x

∂2w0

∂x2

+A66
∂w0

∂x

∂2w0

∂y2

= I0
d2x

dt2
+ I0ü0 + (I1 − c1 I3) φ̈x − c1 I3

∂ẅ0

∂x
, (17a)

A22
∂2v0

∂y2
+ A66

∂2v0

∂x2
+ (A21 + A66)

∂2u0
∂x∂y

+ (A21 + A66)
∂w0

∂x

∂2w0

∂x∂y
+ A22

∂w0

∂y

∂2w0

∂y2
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+A66
∂w0

∂y

∂2w0

∂x2

= I0v̈0 + (I1 − c1 I3) φ̈y − c1 I3
∂ẅ0

∂y
, (17b)

(
A55 + c22F55 − 2c2D55 − N pz

xx

) ∂2w0

∂x2

+
(
A44 + c22F44 − 2c2D44 − N pz
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∂x2

∂w0

∂x
+ A66
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∂2v0
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∂x∂y
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2
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)2
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∂y2

+
(
1

2
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) (
∂w0

∂x

)2
∂2w0

∂y2
− c21H11

∂4w0

∂x4

+
(
A66 + 1

2
A21

) (
∂w0

∂y

)2
∂2w0

∂x2
+ (A12 + A21

+4A66)
∂w0

∂x

∂w0

∂y

∂2w0

∂x∂y
− c21H22

∂4w0

∂y4

+
(
A55 − 2c2D55 + c22F55

) ∂φx

∂x

+
(
c1F22 − c21H22

) ∂3φy

∂y3
+

(
c1F11 − c21H11

) ∂3φx

∂x3

+
(
A44 − 2c2D44 + c22F44

) ∂φy

∂y
+ c1 (F21 + 2F66

−c1H21 − 2c1H66)
∂3φx

∂x∂y2

−2c21 (H21 − 2H66)
∂4w0

∂x2∂y2
+ c1 (F12 + 2F66 − c1H12

−2c1H66)
∂3φy

∂x2∂y
+ Δp − γ

∂w0

∂t

= I0ẅ0 − c21 I6

(
∂2ẅ0

∂x2
+ ∂2ẅ0

∂y2

)

+c1 I3

(
∂ ü0
∂x

+ ∂v̈0

∂y

)

+c1 (I4 − c1 I6)

(
∂φ̈x

∂x
+ ∂φ̈y

∂y

)
, (17c)

(
D11 − 2c1F11 + c21H11

) ∂2φx

∂x2

+
(
D66 − 2c1F66 + c21H66

) ∂2φx

∂y2

−
(
c1F11 − c21H11

) ∂3w0

∂x3

+c1 (−F12 − 2F66 + c1H12 + 2c1H66)
∂3w0

∂x∂y2

−
(
A55 − 2c2D55 + c22F55

) ∂w0

∂x

+
(
D12 − 2c1F12 − 2c1F66 + D66 + c21H12

+c21H66

) ∂2φy

∂x∂y
−

(
A55 − 2c2D55 + c22F55

)
φx

= (I1 − c1 I3) ü0 +
(
I2 − 2c1 I4 + c21 I6

)
φ̈x

−c1 (I4 − c1 I6)
∂ẅ0

∂x
, (17d)

(
D22 − 2c1F22 + c21H22

) ∂2φy

∂y2
+

(
D66 − 2c1F66

+c21H66

) ∂2φy

∂x2
−

(
c1F22 − c21H22

) ∂3w0

∂y3

+c1 (−F21 − 2F66 + c1H21 + 2c1H66)
∂3w0

∂x2∂y

−
(
A44 − 2c2D44 + c22F44

) ∂w0

∂y

+
(
D21 − 2c1F21 − 2c1F66 + D66 + c21H21

+c21H66

) ∂2φx

∂x∂y
−

(
A44 − 2c2D44 + c22F44

)
φy

= (I1 − c1 I3) v̈0 +
(
I2 − 2c1 I4 + c21 I6

)
φ̈y

−c1 (I4 − c1 I6)
∂ẅ0

∂y
. (17e)

3 Galerkin discretization

Due to the difficulty in finding an analytical solution to
these partial differential equations describing the vibration
of the system, they are usually discretized into equations of
ordinary differential form for analysis. Moreover, as lower-
frequency vibrations are dominant in nonlinear vibration
systems, truncation at the first two modes is accurate enough
in this case. In this work, the Galerkin method was employed
to perform second-order truncation of the nonlinear dynam-
ics in Eq. (17) in partial differential form, selecting the
following time-dependent modal function satisfying the dis-
placement boundary conditions
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u(x, y, t) = u1(t) sin
πx

2l
cos

πy

b

+u2(t) sin
3πx

2l
cos

2πy

b
, (18a)

v(x, y, t) = v1(t) sin
πx

2l
sin

πy

b

+v2(t) sin
3πx

2l
sin

2πy

b
, (18b)

w(x, y, t) = w1(t)X1(x)Y1(y) + w2(t)X2(x)Y2(y), (18c)

φx (x, y, t) = φx1(t) sin
πx

2l
cos

πy

b

+φx2(t) sin
πx

l
cos

2πy

b
, (18d)

φy(x, y, t) = φy1(t)
(
1 − cos

πx

2l

)
sin

πy

b

+φy2(t)
(
1 − cos

πx

l

)
sin

2πy

b
. (18e)

The general solution for the fourth-order ordinary differ-
ential equations, Xi (x) and Y j (y), in Eq. (18c) is

Xi (x) = sin
ki x

l
− sinh

ki x

l

+αi

(
cosh

ki x

l
− cos

ki x

l

)
, (19a)

Yi (y) = sin
k j y

b
+ sinh

k j y

b

−αi

(
cosh

k j y

b
+ cos

k j y

b

)
, (19b)

where Xi (x) is the clamped–free beam function along the x-
axis, Y j (y) is the free–free beam function along the y-axis,
and ki and k j are roots of the characteristic equation with the
following relationship

cos ki l0 · cosh ki l0 + 1 = 0, cos k jb · cosh k jb − 1 = 0,

(20a)

and

αi = sinh ki l0 + sin ki l0
cosh ki l0 + cos ki l0

, βi = sinh k jb − sin k j b

cosh k j b − cos k jb
,

(20b)

where l is an abbreviation for l(t).
Considering the effect of the change in the length of the

plate along the x-axis as time varies, in the process of substi-
tuting the vibrationmode function into the relevant equations
to perform the Galerkin discretization, the accompanying
compound derivative argument should be considered. There-
fore, the following relational expressions are used for the
derivation

D

Dt
= ∂

∂t
+ ∂

∂x

dx

dt
, (21a)

D2

Dt2
= ∂2

∂t2
+ 2

∂2

∂x∂t

dx

dt
+ ∂2

∂x2

(
dx

dt

)2

+ ∂

∂x

d2x

dt2
. (21b)

To normalize Eq. (17), the following dimensionless
parameters and variables are introduced

ū0 = u0
l0

, v̄0 = v0

b
, w̄0 = w0

h
, φ̄x = φx , φ̄y = φy,

x̄ = x

l0
, ȳ = y

b
, f̄ = b2

Eh3
f,

γ = 1

l0b

√
1

ρE
γ, Ω̄ = 1

π2

(
l0bρ

E

)1/2

Ω,

t̄ = π2
(

E

l0bρ

)1/2

t, Āi j = (l0b)1/2

Eh2
Ai j ,

D̄i j = (l0b)1/2

Eh4
Di j , F̄i j = (l0b)1/2

Eh6
Fi j ,

H̄i j = (l0b)1/2

Eh8
Hi j , Īi = 1

(l0b)(i+1)/2 ρ
Ii . (22)

Substituting the modal function Eq. (18) into Eq. (17), the
Galerkin method is employed to perform the second-order
discretization to obtain normalized ordinary differential
equations. Because the main structural vibration is out of
plane, u0, v0, φx , and φy are expressed using the trans-
verse variables w1 and w2. The dimensionless two-degree
of freedom (DOF) nonlinear dynamic equations describing
the transverse vibration of the deploying cantilever piezo-
electric laminated composite plate can then be formulated as

α1ẅ1 + α2ẇ1 + α3ẇ2 + α4w1

+ α5 ( f0 + f1 cos (Ω2t)) w1 + α6w2

+ α7w
3
1 + α8w

2
1w2 + α9w1w

2
2 + α10w

3
2 = 0, (23a)

β1ẅ2 + β2ẇ2 + β3ẇ1 + β4w2

+ β5 ( f0 + f1 cos (Ω2t)) w2 + β6w1

+ β7w
3
1 + β8w

2
1w2 + β9w1w

2
2 + β10w

3
2 = 0, (23b)

where the coefficients αi and βi (i = 1, 2, . . . , 10) consider
time t explicitly.

4 Numerical simulations

We selected as a model a deploying symmetric cross-ply
piezoelectric laminated composite cantilever plate with the
following parameters, constructed from PVDF membrane
and fiber-reinforced laminates: l0 = 2.0m, b = 1.5m,
h = 0.004m, f0 = 2000N/m2, Vd = 0.005m/s, Ω1 = 15,
Ma = 3.0 in hypersonic flow, Va = 900m/s, κ = 1.4, and air
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density ρa = 0.65 kg/m3 at height of 10,000 m. The mate-
rial properties of the fiber-reinforced composite composed
of graphite–epoxy HT3/QY8911 include: E1 = 125.0 GPa,
E2 = 7.2 GPa, G12 = G13 = 4.1GPa, G23 = 1.43 GPa,
ν12 = 0.33, ν21 = ν12 E2/E1, ρ = 1570 kg/m3, γ =
350N · s/m, with thickness of the piezoelectric layer hz =
0.00015 m. Based on the time-varying two-DOF nonlinear
dynamic Eq. (23), the nonlinear dynamical behavior of the
cantilever piezoelectric laminated composite plate, extending
from 2 to 4 m at various extending speeds under first-order
aerodynamic force, was investigated numerically.

4.1 Nonlinear dynamical behavior of plate for extension
speed V0 = 0.05

Figures 2–7 show the time history curves for the transverse
first- and second-order modal vibration of the cantilever
piezoelectric laminated composite plate during the exten-
sion process for different piezoelectric excitations. For better
observation of the second-order vibration of the structure,
the seemingly stable parts in subfigure b are magnified and
shown in subfigure c. The effects of the applied voltage on
the stability of the time-varying nonlinear dynamics can be
observed in the time-domain plots.

The obtained time history curves well reflect the effects
of changing the applied voltage on the stability of the time-
varying nonlinear dynamics. For applied voltage of 0 (Fig. 2),

the structural nonlinear dynamic behavior is consistent with
that of the fiber-reinforced laminated composite plate with-
out piezoelectric laminates, consistent with Ref. [14]. More
specifically, during the extension process to 2m length, three
different phases present either the first- or second-order
vibration of the structure, including two jumps of vibration
amplitude and a stablemotion phase between them.Through-
out the process, the vibration amplitude of the structure
changes greatly, and the structure easily becomes unsta-
ble and divergent. For excitation voltage of Vz = 130V
(Fig. 3), the period of the two jumps in vibration ampli-
tude increases, while the period of stable motion between
them decreases. As the excitation voltage increases (Fig. 4),
the stable motion phase in both the first- and second-order
vibrations of the structure gradually decreases and eventu-
ally vanishes. Hence, the nonlinear dynamical behavior is
very unstable, as the structure experiences a second jump in
vibration amplitude immediately after the first one.

On changing the polarity of the excitation voltage, we
observe a change in the structural dynamical behavior. When
the excitation voltage is Vz = −40V (Fig. 5), it is found that
the increasing trend in amplitude is slowed in both the first-
and second-order vibration. When the excitation voltage is
increased to Vz = −45V (Fig. 6) and the dimensionless time
is around t = 250, the first- and second-order jumps of the
vibration amplitude are suppressed. On further increasing the
excitation voltage to Vz = −50V (Fig. 7), the cantilevered

Fig. 2 Time history curves for Vz = 0V

Fig. 3 Time history curves for Vz = 130V
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Fig. 4 Time history curves for Vz = 150V

Fig. 5 Time history curves for Vz = −40V

Fig. 6 Time history curves for Vz = −45V

Fig. 7 Time history curves for Vz = −50V
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piezoelectric laminated composite plate accomplishes the
extension from 2 to 4mwithout a second vibration amplitude
jump in the first- or second-order vibration.

Overall, the piezoelectric excitation has a significant
impact on the stability of the structural nonlinear vibra-
tion. During the extension of the cantilever piezoelectric
laminated composite plate from 2 to 4 m, when the exci-
tation voltage is positive, the structural stability of the first-
and second-order vibrations gradually decreases. The sta-
ble motion phase of the system gradually shrinks in time,
and the structure is liable to exhibit a second jump immedi-
ately after the first jump of the vibration amplitude. When
the voltage is increased further, the vibration of the struc-
ture gradually deviates from the equilibrium position until
the structure eventually diverges. On changing the polar-
ity of the voltage, as the voltage increases in the negative
direction, even though the first jump of the first two vibra-
tion amplitudes is not suppressed, the second jump in the
first- and second-order vibrations is avoided. As a result, the
scale of the vibration amplitude in the stable motion phase is
reduced. By calculating the coefficients of the in-plane stiff-
ness terms in Eq. (23), we note that the in-plane stiffness of
the plate was improved with increase of the applied nega-
tive voltage. This increase of the in-plane stiffness leads to a
corresponding increase of the structural vibration frequency,
which explains why the nonlinear vibration amplitude was
suppressed.

4.2 Nonlinear dynamic behavior of plate for extension
speed of V0 = 0.10

To study the effects of changing the extension speed on
the structural stability of the nonlinear dynamics, the time
history response curves of the deploying cantilever piezo-
electric laminate, extending from 2 to 4 m at extension
speed of V0 = 0.10m/s, are shown in Figs. 8–11. When
the amplitude of the excitation voltage is increased from 0
to 150V, the time-varying first- and second-order nonlinear
vibrations gradually lose their stability, and the instability of
the extension process is exacerbated. On gradually adjusting
the negative excitation voltage, it was found that, when the
excitation voltage was Vz = −150V, the second jump of
the structural vibration amplitude in the first- and second-
order vibrations was avoided. However, the first jump was
not suppressed, although the scale of the vibration amplitude
in the stable motion phase was suppressed. At the same time,
the vibration amplitude during the stable motion phase was
suppressed. In other words, choice of an appropriate excita-
tion voltage can effectively suppress the nonlinear vibration
of the system during the extension process. In addition, on
comparison with Sect. 4.1, it is found that the stability of
the system gradually decreased during the extension process
as the extension speed was increased. When the structure
extended at higher speed, the negative applied voltage nec-
essary to avoid the second jump of the amplitude of the first-

Fig. 8 Time history curves for Vz = 0V

Fig. 9 Time history curves for Vz = 100V
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Fig. 10 Time history curves for Vz = 150V

Fig. 11 Time history curves for Vz = −150V

and second-order structural vibrations also increased corre-
spondingly.

5 Conclusions

Considering the piezoelectric material characteristics, the
time-varying nonlinear dynamic behavior of a deploying
laminated composite plate, under the combined action of
first-order aerodynamic load and piezoelectric excitation,
was investigated. The effect of the introduction of the piezo-
electric material on the stability of the nonlinear dynamics
of the composite piezoelectric laminate during the extension
process was investigated numerically. The following conclu-
sions can be drawn:

(1) Using Reddy’s third-order shear theory for laminates
and von Karman’s geometric relation for large deforma-
tion, and applyingHamilton’s principle, a nonlinear dynamic
model in partial differential form for the deploying lami-
nated composite plate, considering the combined action of
aerodynamic load and piezoelectric excitation, was devel-
oped. Based on a selected time-dependent modal function,
we performed second-order discretization using the Galerkin
method, resulting in the derivation of a time-varying nonlin-
ear dynamic model describing the transverse vibration of
the deploying cantilever piezoelectric laminated composite
plate.

(2) Using the obtained ordinary differential equation, the
time-varying nonlinear dynamic behavior of the deploying
cantilever piezoelectric laminated composite plate was sim-
ulated numerically, and the effect of the piezoelectric effect
on the time-varying nonlinear dynamical behavior discussed.
The results reveal that, when the applied voltage is positive,
the extension process becomes more unstable, and the time-
varying structural divergence is exacerbated. As a result, the
piezoelectric laminated composite plate is more liable to fail-
ure and destruction. When the applied voltage was set to a
negative value, the polarity of the voltage changed, and it was
found that not only was the increasing trend of the vibration
amplitude of the time-varying structure suppressed, but also
the vibration amplitude was suppressed. Thus, the piezo-
electric material has a significant impact on the nonlinear
dynamic stability of the fiber-reinforced laminated compos-
ite plate, and choice of a suitable voltage and polarity can
effectively suppress the nonlinear vibration of the deploying
cantilever laminate. The applied negative voltage enhances
the in-plane stiffness of the time-varying structure, which
leads to a corresponding increase of the structural vibration
frequency and suppression of the nonlinear vibration ampli-
tude. It is also found that increasing the extension speed can
decrease the nonlinear dynamic stability of the structure dur-
ing the extension process. Therefore, the applied excitation
voltage required to suppress the divergence of the nonlin-
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ear vibration amplitude should be increased correspondingly
when the structure extends at higher speed.
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