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Abstract Without applying any stable element techniques
in the mixed methods, two simple generalized mixed ele-
ment (GME) formulations were derived by combining the
minimum potential energy principle and Hellinger–Reissner
(H–R) variational principle. The main features of the GME
formulations are that the common C0-continuous polyno-
mial shape functions for displacement methods are used to
express both displacement and stress variables, and the coef-
ficient matrix of these formulations is not only automatically
symmetric but also invertible. Hence, the numerical results of
the generalized mixed methods based on the GME formula-
tions are stable. Displacement as well as stress results can be
obtained directly from the algebraic system for finite element
analysis after introducing stress and displacement bound-
ary conditions simultaneously. Numerical examples show
that displacement and stress results retain the same accu-
racy. The results of the noncompatible generalized mixed
method proposed herein are more accurate than those of the
standard noncompatible displacement method. The noncom-
patible generalizedmixed element is less sensitive to element
geometric distortions.
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1 Introduction

In standard finite element displacement methods, the dis-
placements are usually computed first, then the stresses
or/and strains are calculated by numerically differentiating,
based upon the constitutive relations and compatible equa-
tions at element level, usually resulting in loss of accuracy.
Meanwhile, the values of the strain component computed
from different elements connected at a node are different.
Consequently, a smoothing or recovery procedure for nodal
stresses may be carried out over the local or whole finite
element domain. The boundary nodal stresses obtained from
such finite element analysis are inconsistent with the pre-
scribed stresses in displacement methods [1,2].

For equilibrium finite element methods, stresses are
equilibrated within the element and tractions are balanced
at interelement boundaries. However, equilibrium methods
have been found to have limited use in general-purpose
computer codes because of their behavior without judicious
choice of basis functions [2].

Numerous mathematical models result from physical
problems in the form of systems of partial differential equa-
tions involving several physically disparate quantities that
need to be approximated simultaneously. The finite ele-
ment approximations of such problems are well known as
mixed finite element methods. Generally, the dual variable
is computed as a fundamental unknown in mixed methods.
Early contributions towards mixed methods can be found in
Refs. [3–10]. More recent developments can be found in
Refs. [11–25]. As a class of numerical methods, mixed mod-
els are widely used in the field of fluid mechanics; For
example, displacement models are impractical for the Stokes
problem. For such problems, mixed methods represent the
simplest and most direct alternative [25].
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Several main advantages and disadvantages of mixed
methods can be summarized as follows:

(1) Linear interpolation functions are often sufficient to give
satisfactory results for practical applications. Boundary
and interelement conditions can be represented properly,
and no difficulties arise due to higher derivatives;

(2) The stress or strain variables, as the main design param-
eters of a structure, are the direct results of the finite
element governing equation without requiring differen-
tiation of displacements. This is also advantageous for
physically nonlinear analysis, in which yield conditions
etc. are expressed in terms of stresses [8,11];

(3) It is well known that, for nearly incompressible and
incompressible materials, finite element computations
based on the standard displacement formulation fail due
to the onset of the locking phenomenon. Classical mixed
formulations are a valid alternative to locking-affected
methods, since they provide mathematical models capa-
ble of treating both compressible and incompressible
elasticity problems in a unified framework [8,26];

(4) Compared with displacement methods, the mathemati-
cal theory of mixed methods is relatively complex. For
mixed methods based on the Hellinger–Reissner (H–R)
variational principle alone, stability is paramount. The
stability of numerical results is related to the invertibility
of the coefficient matrix of the finite element govern-
ing equation. A main drawback of mixed methods is the
indefiniteness of the resulting system matrix [20]. It is
not easy to construct a pair of finite elements for the
displacement vector and symmetric stress tensor which
satisfies the stability conditions of Brezzi’s theory [4].

Some representative studies on mixed methods published
in recent years should be mentioned here: Arnold and
Winther [16] suggested some stable elements for a two-
dimensional problem, while the corresponding method in
three-dimensional space was first characterized by Adams
and Cockburn [17], and thorough analyses of the finite ele-
ments were provided in Ref. [19]. The construction of these
elements is not convenient for computer programs, since they
are of high polynomial order, implying high cost even for the
lowest-order scheme. A family of symmetric tensor-valued
finite elements of arbitrary order was constructed using
the tangential-displacement normal-normal-stress (TDNNS)
formulation in Ref. [10]. However, the mathematical theory
and the process of construction of the TDNNS formulation
are not simple and not suitable for engineers.

No doubt, some open questions remain in connection
with displacementmethods, equilibriummethods, andmixed
methods for two- or three-dimensional elasticity problems.
For mixed methods, some questions of stable elements
require further study.

The objective of this work is to propose two simple gen-
eralized mixed methods without any stable element schemes
but with automatically stable numerical results.

2 Variational principles for elasticity

Consider a body under static loading. The body occupies the
volume V . S is the surface of the body. S = Su ∪ Sσ , where
Su and Sσ are the segments of S where displacements and
surface tractions are prescribed, respectively; the outward
unit normal on S is denoted by N ≡ ni . Let∇ be the gradient
operator in the deformed body which, under the assumption
of infinitesimal deformation, is indistinguishable from the
deformed body.

We define the following: displacements u ≡ ui , strains
ε ≡ εi j , and stresses σ ≡ σi j ; b ≡ bi as the body force in
V ; the surface tractions T ≡ Ti , and the prescribed surface
tractions T ≡ T i on Sσ ; the prescribed displacements u ≡ ui
on Su.

Assuming the displacement boundary conditions u−u =
0 is satisfied a priori for all variational principles in the fol-
lowing.

The minimum potential energy principle for elasticity
problems has the form

ΠP =
∫
V

[
1

2
(∇u)TC(∇u) − bTu

]
dV −

∫
sσ
T
T
udS, (1)

where C is the symmetric stiffness matrix of a material.
The H–R variational principle [27] for elasticity problems

contains both displacement and stress fields

ΠHR=
∫
V

[
−1

2
σTSσ +σT(∇u)−bTu

]
dV −

∫
sσ
T
T
udS,

(2)

where S = C−1 is the compliance matrix.
Like the H–R variational principle, there are also both

displacement and stress fields in the generalized variational
principle [28]. This principle can be expressed in the follow-
ing form

ΠG = ΠHR +
∫
V

λ

[
1

2
σTSσ + 1

2
(∇u)TC(∇u)

−σT(∇u)

]
dV . (3)

It should be pointed out that Felippa [29,30] constructed
a one-parameter family of mixed variational principles for
linear elasticity in 1989. Equation (3) is such a one-parameter
family of mixed variational principles.

Generally, we expect to take 0 � λ � 1 in Eq. (3). Values
of the parameter λ < 0 or λ > 1 are not of practical interest.
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It is clear that, letting λ = 0, Eq. (3) becomes the H–R
variational principle. Meanwhile, letting λ = 1, one obtains
the minimum potential energy principle in Eq. (1).

Letting λ = 1
2 yields

ΠG =
∫
V

[
− 1

4
σTSσ + 1

2
σT(∇u) + 1

4
(∇u)TC(∇u)

−bTu
]
dV −

∫
sσ
T
T
udS

= 1

2
(ΠP + ΠHR). (4)

It is interesting that the generalized variational principle
above is one-half of the sum of theminimumpotential energy
principle and H–R variational principle. Our practice shows
that, indeed, only forλ = 1/2 can good accuracy and stability
of the generalized mixed method be obtained.

Note that the H–R variational principle in Eq. (2) and
generalized variational principle in Eq. (4) are the princi-
ples of stationarity. For the principles in Eqs. (2) and (4),
the nonvariational constraint is the constitutive relations. The
equilibrium equations, the tractions boundary condition can
be satisfied a posteriori.

3 Element formulations

3.1 Compatible mixed element formulations

Without loss of generality, consider first an n-node compat-
ible linear element for 3D problems. Both the displacement
vector u and stress vector σ are expressed using the same
shape functions

u = Nqqe, (5)

whereDiag(Nq) = [Ne, Ne, Ne]T,Ne = [N1, N2, . . . , Nn],
qe = [u1e, u2e, u3e]T.

σ = Np pe =
[
Nq 0
0 Nq

](
poe
pie

)
, (6)

where Diag(Np) = [Ne, Ne, Ne, Ne, Ne, Ne]T ; pe =
[
poe, pie

]T = [σ 13e, σ 23e, σ 33e, σ 11e, σ 22e, σ 12e]
T .

Let Ni = 1
8 (1 + ζiζ )(1 + ηiη)(1 + ξiξ), i = 1, 2, . . . , 8,

in Eqs. (5) and (6), thus Nq is the 24 × 24 shape function
matrix.

It is well known that, inserting Eqs. (5) and (6) into Eq. (2)
and performing the energy integration, one obtains the dis-
crete form of the H–R variational principle

ΠHR( pe, qe) =
n∑

i=1

[
−1

2
pTe K

(i)
pp pe + pTe K

(i)
pq qe

−
(
f (i)
q

)T
qe

]
, (7)

in which K (i)
pp = ∫

Vi
NT

p SNpdV is a symmetric matrix of an

element, K (i)
pq = ∫

Vi
NT

q (∇Nq)dV is a rectangular matrix,

f (i)
q = ∫

Vi
NT

q bdV + ∫
Sσ i

NT
qTdS is the load vector of an

element;
∑

implies the summationof all individual elements.
In what follows, the superscript “i” will be dropped for

clarity.
Consider pe and qe as independent variables. By

δΠHR( pe, qe) = 0, one has two Euler–Lagrange (EL) equa-
tions

[−K pp K pq

KT
pq 0

]{
pe
qe

}
=

{
0
f q

}
. (8)

It can be seen that the classical formulation in Eq. (8)
resulting from the H–R variational principle of various
physical problems is symmetric, but it possesses zeros on
the diagonal. Indeed, the coefficient matrix of Eq. (8) is
non-positive definite. If stable elements [16,20,26] are not
employed, it is very difficult to obtain stable solutions directly
from Eq. (8).

3.2 Compatible displacement element formulations

In the same way, using Eq. (5), the discrete form of the min-
imum potential energy principle in Eq. (1) is

ΠP(qe) =
n∑

i=1

(
1

2
qTe K qqqe − f Tq qe

)
, (9)

in which K qq = ∫
Vi

(∇Nq)
TC(∇Nq)dV is symmetric and

positive definitive; Certainly, f q = ∫
Vi

NT
q bdV

+∫
Sσ i

NT
qTdS is identical to f q in Eq. (7). As is well known,

the EL equation corresponding to Eq. (9) is

K qqqe = f q. (10)

3.3 Compatible generalized mixed element formulations

It is of interest to see that adding Eq. (10) to the second
equation of Eq. (8) yields

[−K pp K pq

KT
pq K qq

]{
pe
qe

}
=

{
0

2 f q

}
. (11)

In the above equation, the coefficient matrix is not only
symmetric, but also there are no zeros on the diagonal. This
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is a main difference from Eq. (8). Equation (11) is termed
the compatible generalized mixed element with 8 nodes
(CGME8) for 3D problems in this work.

Certainly, Eq. (11) can be proved by the generalized varia-
tional principle in Eq. (4). Using Eqs. (5) and (6), the discrete
form of Eq. (4) can be written as

ΠG( pe, qe) =
∑ (

− 1

4
pTe K pp pe + 1

2
pTe K pqqe

+ 1

4
qTe K qqqe − f Tq qe

)
.

(12)

In Eq. (12), the integral expressions of K pp, K pq, and f q
are the same as those in Eq. (7), respectively; the integral
expression K qq is identical to the K qq in Eq. (9).

Taking the variation of Eq. (12) with respect to variables
pe and qe leads immediately to Eq. (11).
The summation of Eq. (11) on all elements gives a novel

algebraic system for finite element analysis

[−K 11 K 12

KT
12 K 22

] {
p
q

}
=

{
0
2 f

}
, (13)

where K 11 = ∑
K pp, K 22 = ∑

K qq, K 12 = ∑
K pq, p =∑

pe, q = ∑
qe, and f = ∑

f q.
In general, at system level, the whole coefficient matrix

has a structure equivalent to that of an element. It is clear that
the coefficient matrix of Eq. (13) is characterized by symme-
try with respect to the stress and displacement variables of all
nodes. Certainly, the coefficient matrix of Eq. (13) is invert-
ible, which implies that its numerical results will be stable
[26,31].

3.4 Noncompatible generalized mixed element
formulations

On the basis of Refs. [32,33], for a noncompatible element,
the element displacement u can be expressed as a sum of the
compatible part Nqqe and the noncompatible part N rre

u = Nqqe + N rre. (14)

Here, N r is the shape function matrix with respect to points
within elements; re is the displacement vector corresponding
to points within elements.

In a similar way, substituting Eq. (14) into Eq. (1) results
in

ΠP(qe, re) =
n∑

i=1

(
1

2
qTe K qqqe + qTe K qrre + 1

2
rTe K rrre

− f Tq qe − f Tr re

)
. (15)

In Eq. (15), K qr = KT
rq = ∫

Vi
(∇Nq)

TC(∇N r)dV , K rr =
KT

rr = ∫
Vi

(∇N r)
TC(∇N r)dV , and f r = ∫

Vi
NT

r bdV +∫
Sσi

NT
r TdS.

The result of the variation of Eq. (15) with respect to re
is given by

KT
qrqe + K rrre = f r. (16)

Here, K rr is an invertible matrix [32,33]. From this, one
obtains

re = K−1
rr f r − K−1

rr KT
qrqe. (17)

Eliminating re in Eq. (15) using Eq. (17), the following
EL equation can be derived from the new form of Eq. (15)

Kqqqe = f q − K qrK−1
rr f r, (18)

in which Kqq = K qq − K qrK−1
rr KT

qr.
In a similar way, on substitution of Eqs. (6) and (14) into

Eq. (2), the resulting noncompatible finite element functional
has the form

ΠHR( pe, qe, re) =
n∑

i=1

(
− 1

2
pTe K pp pe + pTe K pqqe

− f Tq qe + pTe K prre − f Tr re

)
. (19)

Here, K pr = KT
rp = ∫

Vi
NT

p (∇N r)dV .
Using Eq. (17), one can also eliminate re from the above

equation to yield

ΠHR( pe, qe) =
n∑

i=1

(
− 1

2
pTeKpp pe + pTeKpqqe − f Tq qe

+ pTe K prK−1
rr f r + f Tr K

−1
rr KT

qrqe

− f Tr K
−1
rr f r

)
.

(20)

Here, Kpp = K pp and Kpq = K pq − K prK−1
rr KT

qr.
Considering the combinationof the result of δΠHR( pe, qe)

= 0 of Eq. (20) with respect to pe and Eq. (18), one
has

⎡
⎣−Kpp Kpq

KT
pq Kqq

⎤
⎦

⎧⎨
⎩

pe

qe

⎫⎬
⎭ =

⎧⎨
⎩

−K prK−1
rr f r

2 f q − 2K qrK−1
rr f r

⎫⎬
⎭ . (21)

It should be mentioned that, if the body force is ignored,
the vectors −K prK−1

rr f r and −2K qrK−1
rr f r on the right-

hand side of Eq. (21) are close to zero. Indeed, the term f Tr re
in Eq. (15) can be omitted in the classical noncompatible
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displacement methods [32,33]. For the same reason, we can
also omit the last term f Tr re fromEq. (19), and thus the terms
−K prK−1

rr f r and −2K qrK−1
rr f r from the right-hand side of

Eq. (21).
Therefore, the simplified noncompatible generalized

mixed element with 8 nodes (NCGME8) for 3D problems
is given by

⎡
⎣−Kpp Kpq

KT
pq Kqq

⎤
⎦

⎧⎨
⎩

pe

qe

⎫⎬
⎭ =

⎧⎨
⎩

0

2 f q

⎫⎬
⎭ . (22)

The algebraic system for the finite element analysis cor-
responding to Eq. (22) has the form

⎡
⎣−K11 K12

KT
12 K22

⎤
⎦

⎧⎨
⎩

p

q

⎫⎬
⎭ =

⎧⎨
⎩

0

f

⎫⎬
⎭ , (23)

where K11 = ∑Kpp, K12 = ∑Kpq, K22 = ∑Kqq, and
f = 2

∑
f q.

4 Imposing boundary conditions

For common finite element problems with prescribed but
nonzero values at various locations, one approach in practice
is to add a large number or penalty term, for instance 1020, to
the leading diagonal of the stiffness matrix in the row corre-
sponding to the prescribed value. The term in the same row of
the right-hand side vector is then set to the prescribed value
multiplied by the augmented stiffness coefficient [33].

Such a procedure is only successful if small terms are
indeed very small relative to 1020. Another prerequisite may
be required, i.e., that the coefficient matrix of the algebraic
system is a bandwidth matrix. Our practice shows that this
procedure is not suitable for Eqs. (13) and (23),which involve
known nonzero stress values (e.g., the prescribed surface
tractions) since the submatrix K 12 in Eq. (13) or K12 in
Eq. (23) is not a zero matrix.

Let us assume that ϑ refers to the known value vector with
respect to nodes on the surface or edges, whose values are
determined by the prescribed surface tractions T on Sσ and
the prescribed displacement u on Su.

Taking Eq. (23) as an example, interchanging rows and
columns, it can be recast into the following form

⎡
⎢⎢⎢⎣

−K̂11 K̂12 K̂13

K̂T
12 K̂22 K̂23

K̂T
13 K̂T

23 K̂33

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

p̂

q̂

ϑ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f 1

f 2

f 3

⎫⎪⎪⎬
⎪⎪⎭

, (24)

where p̂ and q̂ are the unknown parameter vectors of nodal
stresses and displacements, respectively; the new coefficient
submatrices f 1, f 2, and f 3 are the results of interchanging
rows and columnsof the coefficientmatrix and the loadvector[
0, f

]T, respectively.
Therefore, one has

− K̂11 p̂ + K̂12q̂ = f 1 − K̂13ϑ, (25a)

K̂T
12 p̂ + K̂22q̂ = f 2 − K̂23ϑ, (25b)

K̂T
13 p̂ + K̂T

23q̂ = f 3 − K̂33ϑ . (25c)

Of course, Eq. (25c) is redundant. Consequently, the final
governing equation for the solutions of unknown nodal dis-
placements and stresses is

⎡
⎣−K̂11 K̂12

K̂T
12 K̂22

⎤
⎦

⎧⎨
⎩

p̂

q̂

⎫⎬
⎭ =

⎧⎨
⎩

f 1 − K̂13ϑ

f 2 − K̂23ϑ

⎫⎬
⎭ . (26)

The simple technique presented above for imposing stress
and displacement boundary conditions is employed in our
program. In the next section, numerical examples show that
the boundary nodal stresses are consistentwith the prescribed
stresses on Sσ .

5 Numerical examples and discussion

5.1 A thick rectangular plate with simply supported
edges

Consider a thick rectangular plate with in-plane dimensions
a = b = 1.0 and total thickness h = 0.10 (Fig. 1). Here, we
assume that the edges x = 0, a and y = 0, b are simply sup-
ported, and use material properties E11 = 10E22 = 10E33,
G12 = G13 = 0.6E33, G23 = 0.5E33, and ν12 = ν13 =
ν23 = 0.25. Uniform normal load of 1.0 is applied on the
upper surface of the plate [34].

Using the symmetry about the x1- and x2-axes, only one-
quarter of the plate (Fig. 1b) is analyzedwith uniformmeshes.

a b

Fig. 1 A thick rectangular plate
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Exact [34]

Fig. 2 Comparison of displacement u1
( a
8 , b

2 , h
)

Exact [34]

Fig. 3 Comparison of displacement u2
( a
2 , b

8 , h
)

Exact [34]

Fig. 4 Comparison of displacement u3
( a
2 , b

2 , h
2

)

The convergence rate and accuracy of displacements and
stresses at specific locations are depicted in Figs. 2–12. The
results for the noncompatible displacement element with 8
nodes (NCDE8) were obtained using commercially available
software ABAQUS�.

For Figs. 2–10, Table 1 presents the size of each mesh
using the notation l ×m for l subdivisions along the x1-axis
and m subdivisions along the x2-axis with the same type of
elements, with four subdivisions in the x3 direction for all
models.

On the basis of the results for the 12 × 12 × 4 mesh, the
errors presented in the legends to Figs. 2–10 were computed
using the formula (Exact − Numerical)/Exact × 100%.

Exact [34]

Fig. 5 Comparison of stress σ13
( a
8 , b

2 , h
2

)

Exact [34]

Fig. 6 Comparison of stress σ23
( a
2 , b

8 , h
2

)

Exact [34]

Fig. 7 Comparison of stress σ33
( a
2 , b

2 , h
)

Exact [34]

Fig. 8 Comparison of stress σ11
( a
2 , b

2 , 0
)

In the present computer program, two Gauss quadrature
points in each direction were employed for CGME8 and
NCGME8.
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Exact [35]

Fig. 9 Comparison of stress σ22
( a
2 , b

2 , 0
)

Exact [34]

Fig. 10 Comparison of stress σ12
( a
8 , b

8 , h
)

Exact [34]

NCGME8

Fig. 11 Distribution along thickness of σ13
( a
8 , b

2 , x3
)

Exact [34]

NCGME8

Fig. 12 Distribution along thickness of σ23
( a
8 , b

2 , x3
)

Table 1 Mesh sizes

Mesh size 2 × 2 3 × 3 4 × 4 · · · 11 × 11 12 × 12

Mesh number 2 3 4 · · · 11 12

Figures 2–4 show that the results for u1
( a
8 , b

2 , h
)
, u2

( a
2 ,

b
8 , h

)
, and u3

( a
2 , b

2 ,
h
2

)
using NCGME8 were more accurate

than those obtained using NCDE8. Their convergence rate
was also faster compared with NCDE8.

It is obvious that the results for σ13
( a
8 , b

2 ,
h
2

)
and σ23( a

2 , b
8 ,

h
2

)
obtained using NCGME8 were in good agree-

ment with the exact solution when the mesh was relatively
fine (Figs. 5 and 6). It can also be seen that the accuracy
of σ13

( a
8 , b

2 ,
h
2

)
and σ23

( a
2 , b

8 ,
h
2

)
obtained using CGME8

was also greatly superior to that obtained using NCDE8.
Generally, displacement methods cannot accurately predict
transversal stresses on the neutral plane of a plate, since the
along-thickness distribution of σ13 and σ23 is parabolic, and
the maximum or minimum values of σ13 and σ23 are near to
the neutral plane (see Figs. 11 and 12).

Figure 7 shows that the accuracy of σ33
( a
2 , b

2 , h
)
obtained

using NCDE8 was very poor. As pointed out above, it is dif-
ficult to introduce traction boundary conditions when stress
variables are computed using constitutive relations at element
level. Hence, the stress results obtained using NCDE8 on the
boundary are inconsistent with the prescribed stresses. How-
ever, the stress results obtained using CGME8 andNCGME8
on the boundary were fully consistent with the prescribed
stresses.

The in-plane stressσ22
( a
2 , b

2 , 0
)
obtainedusingNCGME8

was characterized by rapid convergence. The convergence
rate of σ11

( a
2 , b

2 , 0
)
and σ12

( a
8 , b

8 , h
)
using NCGME8 was

also faster than for NCDE8 (Figs. 8 and 10).
Figures 11 and 12 show further that the distribution along

thickness of σ13
( a
8 , b

2 , x3
)
and σ23

( a
2 , b

8 , x3
)
obtained using

NCGME8 was close to the exact solutions for the 12 × 12
× 4 mesh.

5.2 A classical cantilever beam problem

Consider a cantilever beam [35] under pure bending or acted
upon by shear forces at the tip (Fig. 13a, b), with geometric
dimensions of 2×2×10 andmaterial properties of E = 1500
and ν = 0.25. The vertical displacement at point A and the
bending stress σ11 at point B for different meshes (as shown
in Figs. 14–19) are presented in Tables 2–4, respectively,
compared with QS11−1 [35], QS11−2 [35], and exact solutions.

Based on the results in Tables 2–5, it can be concluded
that:

Most of the displacement and stress results obtained
using NCGME8 appear to be more accurate than those
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a

b

Fig. 13 Two load cases for a cantilever beam

Fig. 14 Mesh a

Fig. 15 Mesh b

Fig. 16 Mesh c

obtained using the hybrid stress elements QS11−1 , QS11−2 ,
and CGME8. NCGME8 is less sensitive to geometric dis-
tortions (see Figs. 14–19, in which the elements are severely
distorted). It is also very obvious that the accuracy ofCGME8
was very poor due to the geometric distortion of the elements.

Fig. 17 Mesh d

Fig. 18 Mesh e

Fig. 19 Mesh f

Table 2 Displacement u3 at point A (load case 1)

Mesh QS11−1 QS11−2 CGME8 NCGME8 Exact

a 100.0 100.0 43.5 100.0 100.0

b 89.0 92.2 38.1 97.6 100.0

c 78.8 81.4 33.8 95.9 100.0

d 77.0 77.0 31.4 93.0 100.0

e 31.2 37.5 15.0 75.1 100.0

f 92.2 92.9 60.4 99.6 100.0

Table 3 Stress σ11 at point B (load case 1)

Mesh QS11−1 QS11−2 CGME8 NCGME8 Exact

a −3000.0 −3000.0 −1304.5 −3000.0 −3000.0

b −2619.5 −2710.8 −1093.1 −2887.4 −3000.0

c −2327.2 −2413.1 −936.6 −2795.6 −3000.0

d −2348.0 −2348.0 −994.8 −2850.1 −3000.0

e −1162.4 −1380.9 −423.8 −2546.7 −3000.0

f −3006.6 −3015.1 −2294.9 −2996.5 −3000.0

5.3 Cook’s skew beam

Figure 20 shows an arbitrary structure with unit vertical load
f uniformly distributed along the right edge with material
parameters of E = 1.0 and ν = 1

3 .
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Table 4 Displacement u3 at point A (load case 2)

Mesh QS11−1 QS11−2 CGME8 NCGME8 Exact

a 96.1 95.9 44.5 101.2 102.6

b 86.5 89.5 40.5 99.8 102.6

c 78.7 81.5 38.8 98.7 102.6

d 78.5 78.4 44.5 98.8 102.6

e 37.4 45.1 22.7 81.8 102.6

f 94.1 94.9 67.6 103.6 102.6

Table 5 Stress σ11 at point B (load case 2)

Mesh QS11−1 QS11−2 CGME8 NCGME8 Exact

a −3375.0 −3375.0 −1363.9 −3201.8 −3375.0

b −2925.6 −3024.8 −1122.7 −3025.0 −3262.5

c −2847.6 −2950.0 −1055.8 −2974.7 −3375.0

d −2735.0 −2735.7 −1096.8 −2947.2 −3150.0

e −1623.2 −1935.6 −573.3 −2638.3 −2700.0

f −4125.3 −4138.2 −3155.8 −4079.0 −4050.0

Fig. 20 Cook’s skew beam

The numerical results in Table 6 show that NCGME8 was
softer than the other elements in Ref. [36]. Without doubt,
the results obtained using NCGME8 are closer to the best
known answers.

6 Conclusions

Generally, classical mixed methods yield the simplest and
most flexible system of equations for finite element analysis
of someproblems.However, the correspondingmathematical
theory is relatively complex due to the requirement for stable
elements.

Applying usual linear interpolation functions, two novel
and simple generalized mixed elements were developed
by combining two variational principles. As mentioned in
Sect. 3, one of the most prominent advantages of the gener-
alized mixed methods (GMMs) corresponding to the present
mixed elements for the 3D problems presented in this work
is that symmetry with respect to both displacement and
stress variables is guaranteed in the finite element govern-

Table 6 Results for Cook’s skew beam (Fig. 20)

Element u2 at C σA σB

Coarse (mesh n = 2 × 2)

Hybrid, λ = 0.4 [36] 21.25 0.1736 −0.1737

Hybrid [36], λ = 0.2 [36] 21.46 0.1772 −0.1811

CST hybrid [36] 21.52 0.1760 −0.1844

CGME8 13.24 0.1108 −0.079

NCGME8 22.80 0.2040 −0.1987

Finer (mesh n = 4 × 4)

Hybrid, λ = 0.4 [36] 23.09 0.2130 −0.1768

Hybrid, λ = 0.2 [36] 23.17 0.2143 −0.1773

CST hybrid [36] 23.17 0.2145 −0.1773

CGME8 19.47 0.2187 −0.1648

NCGME8 23.55 0.2427 −0.1821

Best known answer 23.9 0.236 −0.201

Note: u2, vertical deflection at C; σA, maximum principal stress at A;
σB, minimum principal stress at B

ing equations. On the other hand, the GMMs are preferable
for introduction of displacement and tractions boundary con-
ditions simultaneously. The convergence rates of stress and
displacement variables using NCGME8 were balanced, sta-
ble, and with fine precision.

This noncompatible generalized mixed method should be
extended to important applications in a wide range of engi-
neering structures, including treatment of the combination
with other structural members and investigation of the possi-
ble advantages in stress singularity problems and nonlinear
applications which may result for special structures. The
pertinent theories of the generalized mixed elements should
also be explored deeply, for instance, investigation of local
error bounds or practical estimates for variables in three-
dimensional problems.

If one starts from the generalized variational principles of
plate and shell theories, simple corresponding generalized
element formulations and generalized mixed methods can
also be constructed.
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