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Abstract Nonlinear behaviors are investigated for a struc-
ture coupled with a nonlinear energy sink. The structure
is linear and subject to a harmonic excitation, modeled as
a forced single-degree-of-freedom oscillator. The nonlinear
energy sink is modeled as an oscillator consisting of a mass,
a nonlinear spring, and a linear damper. Based on the numer-
ical solutions, global bifurcation diagrams are presented to
reveal the coexistence of periodic and chaotic motions for
varying nonlinear energy sink mass and stiffness. Chaos is
numerically identified via phase trajectories, power spectra,
and Poincaré maps. Amplitude-frequency response curves
are predicted by the method of harmonic balance for peri-
odic steady-state responses. Their stabilities are analyzed.
The Hopf bifurcation and the saddle-node bifurcation are
determined. The investigation demonstrates that a nonlinear
energy sink may create dynamic complexity.

Keywords Nonlinear energy sink · Global bifurcation ·
Chaos · Harmonic balance method · Stability

1 Introduction

Proposed in some pioneering works [1,2], a nonlinear energy
sink is an effective device to reducemechanical and structural
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vibration passively [3,4]. In contrast to early work deal-
ing with the reduction of free vibration, much attention has
been paid to suppress forced vibrations of structures sub-
jected to external excitations. The structures were modeled
as single-degree-of-freedom oscillators [5–19], two-degree-
of-freedom linear oscillators [20–23], linear strings [24,25],
linear beams [26,27], and single-degree-of-freedom non-
linear oscillators [28]. A simplest model of a nonlinear
energy sink is an essential nonlinear oscillator consisting
of a small mass, a cubic stiffness, and a linear damper
[5,7,8,10,15,16,20,22–28].

Most available investigations focused on periodic steady-
state responses [5,8–10,12,13,15–20,22–28]. In addition
to experimental works [5,7,16,23] and numerical simula-
tions [5,6,9–14,17–19,21–23,26,28], approximate analyti-
cal methods are a powerful approach to predict the steady-
state responses by yielding amplitude-frequency response
curves and examining their stabilities [5–13,15–21,24–28].
The most used approach is the complexification averaging
method [5,6,9,11–13,16,17,19–21,26–28]. In the applica-
tions of the method, it is difficult to solve numerically the
resulting nonlinear algebraic equations. The difficulty can
be overcome via an arc-length continuation technique [26–
28]. The method of harmonic balance is also used to analyze
the periodic steady-state response [8]. In addition, a mixed
multiple scale/harmonic balance algorithm was proposed
and applied for the two-degree-of-freedom nonlinear sys-
tem [15] and the elastic strings considering the internally
resonant [24] and non-resonant [25]. In addition to peri-
odicmotions,weaklyquasiperiodic response [7,8,10,21,25],
strongly modulated responses [9,11,12] with saddle-node
bifurcation [12] and chaotic regimes [6,8,14] were also
investigated.
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The nonlinearity may change the dynamics of the system
qualitatively as well as quantitatively. Specifically, the non-
linearity may lead to new complex dynamics such as chaos.
The possibility of chaotic motion was initially revealed in
Ref. [8], and chaos was examined by the Lyapunov expo-
nent [6] and Melnikov’s methods [14]. It is well known that
the route to chaos is essential and significant to understand
nonlinear behaviors of a system. However, the route to chaos
has not been researched for a system composed by a struc-
ture and a nonlinear energy sink. To address the lack of
research in this aspect, the present work explores the route
to chaos by examining global bifurcations in the Poincaré
maps regarding two key design parameters of a nonlinear
energy sink, namely the mass and the nonlinear stiffness.
To present a complete view of dynamic complexity created
by a nonlinear energy sink, amplitude-frequency response
curves of periodic steady-state response curves are derived
from the method of harmonic balance for different nonlin-
ear energy sink masses and stiffness with the assistance of a
pseudo arc-length continuation technique. The stabilities of
the responses are analyzedwith the emphasis on the locations
of the Hopf bifurcations and the saddle-node bifurcations.

Themanuscript is organized as follows. Section2 presents
a basic model of a structure with a nonlinear sink. In Sect. 3,
global bifurcation diagrams are numerically calculated and
chaos is numerically identified. In Sect. 4, the amplitude-
frequency response curves are determined by the method
of harmonic balance and supported by the direct numerical
integrations. Section5 ends the manuscript with concluding
remarks.

2 A linear single-degree-of-freedom system with
a nonlinear energy sink

Consider a harmonically excited structure coupled with a
nonlinear energy sink. To highlight the dynamic complex-
ity induced only by the nonlinear energy sink, the simplest
model is used to represent the structure. Namely, the struc-
ture is a model as a linear single-degree-of-freedom system
with stiffness k1, linear damping coefficient c1, the massm1,
and excited by the periodic force F(t) = Acos(ωt). The
nonlinear energy sink consists of m2, cubic stiffness k, and
linear damping c. Figure1 shows the model.

Measured from their static equilibriums, the displace-
ments of masses m0 and m are denoted as x0 and x ,
respectively. It should be remarked that both the effect of
gravity and the pre-stress have been ignored. It works in
the case of a structure coupled with a smooth nonlinear
energy sink as shown in Fig. 1. If nonsmoothness is taken
into account [17–19], the effects of gravity should be con-
sidered. Newton’s second law yields the dynamic equations
of the system.

Fig. 1 A linear oscillator with a nonlinear energy sink

Fig. 2 The bifurcation diagram of the structure response for varying
mass m

m0 ẍ0 + k0x0 + c0 ẋ0 + c (ẋ0 − ẋ) + k (x0 − x)3

+ A cos (ωt) = 0

mẍ + k (x − x0)
3 + c (ẋ − ẋ0) = 0. (1)

3 Numerical explorations of global bifurcations:
periodic and chaotic motions

This section examines nonlinear behaviors of the system
based on the numerical integrations calculated via theRunge-
Kutta scheme implemented by MATLAB [29,30]. The time
step is 0.01 of a period T which is the 2π /ω and the absolute
error is 10−6. Choose the parameter values as m0 = 24 kg,
k0 = 20 kN/m, c0 = 1.2 N · s/m, c = 1.2 N · s/m,
A = 10N, and ω = 28.8675 rad/s. Two key design parame-
ters of the nonlinear energy sink, namely, mass m and cubic
stiffness k are considered as a varying parameter, respec-
tively. Bifurcations in the Poincaré maps are employed to
demonstrate the effect of the two parameters on dynami-
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Fig. 3 The bifurcation diagram of the energy sink response for varying
mass m

cal behaviors. The displacement components in the Poincaré
maps are focused. The first 4800 periods in the Poincaré
maps are calculated, and only the last 200 periods are plotted
in bifurcation diagrams to eliminate transient responses.

The varying mass m is focused with fixed k = 10,000
kN/m3. Figures 2 and 3 depict the displacements compo-
nents in the Poincaré maps of the structure response and
the nonlinear energy sink response. The numerical results
show that the responses of the structure and the energy sink
are periodic except for a few bursts of chaotic motions.
Such chaotic motions are dynamic complexity induced by
the nonlinear energy sink, because linear structures behave
periodically only. For the periodic responses, the vibrations
of the structure and the energy decreases with the increas-
ing energy sink mass, except for the very small energy sink
mass. It should be remarked, the response of the energy sink
seems more complex than that of the structure, as shown in
Figs. 2 and 3. Specifically, Figs. 4 and 5 show that the struc-

Fig. 4 Periodic vibration of the structure for m = 0.2496 kg. a The time history. b The enlargement of the time history. c The phase portrait.
d The Poincaré map

123



804 J. Zang, L.-Q. Chen

Fig. 5 Chaotic motion of the energy sink for m = 0.2496 kg. a The time history. b The amplitude spectrum. c The phase portrait. d The Poincaré
map

ture vibrates periodically but the energy sink chaotically for
m = 0.2496kg. Figures6 and7 show that the structure iswith
period-1 motion while the energy sink has period-2 motion,
for m = 0.3384 kg, and the fact implies the occurrence the
period-doubling bifurcation for the energy sink, also shown
in Fig. 3. Figures8 and 9 show vibrations of both the structure
and the energy sink are possibly chaotic. In above-mentioned
figures, chaos is identified by the time history, the amplitude
spectrum, the phase portrait, and the Poincaré map, while
periodic motion is demonstrated by the time history with its
local enlargement, the phase portrait, and the Poincaré map.

Figures10 and 11 present bifurcation diagrams of the
displacement components in the Poincaré maps of the struc-
ture and the energy sink for varying cubic stiffness k for
m = 0.5 kg. The structure and the energy sink vibrate peri-
odically except for the bursts of chaos for the small and the
large stiffness k. Samples of periodic motions of the struc-
ture and the energy sink are respectively shown in Figs. 12
and 13, and those of possibly chaotic motions can be found

in Figs. 14 and 15. It may be expected that periodic motion
and chaotic motion occur alternately for the further increase
of the stiffness. The amplitude of the periodic motion of the
structure increases with the stiffness, while that of the energy
sink remains almost unchanged.

4 Amplitude-frequency response curves: harmonic
balance analysis

This section focuses on periodical motion from the view of
the amplitude-frequency response. The method of harmonic
balance will be employed to predict the response under an
excitation with a given frequency. To perform the harmonic
balance analysis, Eq. (1) is cast into the dimensionless form.

u
′′
0 + u0 + ς0u

′
0 + ς

(
u

′
0 − u

′) + β (u0 − u)3

+ f cos (γ τ) = 0,
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Fig. 6 Period-1 motion of the structure for m = 0.3384 kg. a The time history. b The enlargement of the time history. c The phase portrait. d The
Poincaré map

u
′′ + λβ (u − u0)

3 + λς
(
u

′ − u
′
0

)
= 0, (2)

where the dimensionless displacements of the structure and
the energy sink as well as the dimensionless time are

u0 = x0
l

, u = x

l
, τ = ω0t, (3)

in which l is the static deformation of the linear structural
spring k0 per 1 kN, and the structural frequency, the mass
ratio, the damping ratio of the structure and the energy sink,
the dimensionless nonlinear stiffness, the frequency, as well
as the dimensionless excitation amplitude are, respectively,

ω2
0 = k0

m0
, λ = m0

m
, ς0 = c0

m0ω0
, ς = c

m0ω0
, β = kl2

ω2
0m0

,

γ = ω

ω0
, f = A

k0l
. (4)

Based on the harmonic balance method, the responses of the
governing Eq. (2) can be approximated by a finite sum of
low harmonic terms. Since the nonlinearity in this system
is cubic, the responses contain the odd harmonics only. In
order to check the numerical convergence of the harmonic
expansion, the lowest three odd harmonics are considered.
Then the responses can be expressed as follows

u0(τ ) = a11 cos(γ τ) + b11 sin(γ τ) + a31 cos(3γ τ)

+ b31 sin(3γ τ) + a51 cos(5γ τ) + b51 sin(5γ τ),

u(τ ) = a12 cos(γ τ) + b12 sin(γ τ) + a32 cos(3γ τ)

+ b32 sin(3γ τ) + a52 cos(5γ τ) + b52 sin(5γ τ),

(5)

where ai j and bi j (i = 1, 3, 5 and j = 1, 2) are the
coefficients of corresponding harmonic components to be
determined.
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Fig. 7 Period-2 motion of the energy sink for m = 0.3384 kg. a The time history. b The enlargement of the time history. c The phase portrait.
d The Poincaré map

Substituting Eq. (5) into Eq. (2) and equating the coeffi-
cients of each harmonic cos(iγ τ) and sin(iγ τ) (i = 1, 3, 5)
of the both hands of resulting equations yield a set of non-
linear algebraic equations, presented in “Appendix A” as
Eq. (A1). Equation (A1) leads to a set of equations of the
coefficients of the harmonic balance with the orders 1 and
3 by letting a5 j and b5 j ( j = 1, 2) be all zero, and it fur-
ther reduces to the equations for the harmonic balance with
order 1 only by letting ai j and bi j (i = 3, 5 and j = 1, 2)
be all zero. For given parameters, Eq. (A1) and the degener-
ated cases can be numerically solved via a pseudo arc-length
continuation technique. Thus, one can obtain the amplitude-
frequency response curves.

In order to describe the amplitude-frequency response
curves with the higher orders, the root mean squares of the
responses could be calculated as

u0r =
√
a211 + b211 + a231 + b231 + a251 + b251, (6)

ur =
√
a212 + b212 + a232 + b232 + a252 + b252. (7)

Choose a set of parameters as ω0 = 28.8675 rad/s, λ = 30,
ς0 = 0.0017, ς = 0.0017, β = 1.25, and f = 0.01. The
amplitude-frequency response curve of the energy sink is
shown in Fig. 16. As shown is the curvewith its local enlarge-
ments, the results based on the harmonic balance solution
up to order 5 agrees well with that of the solution up to
order 3, and disagrees with that of the solution of order 1.
Specifically, both the solutions up to order 3 and order 5 pre-
dict a loop with a small break for γ between 0.978 and 0.984,
while the first-order solution does not detect the loop. In addi-
tion the obvious qualitative difference, there is a not obvious
qualitative difference of an additional loop for γ between
0.978 and 0.984 or quantitative difference for γ between
1.35 and 1.41. In all cases, the solutions up to order 3 and
order 5 are completely coinciding, while they do not overlap
with the first-order solution. Therefore, the harmonic balance
up to order 3 seems sufficiently precise.
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Fig. 8 Chaotic motion of the structure for m = 0.72 kg. a The time history. b The amplitude spectrum. c The phase portrait. d The Poincaré map

The harmonic balance solution up to order 3 is supported
by the direct numerical integrations. The comparisons of the
amplitude-frequency response curve of the nonlinear energy
sink are shown in Fig. 17 for ω0 = 28.8675 rad/s, λ = 160,
ς0 = 0.0017, ς = 0.0017, β = 1.25, and f = 0.01. Here,
to highlight the jumping phenomenon in both sides, λ =
30 is replaced by λ = 160. Both in forwarded or reverse
frequency sweeping, the analytical results (solid line) based
on the solution up to order 3 is in good agreement with the
numerical results (regular triangles for forwarded sweeping
and inverted triangles for reverse sweeping). Thus, in the
following investigation, the method of harmonic balance up
to order 3 will be employed.

In order to examine the stability of solution, the responses
are reformulated as

u0(τ ) = a11(τ ) cos(γ τ) + b11(τ ) sin(γ τ)

+ a31(τ ) cos(3γ τ) + b31(τ ) sin(3γ τ),

u(τ ) = a12(τ ) cos(γ τ) + b12(τ ) sin(γ τ)

+ a32(τ ) cos(3γ τ) + b32(τ ) sin(3γ τ). (8)

Substituting Eq. (6) into Eq. (2) and equating the coefficients
of each harmonic component in the resulting equation-
slead to a set of nonlinear differential-algebraic equations,
which are presented in “Appendix B” as Eq. (B1). The fixed
points of Eq. (B1) correspond to the steady-state response.
For given parameters, the fixed points can be numerically
located via a pseudo arc-length continuation technique. After
the linearization at each fixed point, the set of nonlinear
differential-algebraic equations are reduced to a set of lin-
ear differential equations. The stability of each fixed point
can be determined by the eigenvalues of the Jacobian matrix
of the linear differential equations. This approach yields the
stability of the steady-state response. There may be Hopf
bifurcation points and saddle-node points on the curves. At
a Hopf bifurcation point, the real part of a pair of complex
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Fig. 9 Chaotic motion of the energy sink for m = 0.72 kg. a The time history. b The amplitude spectrum. c The phase portrait. d The Poincaré
map

conjugate eigenvalues changes from the negative to the pos-
itive (referred to as the first type) or reversed (referred to
as the second type). At a saddle-node point, a positive real
eigenvalue occurs (referred to as the first type) or disappears
(referred to as the second type).

The method of harmonic balance yields amplitude-
frequency response curves revealing effects of the cubic
nonlinear term coefficient. Figures18–20 depict the curves
for β = 0.0125, 0.125, 1.25 while other parameters are fixed
as ω0 = 28.8675 rad/s, λ = 48, ς0 = 0.0017, ς = 0.0017,
and f = 0.01. The black solid line and the blue dash-dot
line represent, respectively, the stable and the unstable por-
tions of the curves. The green ball and the red triangle stand
respectively for the Hopf bifurcation points and the saddle-
node points. The case with β = 0.0125 is demonstrated
in Fig. 18. As shown in Fig. 18a, there is an unstable open
loop at the peak part of the response curve of the struc-
ture. The loop begins at a first type Hopf bifurcation point at
γ = 0.996501 with another two second type Hopf bifurca-

Fig. 10 The bifurcation diagram of the structure response for varying
the cubic stiffness k
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Fig. 11 The bifurcation diagram of the energy sink for varying the
cubic stiffness k

tions near γ = 0.996555 and γ = 0.996564, then undergoes
second type Hopf bifurcation points for γ = 1.029951 with
a nearby first type saddle-node point at γ = 1.032631 by
increasing the frequency, after that comes three second type
Hopf bifurcations at γ = 1.013257, γ = 1.013234, and
γ = 1.013195 which the frequency turns back, and finally
comes a second type Hopf bifurcation at γ = 1.011412
followed by the ending point, the second saddle-node at
γ = 1.011412. The amplitude-frequency response curve
of the steady-state response of the system for β = 0.125
is depicted in Fig. 19, in which the unstable branch begins
at a first type Hopf bifurcation at γ = 0.975992 followed
by other two first type Hopf bifurcations γ = 0.976041
and 0.976057. Specially, the first type Hopf bifurcation at
γ = 0.97966 is close to the first type saddle-node at
γ = 0.97967 at which the frequency begins to turn back.
After passing through three second type Hopf bifurcations

Fig. 12 Periodic vibration of the structure for k = 5600 kN/m3. a The time history. b The enlargement of the time history. c The phase portrait.
d The Poincaré map
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Fig. 13 Periodic vibration of the energy sink for k = 5600 kN/m3. a The time history. b The enlargement of the time history. c The phase portrait.
d The Poincaré map

at γ = 0.971772, 0.969014, 0.959331 and a second type
saddle-node bifurcation at γ = 0.971772, this branch ends in
a saddle-node bifurcation at γ = 0.90675. The second unsta-
ble branch begins with a Hopf bifurcation at γ = 0.978154
followed by a first type Hopf bifurcation γ = 0.983675 and
a first type saddle-node γ = 0.988493 with increase of fre-
quency, then it undergoes two second type Hopf bifurcation
γ = 0.987772 and γ = 0.987497, and finally ends at a sec-
ond type saddle-node bifurcation γ = 0.987465. The third
unstable branch begins with a first type Hopf bifurcation at
γ = 0.99439 followed by another first type Hopf bifurca-
tion at γ = 0.994868, then undergoes two first type Hopf
bifurcations γ = 1.004820 and γ = 1.091698 followed
by a first type saddle-node bifurcation γ = 0.987772, and
finally comes three close second type Hopf bifurcations at
γ = 1.031755, 1.031695, 1.031666 and another second type
Hopf bifurcation γ = 1.030376 followed by the ending sec-
ond type saddle-node bifurcation at γ = 1.030375 where

the frequency turns back. Figure20 shows the amplitude-
frequency response curve of the steady-state response for
β = 1.25. It is different from the curves in Figs. 18 and 19.
There are two circle folds appearing between γ = 0.984
and γ = 0.992, and there are six unstable branches with
increasing frequency. The first unstable branch begins with
the first type Hopf bifurcation at γ = 0.900389 followed by
two other first type Hopf bifurcations at γ = 0.900527 and
γ = 0.900662, then it undergoes a first type saddle-node
bifurcation at γ = 0.903502 where the frequency starts to
turn back to a first type Hopf bifurcation at γ = 0.903499,
further on appears three second type Hopf bifurcations at
γ = 0.886521, 0.885569, 0.880612, and then comes a sec-
ond type saddle-node bifurcation at γ = 0.427613 where
the frequency changes to go forward followed by the ending
second type Hopf bifurcation at γ = 0.519692. The second
unstable branch begins with a first type Hopf bifurcation at
γ = 0.966910 and ends with a second type Hopf bifurca-
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Fig. 14 Chaotic motion of the structure for k = 14,400 kN/m3. a The time history. b The amplitude spectrum. c The phase portrait. d The Poincaré
map

tion at γ = 0.986591. The third unstable branch begins with
a first type Hopf bifurcation at γ = 0.987291 followed by
another first type Hopf bifurcation at γ = 0.987311, then
it undergoes a second type saddle-node at γ = 0.987311
where the frequency turns back, and gets to a second type
Hopf bifurcation at γ = 0.984231 followed by the end-
ing second type saddle-node at γ = 0.984218. The fourth
unstable branch begins with a first type Hopf bifurcation at
γ = 0.990820 followed by another first type Hopf bifur-
cation at γ = 0.990837, then it undergoes a second type
saddle-node bifurcation at γ = 0.991051 followed by a sec-
ond type Hopf bifurcation at γ = 0.991031, then it goes
through a first type Hopf bifurcation at γ = 0.990598, a sec-
ond type Hopf bifurcation at γ = 0.990586 and a first type
Hopf bifurcation at γ = 0.990583, gets to a second type
saddle-node bifurcation at γ = 0.990563, and finally ends
with a second type Hopf bifurcation at γ = 0.990566. The
fifth unstable branch begins with a first type Hopf bifurca-

tion at γ = 0.990662, and ends with a second type Hopf
bifurcation at γ = 0.998331. The sixth unstable branch
beginswith a first typeHopf bifurcation at γ = 1.057548 fol-
lowed by three first type Hopf bifurcations at γ = 1.065659,
1.085802, 1.244552, goes through a first type saddle-node
bifurcation at γ = 1.338758 where the frequency turns
back, and then undergoes a second type Hopf bifurcation
at γ = 1.084814 followed by a second type double Hopf
bifurcation at γ = 1.084431 and another second type Hopf
bifurcation at γ = 1.082393, and finally ends with a second
type saddle-node bifurcation at γ = 1.082393.

Figures21–23 show the amplitude-frequency response
curves of the steady-state response for different mass ratio
λ while ω0 = 28.8675 rad/s, β = 1.25, ς0 = 0.0017,
ς = 0.0017, and f = 0.01. There are six unstable branches
by increasing the frequency in each figure. In Fig. 21 with
λ = 160, the six unstable branches begin with the first type
Hopf bifurcations at γ = 0.807063, 0.969513, 0.992771,
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Fig. 15 Chaotic motion of the energy sink for k = 14,400 kN/m3. a The time history. b The amplitude spectrum. c The phase portrait. d The
Poincaré map

Fig. 16 The amplitude-frequency curves of the energy sink based on
different order harmonic balance solutions

Fig. 17 Comparison of the amplitude-frequency curve of the energy
sink based on the analytical and numerical methods
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Fig. 18 The amplitude-frequency response curve of the steady-state
response for β = 0.0125. a The structure. b The nonlinear energy sink

1.001971, 1.000845, 1.108926, respectively. The fourth and
the sixth unstable branches end with the second type saddle-
node bifurcations at γ = 1.000331 and γ = 1.126458. The
other unstable branches end with the second type Hopf bifur-
cations at γ = 0.742804, 0.992097, 0.990458, 1.019081. In
Fig. 22 with λ = 63.1579, two circles of the third and the
fourth unstable branches are even more visible than those in
Fig. 21. The six unstable branches begin with the first type
Hopf bifurcations at γ = 0.880777, 0.969011, 0.989561,
0.994257, 0.993705, 1.071969, respectively. The third and
the sixth unstable branches end with the second type saddle-
node bifurcations at γ = 0.986711 and γ = 1.091146. The
other unstable branches end with the second type Hopf bifur-
cation at γ = 0.584962, 0.988919, 0.993511, 1.004267.
Notably, in Fig. 23 with λ = 30, the first and the second
unstable branches are very close to each other. In addition,
the unstable branches are much more visible than that of in
Figs. 20 and 21. The unstable branches begin with the first
typeHopf bifurcation at γ = 0.332037, 0.928011, 0.959560,
0.981319, 0.982807, 1.025976, respectively. The first, the

Fig. 19 Amplitude-frequency response curve of the steady-state
response with β = 0.125. a The structure. b The nonlinear energy
sink

fourth and the sixth unstable branches end at the second
type saddle-node bifurcations at γ = 0.112208, 0.977563,
1.069976. The other unstable branches end with the second
Hopf bifurcations at γ = 0.387639, 0.980444, 0.985522.

5 Conclusions

The investigation treats steady-state response in forced vibra-
tion of a periodically excited linear structure coupled with a
nonlinear energy sink. The global bifurcations are numer-
ically examined via the Poincaré map. Phase trajectories
power spectra and Poincaré maps are used to identify
dynamical behaviors. For periodic steady-state response,
the harmonic balance method is applied to determine the
amplitude-frequency response curves and their stabilities.
Especially theHopf bifurcations and the saddle-node bifurca-
tions in the response are located. The investigation finds that
a nonlinear energy sink may introduce dynamic complexity.
The dynamic complexity lies in the following aspects:
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Fig. 20 Amplitude-frequency response curve of the steady-state
response with β = 1.25. a The structure. b The nonlinear energy sink

Fig. 21 Amplitude-frequency response curve of the steady-state
response with λ = 160. a The structure. b The nonlinear energy sink

Fig. 22 Amplitude-frequency response curves of the steady-state
response with λ = 63.1579. a The structure. b The nonlinear energy
sink

Fig. 23 Amplitude-frequency response curve of the steady-state
response with λ = 30. a The structure. b The nonlinear energy sink
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(1) Chaotic motion may occur. Actually, the bifurcation dia-
grams reveal that the responses of the structure and the
energy sink are periodic except a few bursts of chaotic
motions.

(2) The dynamic behaviors of the structure may be different
from those of the nonlinear energy sink for appropriate
parameters.

(3) Even for the periodic steady-state responses, their ampli-
tude-frequency response curves look complicated. There
are more unstable portions defined by the Hopf bifurca-
tions or the saddle-node bifurcations.
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Appendix A

The nonlinear algebraic equations of the harmonic
balance up to order 5

−3/4βa211b32 + 3/4βa211b31 + 3/2βa251b11 − 3/2βa251b12

− 9/4βb211b12 + 9/4βb11b
2
12 − 3/4βa211b12 + 3/4βa211b11

+ 3/4βa212b11 − 3/4βa212b12 − 3/2βa252b12 + 3/2βa252b11

− 3/4βb212b31 + 3/4βb211b32 − 3/4βb211b31 + 3/4βa212b31

− 3/4βa212b32 − 3/2βb12b
2
51 − 3/2βb12b

2
52 − γ (ζ ) a11

− γ ζ0a11 + 3/2βb11b
2
52 + 3/2βb11b

2
51 + 3/2βb11b

2
32

+ 3/2βb11b
2
31 − 3/4βa232b51 + 3/4βa232b52

− 3/2βa232b12 + 3/4βa231b52 + 3/2βa232b11 − 3/2βa231b12

−3/4βa231b51 + 3/2βa231b11 + 3/2βa32a51b11
− 3/2βa32a51b12 − 3/2βa32a52b11 + 3/2βa32a52b12
− 3/2βa32a51b31 + 3/2βa32a51b32 + 3/2βa32a52b31
+ 3/4βb212b32 − 3/2βa32a52b32 + 3/2βa31a52b32
− 3/2βa31a52b12 − 3/2βa31a52b31 − 3/2βa31a51b32
+ 3/2βa31a52b11 − 3/2βa31a32b52 + 3βa31a32b12
+ 3/2βa31a32b51 − 3/4βb232b52 + 3/2βa31a51b12

+ 3/2βa31a51b31 − 3/2βa31a51b11 + 3/4βb232b51

− 3/4βb231b52 + 3/4βb231b51 − 3/2βb12b
2
32

− 3/2βb12b
2
31 − 3βb11b51b52 + 3βb12b31b32

+ 3/2βb12b31b51 − 3/2βb12b31b52 − 3/2βb12b32b51
+ 3/2βb12b32b52 + 3βb12b51b52 − 3/2βb31b32b51
+ 3/2βb31b32b52 − 3/2βb11b32b52 − 3/2βa11a12b11
+ 3/2βa11a12b12 − 3/2βa11a12b31 + 3/2βa11a12b32
− 3/2βa11a31b11 + 3/2βa11a31b12 + 3/2βa11a31b51
− 3/2βa11a31b52 + 3/2βa11a32b11 − 3/2βa11a32b12
−3βa51a52b11 + 3βa51a52b12 + 3/2βb11b12b31
− 3/2βb11b12b32 + b11 + 3/2βa12a52b32 − 3/2βa12a52b31
+ 3/2βa12a51b31 − 3/2βa12a51b32 + 3/2βa12a32b51

− 3/2βa12a32b52 + 3/2βa12a31b52 − 3/2βa12a31b51
+ 3/2βa11a52b31 − 3/2βa11a52b32 + 3/2βb11b32b51
− 3/2βa11a32b51 + 3/2βa11a32b52 − 3/2βa11a51b31
+ 3/2βa11a51b32 − 3/2βb11b31b51 + 3/2βb11b31b52
+ 3/4βb311 − b11γ

2 − 3/4βb312 − 3/2βa12a32b11
+ 3/2βa12a32b12 − 3βb11b31b32 + 3/2βa12a31b11
− 3/2βa12a31b12 − 3βa31a32b11 = 0,

f − 3/2βa11a31a52 − 3/2βa11a32a51 + 3/2βa52b11b31
− 3/2βa52b11b32 − 3/2βa52b12b31 + 3/2βa11a32a52
+ 3βa12b31b32 + 3/2βa11a12a32 − 3/2βa32b32b52
− 3/2βa51b11b31 + 3/2βa51b11b32 + 3/2βa51b12b31
− 3/2βa51b12b32 + 3/2βa51b31b32 + 3/2βa52b12b32
−3/2βa52b31b32 − 3/2βa11a12a31 − 3βa11a31a32
+ 3/2βa12b31b52 − 3/2βa12b31b51 + 3βa12b51b52
+ 3/2βa12b32b51 − 3/2βa12b32b52 + 3/2βa11a31a51
− 3/2βa31a32a51 + 3/2βa31a32a52 + 3/2βa31b11b12
+ 3/2βa31b11b51 − 3/2βa31b11b52 − 3/2βa31b12b51
+ 3/2βa31b12b52 + 3/2βa31b31b51 − 3/2βa31b31b52
− 3/2βa31b32b51 + 3/2βa31b32b52 − 3/2βa32b11b12
− 3/2βa32b11b51 + 3/2βa32b11b52 + 3/2βa32b12b51
− 3/2βa32b12b52 − 3/2βa32b31b51 + 3/2βa32b31b52
− 3βa11a51a52 − 3/2βa11b11b12 + 3/2βa11b11b31
− 3/2βa11b11b32 − 3/2βa11b12b31 + 3/2βa11b12b32
+ a11 + γ ζ0b11 + γ (ζ ) b11 + 3βa12a31a32
− 3βa11b31b32 + 3/2βa12b11b32 − 3/2βa12b11b31
+ 3/2βa12b12b31 + 3/2βa12b11b12 − 3/2βa12a32a52
+ 3βa12a51a52 − 3/2βa12a31a51 + 3/2βa12a31a52
+ 3/2βa12a32a51 − 3/2βa11b32b51 + 3/2βa11b32b52
− 3βa11b51b52 − 3/4βa212a32 + 3/4βa212a31
+ 3/4βa52b

2
31 + 3/2βa11b

2
51 + 3/2βa11b

2
52 + 3/4βa52b

2
32

+ 3/2βa11b31b51 − 3/2βa11b31b52 − 3/2βa12b12b32
+ 3/2βa32b32b51 − 3/2βa12b

2
51 − 3/2βa12b

2
52

+ 3/4βa231a51 − 3/4βa231a52 − 3/4βa31b
2
11 − 3/4βa31b

2
12

+ 3/4βa232a51 − 3/4βa232a52 + 3/4βa32b
2
11 + 3/4βa32b

2
12

− 3/4βa51b
2
31 − 3/4βa51b

2
32 − 3/2βa12b

2
31 − 3/2βa12b

2
32

− 3/2βa12a
2
51 − 3/2βa12a

2
52 − 3/4βa12b

2
11 − 3/4βa12b

2
12

+ 3/4βa211a31 + 9/4βa11a
2
12 + 3/2βa11a

2
31 − 3/4βa211a32

− 9/4βa211a12 + 3/2βa11a
2
51 + 3/2βa11a

2
52 + 3/4βa11b

2
11

+3/4βa11b
2
12 + 3/2βa11b

2
31 + 3/2βa11b

2
32 − 3/2βa12a

2
31

−3/2βa12a
2
32 + 3/2βa11a

2
32 + 3/4βa311 − 3/4βa312

− a11γ
2 = 0,

−3/2βa51b51b52 + 3/2βa11b31b32 − 3/2βa32b12b32
− 3/2βa32b11b12 + 3/2βa11a12a32 + 3/2βa32b12b31
− 3/2βa11a12a31 + 3/2βa31b11b12 − 3βa51b31b32
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+3βa52b31b32 − 3/2βa11a31a32 − 3/2βa12b31b32
− 3βa31a32a51 + 3βa31a32a52 − 3/2βa11b11b31
+ 3/2βa11b11b32 + 3/2βa11b12b31 − 3/2βa11b12b32
+3/2βa12a31a32 + 3/2βa12b11b31 − 3/2βa12b11b32
− 3/2βa12b12b31 + 3/2βa32b11b32 + 3/2βa12b12b32
− 3/2βa32b11b31 + 3βa52b11b12 + 3/2βa51b

2
12

− 3/2βa52b
2
11 − 3/2βa52b

2
12 + 3/2βa212a51

+ 3/2βa211a51 − 3/2βa211a52 + a51 − 3/2βa52b
2
31

− 3/2βa52b
2
32 + 3/4βa51b

2
51 + 9/4βa51a

2
52 + 3/4βa51b

2
52

− 3/4βa52b
2
51 − 3/4βa52b

2
52 + 5γ (ζ ) b51 + 5γ ζ0b51

− 9/4βa251a52 − 3/2βa212a52 − 3/4βa212a32 + 3/4βa212a31
+ 3/2βa51b

2
11 − 3βa51b11b12 − 3βa11a12a51

+ 3βa11a12a52 + 3/2βa52b51b52 + 3/2βa31b11b31
− 3/2βa31b11b32 − 3/2βa31b12b31 + 3/2βa31b12b32
+ 3/2βa231a51 − 3/2βa231a52 − 3/4βa31b

2
11 − 3/4βa31b

2
12

+ 3/2βa232a51 − 3/2βa232a52 + 3/4βa32b
2
11

+ 3/4βa32b
2
12 + 3/2βa51b

2
31 + 3/2βa51b

2
32 + 3/4βa12b

2
31

+ 3/4βa12b
2
32 + 3/4βa211a31 + 3/4βa11a

2
31

− 3/4βa211a32 − 3/4βa11b
2
31 − 3/4βa11b

2
32 − 3/4βa12a

2
31

− 3/4βa12a
2
32 + 3/4βa11a

2
32 + 3/4βa351 − 3/4βa352

− 25a51γ
2 = 0,

3/2βa252b31 + 3/2βa11a52b11 − 3/2βa11a52b12
+ 3/2βa12a51b11 − 3/2βa12a51b12 + 3/2βb11b12b51
− 3/2βb11b12b52 − 3βb31b51b52 + 3βb32b51b52
− 3/2βa12a52b11 + 3/2βa12a52b12 − 3/2βa31a32b31
+ 3/4βa211b51 + 3/4βa212b51 − 3/4βa212b52 − 3/4βa211b52
+ 3/2βa251b31 − 3/2βa251b32 − 3/2βa252b32 − 3/4βb211b51
+ 3/2βa31a32b32 − 3βa51a52b31 + 3βa51a52b32
− 3/2βa11a12b51 + 3/2βa11a12b52 − 3/2βa11a51b11
+ 3/2βa11a51b12 − 3/2βa211b32 + 3/2βa211b31 + 3/4βb211b12
− 3/4βb11b

2
12 − 3/4βa211b12 + 3/4βa211b11 + 3/4βa212b11

− 3/4βa212b12 + 3/2βa31a51b11 − 3/2βa31a51b12
+ 3/2βb212b31 − 3/2βb211b32 + 3/2βb211b31 + 3/2βa212b31
− 3/2βa212b32 − 3γ (ζ ) a31 − 3γ ζ0a31 − 3/2βb32b

2
52

+ 3/4βa231b31 + 3/4βa232b31 − 3/4βa232b32 + 3/2βb31b
2
51

+ 3/2βb31b
2
52 + 3/4βb212b52 + 3/4βb211b52 − 3/4βb212b51

− 3/4βa231b32 + 9/4βb31b
2
32 − 9/4βb231b32 − 3/2βb32b

2
51

− 3/2βb212b32 − 3/2βa31a52b11 + 3/2βa31a52b12
− 3/2βa32a51b11 + 3/2βa32a51b12 + 3/2βa32a52b11
− 3/2βa32a52b12 − 3/2βb12b31b51 + 3/2βb12b31b52
+ 3/2βb12b32b51 − 3/2βb12b32b52 + 3/2βb11b32b52
− 3/2βa11a12b11 + 3/2βa11a12b12 − 3βa11a12b31
+ 3βa11a12b32 + 3/2βa11a31b51 − 3/2βa11a31b52
− 3βb11b12b31 + 3βb11b12b32 + 3/2βb11b31b51
− 3/2βb11b31b52 − 3/2βb11b32b51 − 3/2βa11a32b51

+3/2βa11a32b52 − 3/2βa11a51b31 + 3/2βa11a51b32
+ 3/2βa11a52b31 − 3/2βa11a52b32 − 3/2βa12a31b51
+ 3/2βa12a31b52 + 3/2βa12a32b51 − 3/2βa12a32b52
+ 3/2βa12a51b31 − 3/2βa12a51b32 − 3/2βa12a52b31
+ 3/2βa12a52b32 + b31 − 3/4βb332 + 3/4βb331
− 9b31γ

2 + 1/4βb312 − 1/4βb311 = 0,

−3/2βa11a31a52 − 3/2βa11a32a51 − 3/2βa31b12b52
− 3/2βa52b11b31 + 3/2βa52b11b32 + 3/2βa52b12b31
+ 3/2βa11a32a52 + 3βa32b11b12 + 3/2βa32b11b51
+ 3βa11a12a32 + 3/2βa51b11b31 − 3/2βa51b11b32
− 3/2βa51b12b31 + 3/2βa51b12b32 + 3/2βa31b11b52
− 3/2βa52b12b32 − 3βa11a12a31 + 3/2βa12b31b52
− 3/2βa12b31b51 + 3/2βa12b32b51 − 3/2βa12b32b52
+ 3/2βa11a31a51 + 3/2βa31b12b51 − 3/2βa31b11b51
− 3βa31b11b12 − 3/2βa32b11b52 − 3/2βa32b12b51
+ 3/2βa32b12b52 + 3/2βa11b11b12 + 3/2βa11b31b51
− 3/2βa11b31b52 − 3/2βa11b32b51 + 3/2βa11b32b52
− 3/2βa12a31a51 + 3/2βa12a31a52 + 3/2βa12a32a51
− 3/2βa12a32a52 − 3/2βa12b11b12 − 3/2βa12b11b51
+ 3/2βa12b11b52 + 3/2βa12b12b51 − 3/2βa12b12b52
− 3βa31a51a52 − 3/2βa52b11b12 − 3/2βa31b31b32
− 3βa31b51b52 + 3βa32a51a52 + 3/2βa32b31b32
+ 3βa32b51b52 − 3/4βa51b

2
12 + 3/4βa52b

2
11 + 3γ ζ0b31

+ 3/4βa52b
2
12 + 3/4βa212a51 + 3γ (ζ ) b31 + 3/4βa211a51

− 3/4βa211a52 − 3/2βa32a
2
51 − 9/4βa231a32

− 3/4βa212a52 + 3/2βa11b12b52 + 3/2βa51b11b12
− 3/2βa11a12a51 + 3/2βa11a12a52 + 3/2βa11b11b51
− 3/2βa11b11b52 − 3/2βa11b12b51 − 3/2βa32b

2
51

− 3/2βa32b
2
52 − 3/2βa32a

2
52 − 3/4βa32b

2
31 − 3/4βa32b

2
32

+ 3/4βa31b
2
31 + 3/4βa31b

2
32 + 3/2βa31b

2
52 + 3/2βa31a

2
51

+ 9/4βa31a
2
32 + 3/2βa31b

2
51 + 3/2βa31a

2
52 − 3/4βa51b

2
11

+ a31 + 3/2βa212a31 − 3/2βa212a32 + 3/2βa31b
2
11

+ 3/2βa31b
2
12 − 3/2βa32b

2
11 − 3/2βa32b

2
12 + 3/4βa12b

2
11

+ 3/4βa12b
2
12 + 3/2βa211a31 + 3/4βa11a

2
12 − 3/2βa211a32

− 3/4βa211a12 − 3/4βa11b
2
11 − 3/4βa11b

2
12 + 3/4βa331

− 3/4βa332 − 9a31γ
2 + 1/4βa311 − 1/4βa312 = 0,

−3βa11a12b51 + 3βa11a12b52 − 3βb11b12b51
+ 3βb11b12b52 + 3/2βa11a31b31 + 3/2βa211b51
+ 9/4βb51b

2
52 − 5γ ζ0a51 + 3/4βa251b51 − 3/4βa251b52

+ 3/2βa51a52b52 − 3/2βa12a32b32
−3/2βa51a52b51 − 3/2βa12a31b31 + 3/2βa12a31b32
+ 3/2βa12a32b31 − 3/2βa11a31b32 − 3/2βa11a32b31
+ 3/2βa11a32b32 − 5γ (ζ ) a51

+ 3/2βa212b51 + 3/4βa252b51 − 3/4βa252b52 − 9/4βb251b52
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+ 3/2βb211b51 − 3/2βb211b52 + 3/2βb212b51
− 3/2βa212b52 − 3/2βa211b52 + 3/2βb12b31b32 − 3/4βa211b32
+ 3/4βa211b31 − 3/2βa31a32b12 − 3/4βb212b31
+ 3/4βb211b32 − 3βa31a32b51 − 3/4βb211b31 + 3/4βa212b31
− 3/4βa212b32 + 3βa31a32b52 − 3βb31b32b51 − 3/2βb212b52
− 3/4βb12b

2
32 − 3/4βb12b

2
31 + 3/2βb232b51

− 3/2βb232b52 + 3/2βb231b51 − 3/2βb231b52 + 3/4βb11b
2
32

+ 3/4βb11b
2
31 − 3/2βa232b52 + 3/2βa231b51

− 3/4βa232b11 + 3/2βa232b51 + 3/4βa232b12 − 3/2βa231b52
− 3/4βa231b11 + 3/4βa231b12 + 3/4βb212b32
+ 3βb31b32b52 − 3/2βa11a12b31 + 3/2βa11a12b32
+ 3/2βa11a31b11
− 3/2βa11a31b12 − 3/2βa11a32b11 + 3/2βa11a32b12
+ 3/2βb11b12b31 − 3/2βb11b12b32 − 3/2βb11b31b32
− 3/2βa12a31b11 + 3/2βa12a31b12 + 3/2βa12a32b11
− 3/2βa12a32b12 + 3/2βa31a32b11 + b51 − 3/4βb352
+ 3/4βb351 − 25b51γ

2 = 0,

−b12γ
2 − 3/2βλa12a51b31 + 3/2βλa12a51b32

+3/2βλa12a52b31 − 3/2βλa12a52b32 + 3βλa31a32b11

− 3βλa31a32b12 − 3/2βλa31a32b51 + 3/2βλa31a32b52

+ 3/2βλa31a51b11 − 3/2βλa31a51b12 − 3/2βλa31a51b31

+ 3/2βλa31a51b32 − 3/2βλa31a52b11 + 3/2βλa31a52b12

+3/2βλa31a52b31 − 3/2βλa31a52b32 − 3/2βλa32a51b11

+ 3/2βλa32a51b12 − 3/2βλa32a51b32 + 3/2βλa32a52b11

−3/2βλa32a52b12 − 3/2βλa32a52b31 + 3/2βλa32a52b32

+ 3βλa51a52b11 − 3βλa51a52b12 − 3/2βλb11b12b31

+3/2βλb11b12b32 + 3βλb11b31b32 + 3/2βλb11b31b51

− 3/2βλb11b31b52 − 3/2βλb11b32b51 + 3/2βλb11b32b52

+ 3βλb11b51b52 − 3βλb12b31b32 − 3/2βλb12b31b51

+ 3/2βλb12b31b52 + 3/2βλb12b32b51 − 3/2βλb12b32b52

− 3βλb12b51b52 + 3/2βλb31b32b51 − 3/2βλb31b32b52

− 3/2βλa11a12b32 + 3/2βλa32a51b31 + 3/2βλa11a12b11

− 3/2βλa11a12b12 + 3/2βλa11a12b31 + 3/2βλa11a31b11

− 3/2βλa11a31b12 − 3/2βλa11a31b51 + 3/2βλa11a31b52

− 3/2βλa11a32b11 + 3/2βλa11a32b12 + 3/2βλa11a32b51

− 3/2βλa11a32b52 + 3/2βλa11a51b31 − 3/2βλa11a51b32

− 3/2βλa11a52b31 + 3/2βλa11a52b32 − 3/2βλa12a31b11

+ 3/2βλa12a31b12 + 3/2βλa12a31b51 − 3/2βλa12a31b52

+ 3/2βλa12a32b11 − 3/2βλa12a32b12 − 3/2βλa12a32b51

+ 3/2βλa12a32b52 − 3/2βλa252b11 + 3/2βλa252b12

+ 9/4βλb211b12 + 3/4βλa212b32 − 3/2βλa231b11

+ 3/2βλa231b12 + 3/4βλa231b51 − 3/4βλa231b52

− 3/2βλa251b11 + 3/2βλa251b12 + 3/4βλb212b31

+ 3/2βλb12b
2
31 − 3/2βλa232b11 + 3/2βλa232b12 + 3/4βλa232b51

−3/4βλa232b52 − 3/2βλb11b
2
31 + 3/4βλb232b52 − 3/2βλb11b

2
32

+3/2βλb12b
2
51 − 9/4βλb11b

2
12 + 3/2βλb12b

2
32

− 3/2βλb11b
2
51 − 3/2βλb11b

2
52 − 3/4βλb212b32

+ 3/4βλb211b31

− 3/4βλb211b32 + 3/2βλb12b
2
52 − 3/4βλb231b51

+ 3/4βλb231b52 − 3/4βλb232b51 − 3/4βλa211b11

+3/4βλa211b12

− 3/4βλa211b31 + 3/4βλa211b32 − 3/4βλa212b11

+3/4βλa212b12 − 3/4βλa212b31 − 3/4βλb311
+ 3/4βλb312
+ γ λζa11 − γ λζa12 = 0,

3/2βλa12a
2
32 + 3/2βλa12a

2
51 + 3/2βλa12a

2
52

+ 3/4βλa12b
2
11 + 3/4βλa12b

2
12 − 3/2βλa11b

2
31

− 3/4βλa11b
2
12 − 3/2βλa11a

2
52 − 3/4βλa11b

2
11

− 3/2βλa11a
2
32 − 3/2βλa11a

2
51 − 9/4βλa11a

2
12

− 3/2βλa11a
2
31 − 3/4βλa211a31 + 3/4βλa211a32

− 3/4βλa231a51 + 3/4βλa231a52 + 3/4βλa31b
2
11

+ 9/4βλa211a12 − 3/2βλa11b
2
52 − 3/4βλa212a31

+ 3/2βλa12b
2
31 + 3/2βλa12b

2
32 + 3/2βλa12b

2
51

+ 3/2βλa12b
2
52 − 3/2βλa11b

2
32 − 3/2βλa11b

2
51 − a12γ

2

− 3/4βλa52b
2
32 + 3/4βλa51b

2
32

− 3/4βλa52b
2
31 + 3/4βλa31b

2
12 − 3/4βλa232a51

+ 3/4βλa232a52 − 3/4βλa32b
2
11 − 3/4βλa32b

2
12

+ 3/4βλa51b
2
31 + 3/4βλa212a32 + 3/2βλa12a

2
31

+ 3/2βλa32b31b51 − 3/2βλa32b31b52 − 3/2βλa32b32b51
+ 3/2βλa32b32b52 + 3/2βλa51b11b31 − 3/2βλa51b11b32
− 3/2βλa51b12b31 + 3/2βλa51b12b32 − 3/2βλa51b31b32
− 3/2βλa52b11b31 + 3/2βλa52b11b32 − γ λζb11
+ γ λζb12 + 3/4βλa312 − 3/4βλa311 + 3/2βλa52b12b31
− 3/2βλa52b12b32 + 3/2βλa52b31b32 + 3/2βλa11a32a51
− 3/2βλa11a32a52 + 3βλa11a51a52 + 3/2βλa11b11b12
− 3/2βλa11b11b31 + 3/2βλa11b11b32 + 3/2βλa11b12b31
− 3/2βλa11b12b32 + 3βλa11b31b32 − 3/2βλa11b31b51
+ 3/2βλa11b31b52 + 3/2βλa11b32b51 − 3/2βλa11b32b52
+ 3βλa11b51b52 − 3βλa12a31a32 + 3/2βλa12a31a51
− 3/2βλa12a31a52 − 3/2βλa12a32a51 + 3/2βλa12a32a52
−3βλa12a51a52 − 3/2βλa12b11b12 + 3/2βλa12b11b31
− 3/2βλa12b11b32 − 3/2βλa12b12b31 + 3/2βλa12b12b32
+3/2βλa12b31b51 − 3/2βλa12b31b52 − 3/2βλa12b32b51
+ 3/2βλa12b32b52 − 3βλa12b51b52 + 3/2βλa31a32a51
− 3/2βλa31a32a52 − 3/2βλa31b11b12 − 3/2βλa31b11b51
+ 3/2βλa31b11b52 + 3/2βλa31b12b51 − 3/2βλa31b12b52
− 3/2βλa31b31b51 + 3/2βλa31b31b52 + 3/2βλa31b32b51
− 3/2βλa31b32b52 + 3/2βλa32b11b12 + 3/2βλa32b11b51
− 3/2βλa32b11b52 − 3/2βλa32b12b51 + 3/2βλa32b12b52
− 3βλa12b31b32 + 3/2βλa11a12a31 − 3/2βλa11a12a32
+ 3βλa11a31a32 − 3/2βλa11a31a51 + 3/2βλa11a31a52 = 0,

123
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−9b32γ
2 − 3/2βλa12a51b31 + 3/2βλa12a51b32

+ 3/2βλa12a52b31 − 3/2βλa12a52b32 − 3/2βλa31a51b11
+ 3/2βλa31a51b12 + 3/2βλa31a52b11 − 3/2βλa31a52b12
+ 3/2βλa32a51b11 − 3/2βλa32a51b12 − 3/2βλa32a52b11
+ 3/2βλa32a52b12 + 3βλb11b12b31 − 3βλb11b12b32
− 3/2βλb11b31b51 + 3/2βλb11b31b52 + 3/2βλb11b32b51
− 3/2βλb11b32b52 + 3/2βλb12b31b51 − 3/2βλb12b31b52
− 3/2βλb12b32b51 + 3/2βλb12b32b52 − 3βλa11a12b32
+ 3/2βλa11a12b11 − 3/2βλa11a12b12 + 3βλa11a12b31
− 3/2βλa11a31b51 + 3/2βλa11a31b52 + 3/2βλa11a32b51
− 3/2βλa11a32b52 + 3/2βλa11a51b31 − 3/2βλa11a51b32
− 3/2βλa11a52b31 + 3/2βλa11a52b32 + 3/2βλa12a31b51
− 3/2βλa12a31b52 − 3/2βλa12a32b51 + 3/2βλa12a32b52
+ 3/2βλa212b32 − 3/4βλb211b12 − 3/2βλb211b31
+ 3/2βλb211b32 + 3/4βλb11b

2
12 − 3/2βλb212b31

+ 3/2βλb212b32 − 9/4βλb31b
2
32 − 3/4βλb211b52

− 3/2βλb31b
2
51 − 3/4βλb212b52 + 9/4βλb231b32

− 3/2βλa212b31 + 3/4βλb211b51 − 3/2βλa252b31
+ 3/2βλa252b32 + 3/4βλb212b51 + 3/4βλa211b52
− 3/4βλa212b51 + 3/4βλa212b52 − 3/4βλa211b51
− 3/4βλa232b31 − 3/4βλa231b31 + 3/4βλa231b32
+ 3/2βλa211b32 − 3/4βλa212b11 + 3/4βλa212b12
− 3/4βλa211b11 + 3/4βλa211b12 − 3/2βλa211b31
+ 3/2βλa251b32 + 3/4βλa232b32 − 3/2βλa251b31
+ 1/4βλb311 − 1/4βλb312 − 3/4βλb331 − 3/2βλb31b

2
52

+ 3/2βλb32b
2
51 + 3/2βλb32b

2
52 + 3/2βλb11b12b52

− 3/2βλb11b12b51 − 3βλa51a52b32 + 3βλa51a52b31
− 3/2βλa31a32b32 + 3/2βλa31a32b31 − 3/2βλa12a52b12
+ 3/2βλa12a52b11 + 3/2βλa12a51b12 − 3/2βλa12a51b11
+ 3/2βλa11a52b12 − 3/2βλa11a52b11 − 3/2βλa11a51b12
+ 3/2βλa11a51b11 + 3/2βλa11a12b51 − 3/2βλa11a12b52
+ 3βλb31b51b52 − 3βλb32b51b52 + 3/4βλb332 − 3γ λζa32
+ 3γ λζa31 = 0,

−3/4βλa12b
2
11 − 3/4βλa12b

2
12 + 3/4βλa11b

2
12

+ 3/4βλa11b
2
11 − 3/4βλa11a

2
12 − 3/2βλa211a31

+ 3/2βλa211a32 − 3/2βλa31b
2
11 + 3/4βλa211a12

− 9a32γ
2 − 3/2βλa31b

2
12 + 3/2βλa32b

2
11 + 3/2βλa32b

2
12

+ 3/2βλa212a32 − 3/2βλa212a31 + 3/4βλa51b
2
12

− 3/4βλa52b
2
11 − 3/4βλa52b

2
12 − 3/4βλa211a51

+ 3/4βλa211a52 − 3/4βλa212a51 + 3/4βλa212a52
− 3/4βλa31b

2
31 − 3/2βλa31a

2
52 − 3/4βλa31b

2
32

+ 9/4βλa231a32 − 9/4βλa31a
2
32 − 3/2βλa31a

2
51

− 3/2βλa32b31b32 + 3βλa31b51b52 − 3βλa32a51a52
+ 3/2βλa11b11b52 − 3/4βλa331 + 3/4βλa332
− 3γ λζb31 + 3γ λζb32 − 3βλa32b51b52 − 3/2βλa11a12a52

− 3/2βλa11b11b51 + 3/2βλa11b12b51 − 3/2βλa51b11b12
+ 3/2βλa11a12a51 + 3/4βλa51b

2
11 + 3/2βλa32a

2
52

+ 3/4βλa32b
2
31 + 3/4βλa32b

2
32 + 3/2βλa32b

2
51

+ 3/2βλa32b
2
52 + 3/2βλa31b31b32 − 3/2βλa31b

2
51

− 3/2βλa31b
2
52 + 3/2βλa32a

2
51 + 3/2βλa52b11b12

− 3/2βλa11b12b52 + 3/2βλa12b11b51 − 3/2βλa12b11b52
− 3/2βλa12b12b51 + 3/2βλa12b12b52 + 3βλa31a51a52
− 1/4βλa311 + 1/4βλa312 − 3/2βλa51b11b31
+ 3/2βλa51b11b32 + 3/2βλa51b12b31 − 3/2βλa51b12b32
+ 3/2βλa52b11b31 − 3/2βλa52b11b32 − 3/2βλa52b12b31
+ 3/2βλa52b12b32 + 3/2βλa11a32a51 − 3/2βλa11a32a52
− 3/2βλa11b11b12 − 3/2βλa11b31b51 + 3/2βλa11b31b52
+ 3/2βλa11b32b51 − 3/2βλa11b32b52 + 3/2βλa12a31a51
− 3/2βλa12a31a52 − 3/2βλa12a32a51 + 3/2βλa12a32a52
+ 3/2βλa12b11b12 + 3/2βλa12b31b51 − 3/2βλa12b31b52
− 3/2βλa12b32b51 + 3/2βλa12b32b52 + 3βλa31b11b12
+ 3/2βλa31b11b51 − 3/2βλa31b11b52 − 3/2βλa31b12b51
+ 3/2βλa31b12b52 − 3βλa32b11b12 − 3/2βλa32b11b51
+ 3/2βλa32b11b52 + 3/2βλa32b12b51 − 3/2βλa32b12b52
+ 3βλa11a12a31 − 3βλa11a12a32 − 3/2βλa11a31a51
+ 3/2βλa11a31a52 = 0,

−25b52γ
2 − 3/2βλa31a32b11 + 3/2βλa31a32b12

+ 3βλa31a32b51 − 3βλa31a32b52 − 3/2βλb11b12b31
+ 3/2βλb11b12b32 + 3/2βλb11b31b32 − 3/2βλb12b31b32
+ 3βλb31b32b51 − 3βλb31b32b52 − 3/2βλa11a12b32
+ 3/2βλa11a12b31 − 3/2βλa11a31b11 + 3/2βλa11a31b12
+ 3/2βλa11a32b11 − 3/2βλa11a32b12
+ 3/2βλa12a31b11 − 3/2βλa12a31b12 − 3/2βλa12a32b11
+ 3/2βλa12a32b12 − 3/2βλa11a31b31
+ 3/2βλa11a31b32 − 3/4βλb11b

2
32 − 3/4βλb11b

2
31

+ 3/2βλb232b52 + 3/4βλa212b32 − 3/2βλa232b51
+ 3/2βλa232b52 − 3/4βλa231b12 − 3/2βλa231b51
+ 3/2βλa231b52 + 3/4βλa232b11 − 3/4βλa232b12
+ 3/4βλa231b11 + 3/4βλb12b

2
31 + 3/4βλb12b

2
32

+ 3/4βλb212b31 − 3/2βλa51a52b52 + 3/2βλa51a52b51
− 3/2βλa12a32b31 + 3/2βλa12a32b32 + 3/2βλa12a31b31
− 3/2βλa12a31b32 + 3/2βλa11a32b31
− 3/2βλa11a32b32 − 3/4βλb212b32 + 3/4βλb211b31
− 3/4βλb211b32 − 3/4βλa251b51 + 3/4βλa251b52
− 3/4βλa252b51 + 3/4βλa252b52 + 3/2βλb211b52
+ 3/2βλb212b52 − 3/4βλa212b31 + 9/4βλb251b52
− 9/4βλb51b

2
52 − 5γ λζa52 − 3/2βλb211b51

− 3βλb11b12b52 + 3βλb11b12b51 + 3βλa11a12b51
− 3βλa11a12b52
− 3/2βλb212b51 + 3/2βλa211b52 − 3/2βλa212b51

123
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+ 3/2βλa212b52 − 3/2βλa211b51 + 3/4βλa211b32
− 3/4βλa211b31 − 3/2βλb231b51 + 3/2βλb231b52
− 3/2βλb232b51 + 5γ λζa51 − 3/4βλb351 + 3/4βλb352 = 0,

−3/4βλa211a31 + 3/4βλa211a32 + 3/4βλa31b
2
11

+ 3/2βλa52b
2
32 − 3/2βλa51b

2
32 + 3/2βλa52b

2
31

+ 3/4βλa31b
2
12 − 3/2βλa232a51 + 3/2βλa232a52

− 3/4βλa32b
2
11 − 3/4βλa32b

2
12 − 3/2βλa51b

2
31

+ 3/4βλa212a32 + 3/4βλa12a
2
31 − 3/4βλa212a31

− 3/2βλa51b
2
12 + 3/2βλa52b

2
11 + 3/2βλa52b

2
12

+ 3/4βλa11b
2
32 − 3/4βλa11a

2
32 + 3/4βλa11b

2
31

− 25a52γ
2 + 3/4βλa12a

2
32 − 3/4βλa12b

2
31

− 3/4βλa12b
2
32 − 3/2βλa231a51 + 3/2βλa231a52

− 3/4βλa11a
2
31 − 3/2βλa52b51b52 − 3/2βλa32b12b31

+ 3/2βλa32b12b32 + 3/2βλa51b51b52 + 3/2βλa31b12b31
− 3/2βλa31b11b31 − 3/2βλa31b12b32 + 3/2βλa32b11b31
− 3/2βλa211a51 + 3/2βλa211a52 − 3/2βλa212a51
+ 3/2βλa212a52 − 5γ λζb51 + 5γ λζb52 + 9/4βλa251a52
− 9/4βλa51a

2
52 + 3/4βλa352 − 3/4βλa351

− 3/4βλa51b
2
51 − 3/4βλa51b

2
52 + 3/4βλa52b

2
51

− 3/2βλa32b11b32 + 3/2βλa31b11b32 + 3/4βλa52b
2
52

− 3/2βλa51b
2
11 + 3βλa51b11b12 − 3βλa52b11b12

+ 3βλa11a12a51 − 3βλa11a12a52 + 3βλa51b31b32
− 3βλa52b31b32 + 3/2βλa11b11b31 − 3/2βλa11b11b32
− 3/2βλa11b12b31 + 3/2βλa11b12b32 − 3/2βλa11b31b32
− 3/2βλa12a31a32 − 3/2βλa12b11b31 + 3/2βλa12b11b32
+ 3/2βλa12b12b31 − 3/2βλa12b12b32 + 3βλa31a32a51
− 3βλa31a32a52 − 3/2βλa31b11b12 + 3/2βλa32b11b12
+ 3/2βλa12b31b32 + 3/2βλa11a12a31 − 3/2βλa11a12a32
+ 3/2βλa11a31a32 = 0. (A1)

Appendix B

The nonlinear differential-algebraic equations of the
harmonic balance up to order 3

− f − 3/2b11 (τ ) a12 (τ ) b32 (τ ) β + 3/2b11 (τ ) b12 (τ ) a32 (τ ) β

− 3a31 (τ ) a12 (τ ) a32 (τ ) β

− 3/2b31 (τ ) a12 (τ ) b12 (τ ) β − 3b31 (τ ) a12 (τ ) b32 (τ ) β

+ 3/2a12 (τ ) b12 (τ ) b32 (τ ) β

− 3/2a11 (τ ) b11 (τ ) b31 (τ ) β + 3/2a11 (τ ) b11 (τ ) b12 (τ ) β

+ 3/2a11 (τ ) b11 (τ ) b32 (τ ) β

+ 3/2a11 (τ ) a31 (τ ) a12 (τ ) β + 3a11 (τ ) a31 (τ ) a32 (τ ) β

+ 3/2a11 (τ ) b31 (τ ) b12 (τ ) β

+ 3a11 (τ ) b31 (τ ) b32 (τ ) β − 3/2a11 (τ ) a12 (τ ) a32 (τ ) β

− 3/2a11 (τ ) b12 (τ ) b32 (τ ) β

− 3/2b11 (τ ) a31 (τ ) b12 (τ ) β + 3/2b11 (τ ) b31 (τ ) a12 (τ ) β

− 3/2b11 (τ ) a12 (τ ) b12 (τ ) β

− 2

(
d

dτ
b11 (τ )

)
γ − 3/4 (a11 (τ ))3 β −

(
d

dτ
a11 (τ )

)
ζ0

+ a11 (τ ) γ 2 + 3/4 (a12 (τ ))3 β

−
(

d

dτ
a11 (τ )

)
(ζ ) + 3/2a12 (τ ) (a32 (τ ))2 β

+ 3/2a12 (τ ) (b32 (τ ))2 β − 3/4 (b12 (τ ))2 a32 (τ ) β

− γ b11 (τ ) (ζ ) − γ b11 (τ ) ζ0 − 3/4 (a11 (τ ))2 a31 (τ ) β

− 3/2a11 (τ ) (a32 (τ ))2 β − 3/4a11 (τ ) (b11 (τ ))2 β

+ 3/2 (a31 (τ ))2 a12 (τ ) β + 3/4 (b11 (τ ))2 a12 (τ ) β

+ 9/4 (a11 (τ ))2 a12 (τ ) β − 3/2a11 (τ ) (b32 (τ ))2 β

+ 3/4 (b11 (τ ))2 a31 (τ ) β − 3/4 (b11 (τ ))2 a32 (τ ) β

− 3/2a11 (τ ) (a31 (τ ))2 β − 3/2a11 (τ ) (b31 (τ ))2 β

− 9/4a11 (τ ) (a12 (τ ))2 β − 3/4a11 (τ ) (b12 (τ ))2 β

+ 3/4a31 (τ ) (b12 (τ ))2 β + 3/2 (b31 (τ ))2 a12 (τ ) β

+ 3/4 (a12 (τ ))2 a32 (τ ) β + 3/4a12 (τ ) (b12 (τ ))2 β

− 3/4a31 (τ ) (a12 (τ ))2 β + 3/4 (a11 (τ ))2 a32 (τ ) β

− a11 (τ ) − d2

dτ 2
a11 (τ ) = 0,

−3/4 (a11 (τ ))2 b11 (τ ) β − 3/4 (a11 (τ ))2 b31 (τ ) β

+ 3/4 (a11 (τ ))2 b12 (τ ) β + 3/4 (a11 (τ ))2 b32 (τ ) β

+ 3/4 (b11 (τ ))2 b31 (τ ) β + 9/4 (b11 (τ ))2 b12 (τ ) β

− 3/4 (b11 (τ ))2 b32 (τ ) β − 3/2b11 (τ ) (a31 (τ ))2 β

− 3/2b11 (τ ) (b31 (τ ))2 β − 3/4b11 (τ ) (a12 (τ ))2 β

− 9/4b11 (τ ) (b12 (τ ))2 β − 3/2b11 (τ ) (a32 (τ ))2 β

− 3/2b11 (τ ) (b32 (τ ))2 β + 3/2 (a31 (τ ))2 b12 (τ ) β

+ 3/2 (b31 (τ ))2 b12 (τ ) β − 3/4b31 (τ ) (a12 (τ ))2 β

+ 3/4b31 (τ ) (b12 (τ ))2 β + 3/4 (a12 (τ ))2 b12 (τ ) β

+ 3/4 (a12 (τ ))2 b32 (τ ) β − 3/4 (b12 (τ ))2 b32 (τ ) β

+ 3/2b12 (τ ) (a32 (τ ))2 β + 3/2b12 (τ ) (b32 (τ ))2 β

+ γ a11 (τ ) (ζ ) + γ a11 (τ ) ζ0 + 3/2a11 (τ ) b11 (τ ) a31 (τ ) β

+ 3/2a11 (τ ) b11 (τ ) a12 (τ ) β − 3/2a11 (τ ) b11 (τ ) a32 (τ ) β

− 3/2a11 (τ ) a31 (τ ) b12 (τ ) β

+ 3/2a11 (τ ) b31 (τ ) a12 (τ ) β − 3/2a11 (τ ) a12 (τ ) b12 (τ ) β

− 3/2a11 (τ ) a12 (τ ) b32 (τ ) β + 3/2a11 (τ ) b12 (τ ) a32 (τ ) β

− 3/2b11 (τ ) a31 (τ ) a12 (τ ) β + 3b11 (τ ) a31 (τ ) a32 (τ ) β

− 3/2b11 (τ ) b31 (τ ) b12 (τ ) β + 3b11 (τ ) b31 (τ ) b32 (τ ) β

+3/2b11 (τ ) a12 (τ ) a32 (τ ) β + 3/2b11 (τ ) b12 (τ ) b32 (τ ) β

+ 3/2a31 (τ ) a12 (τ ) b12 (τ ) β − 3a31 (τ ) b12 (τ ) a32 (τ ) β

− 3b31 (τ ) b12 (τ ) b32 (τ ) β − 3/2a12 (τ ) b12 (τ ) a32 (τ ) β

+ b11 (τ ) γ 2 − 3/4 (b11 (τ ))3 β −
(

d

dτ
b11 (τ )

)
ζ0

+ 3/4 (b12 (τ ))3 β −
(

d

dτ
b11 (τ )

)
(ζ ) + 2

(
d

dτ
a11 (τ )

)
γ

− b11 (τ ) − d2

dτ 2
b11 (τ ) = 0,

123
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−9/4a31 (τ ) (a32 (τ ))2 β − 3/4a31 (τ ) (b32 (τ ))2 β

+ 3/4 (b31 (τ ))2 a32 (τ ) β + 9/4 (a31 (τ ))2 a32 (τ ) β

− 3/4a31 (τ ) (b31 (τ ))2 β − 3γ b31 (τ ) (ζ )

− 3γ b31 (τ ) ζ0 + 3/4a32 (τ ) (b32 (τ ))2 β

− 3b11 (τ ) b12 (τ ) a32 (τ ) β

− 3/2a11 (τ ) b11 (τ ) b12 (τ ) β + 3a11 (τ ) a31 (τ ) a12 (τ ) β

− 3a11 (τ ) a12 (τ ) a32 (τ ) β + 3b11 (τ ) a31 (τ ) b12 (τ ) β

+ 3/2b11 (τ ) a12 (τ ) b12 (τ ) β −
(

d

dτ
a31 (τ )

)
(ζ )

− 6

(
d

dτ
b31 (τ )

)
γ −

(
d

dτ
a31 (τ )

)
ζ0 + 3/4 (a32 (τ ))3 β

+ 9a31 (τ ) γ 2 − 3/4 (a31 (τ ))3 β − 1/4 (a11 (τ ))3 β

+ 1/4 (a12 (τ ))3 β + 3/2 (b12 (τ ))2 a32 (τ ) β

− 3/2 (a11 (τ ))2 a31 (τ ) β + 3/4a11 (τ ) (b11 (τ ))2 β

− 3/4 (b11 (τ ))2 a12 (τ ) β + 3/4 (a11 (τ ))2 a12 (τ ) β

− 3/2 (b11 (τ ))2 a31 (τ ) β + 3/2 (b11 (τ ))2 a32 (τ ) β

− 3/4a11 (τ ) (a12 (τ ))2 β + 3/4a11 (τ ) (b12 (τ ))2 β

− 3/2a31 (τ ) (b12 (τ ))2 β + 3/2 (a12 (τ ))2 a32 (τ ) β

− 3/4a12 (τ ) (b12 (τ ))2 β − 3/2a31 (τ ) (a12 (τ ))2 β

+ 3/2 (a11 (τ ))2 a32 (τ ) β − a31 (τ )

+ 3/2a31 (τ ) b31 (τ ) b32 (τ ) β

− 3/2b31 (τ ) a32 (τ ) b32 (τ ) β − d2

dτ 2
a31 (τ ) = 0,

−3/4 (a11 (τ ))2 b11 (τ ) β − 3/2 (a11 (τ ))2 b31 (τ ) β

+ 3/4 (a11 (τ ))2 b12 (τ ) β + 3/2 (a11 (τ ))2 b32 (τ ) β

− 3/2 (b11 (τ ))2 b31 (τ ) β − 3/4 (b11 (τ ))2 b12 (τ ) β

+ 3/2 (b11 (τ ))2 b32 (τ ) β − 3/4b11 (τ ) (a12 (τ ))2 β

+ 3/4b11 (τ ) (b12 (τ ))2 β − 3/2b31 (τ ) (a12 (τ ))2 β

− 3/2b31 (τ ) (b12 (τ ))2 β + 3/4 (a12 (τ ))2 b12 (τ ) β

+ 3/2 (a12 (τ ))2 b32 (τ ) β + 3/2 (b12 (τ ))2 b32 (τ ) β

+ 3/2a11 (τ ) b11 (τ ) a12 (τ ) β + 3a11 (τ ) b31 (τ ) a12 (τ ) β

− 3/2a11 (τ ) a12 (τ ) b12 (τ ) β − 3a11 (τ ) a12 (τ ) b32 (τ ) β

+ 3b11 (τ ) b31 (τ ) b12 (τ ) β − 3b11 (τ ) b12 (τ ) b32 (τ ) β

− 3/4b31 (τ ) (a32 (τ ))2 β − 9/4b31 (τ ) (b32 (τ ))2 β

+ 3/4 (a32 (τ ))2 b32 (τ ) β + 3γ a31 (τ ) (ζ ) + 3γ a31 (τ ) ζ0

− 3/4 (a31 (τ ))2 b31 (τ ) β + 3/4 (a31 (τ ))2 b32 (τ ) β

+ 9/4 (b31 (τ ))2 b32 (τ ) β + 9b31 (τ ) γ 2 −
(

d

dτ
b31 (τ )

)
ζ0

−
(

d

dτ
b31 (τ )

)
(ζ ) + 6

(
d

dτ
a31 (τ )

)
γ

− 3/4 (b31 (τ ))3 β + 3/4 (b32 (τ ))3 β + 1/4 (b11 (τ ))3 β

− 1/4 (b12 (τ ))3 β

− b31 (τ ) + 3/2a31 (τ ) b31 (τ ) a32 (τ ) β

− 3/2a31 (τ ) a32 (τ ) b32 (τ ) β − d2

dτ 2
b31 (τ ) = 0,

−γ b12 (τ ) λζ + 3/4 (a11 (τ ))3 βλ − 3/4 (a12 (τ ))3 βλ

+ γ b11 (τ ) λζ − 2

(
d

dτ
b12 (τ )

)
γ + a12 (τ ) γ 2

+
(

d

dτ
a11 (τ )

)
λζ −

(
d

dτ
a12 (τ )

)
λζ

+3/2b11 (τ ) a31 (τ ) b12 (τ ) βλ − 3/2b11 (τ ) b31 (τ ) a12 (τ ) βλ

+ 3/2b11 (τ ) a12 (τ ) b12 (τ ) βλ + 3/2b11 (τ ) a12 (τ ) b32 (τ ) βλ

− 3/2b11 (τ ) b12 (τ ) a32 (τ ) βλ

+ 3a31 (τ ) a12 (τ ) a32 (τ ) βλ + 3/2b31 (τ ) a12 (τ ) b12 (τ ) βλ

+3b31 (τ ) a12 (τ ) b32 (τ ) βλ

− 3/2a12 (τ ) b12 (τ ) b32 (τ ) βλ + 3/2a11 (τ ) b11 (τ ) b31 (τ ) βλ

− 3/2a11 (τ ) b11 (τ ) b12 (τ ) βλ

− 3/2a11 (τ ) b11 (τ ) b32 (τ ) βλ − 3/2a11 (τ ) a31 (τ ) a12 (τ ) βλ

− 3a11 (τ ) a31 (τ ) a32 (τ ) βλ − 3/2a11 (τ ) b31 (τ ) b12 (τ ) βλ

− 3a11 (τ ) b31 (τ ) b32 (τ ) βλ + 3/2a11 (τ ) a12 (τ ) a32 (τ ) βλ

+ 3/2a11 (τ ) b12 (τ ) b32 (τ ) βλ + 3/4 (a11 (τ ))2 a31 (τ ) βλ

− 9/4 (a11 (τ ))2 a12 (τ ) βλ

− 3/4 (a11 (τ ))2 a32 (τ ) βλ + 3/4a11 (τ ) (b11 (τ ))2 βλ

+ 3/2a11 (τ ) (a31 (τ ))2 βλ + 3/2a11 (τ ) (b31 (τ ))2 βλ

+ 9/4a11 (τ ) (a12 (τ ))2 βλ + 3/4a11 (τ ) (b12 (τ ))2 βλ

+ 3/2a11 (τ ) (a32 (τ ))2 βλ + 3/2a11 (τ ) (b32 (τ ))2 βλ

− 3/4 (b11 (τ ))2 a31 (τ ) βλ − 3/4 (b11 (τ ))2 a12 (τ ) βλ

+ 3/4 (b11 (τ ))2 a32 (τ ) βλ − 3/2 (a31 (τ ))2 a12 (τ ) βλ

+ 3/4a31 (τ ) (a12 (τ ))2 βλ − 3/4a31 (τ ) (b12 (τ ))2 βλ

− 3/2 (b31 (τ ))2 a12 (τ ) βλ − 3/4 (a12 (τ ))2 a32 (τ ) βλ

− 3/4a12 (τ ) (b12 (τ ))2 βλ − 3/2a12 (τ ) (a32 (τ ))2 βλ

− 3/2a12 (τ ) (b32 (τ ))2 βλ + 3/4 (b12 (τ ))2 a32 (τ ) βλ

− d2

dτ 2
a12 (τ ) = 0,

−γ a11 (τ ) λζ + 3/4 (b11 (τ ))3 βλ − 3/4 (b12 (τ ))3 βλ

+ γ a12 (τ ) λζ −
(

d

dτ
b12 (τ )

)
λζ

+
(

d

dτ
b11 (τ )

)
λζ + 2

(
d

dτ
a12 (τ )

)
γ

+ b12 (τ ) γ 2 + 3/2a11 (τ ) a12 (τ ) b32 (τ ) βλ

− 3/2a11 (τ ) b12 (τ ) a32 (τ ) βλ + 3/2b11 (τ ) a31 (τ ) a12 (τ ) βλ

− 3b11 (τ ) a31 (τ ) a32 (τ ) βλ

+ 3/2b11 (τ ) b31 (τ ) b12 (τ ) βλ − 3b11 (τ ) b31 (τ ) b32 (τ ) βλ

− 3/2b11 (τ ) a12 (τ ) a32 (τ ) βλ

− 3/2b11 (τ ) b12 (τ ) b32 (τ ) βλ − 3/2a31 (τ ) a12 (τ ) b12 (τ ) βλ

+ 3a31 (τ ) b12 (τ ) a32 (τ ) βλ

+ 3b31 (τ ) b12 (τ ) b32 (τ ) βλ + 3/2a12 (τ ) b12 (τ ) a32 (τ ) βλ

− 3/2a11 (τ ) b11 (τ ) a31 (τ ) βλ

− 3/2a11 (τ ) b11 (τ ) a12 (τ ) βλ + 3/2a11 (τ ) b11 (τ ) a32 (τ ) βλ

+ 3/2a11 (τ ) a31 (τ ) b12 (τ ) βλ
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− 3/2a11 (τ ) b31 (τ ) a12 (τ ) βλ + 3/2a11 (τ ) a12 (τ ) b12 (τ ) βλ

− 3/4 (a11 (τ ))2 b32 (τ ) βλ

− 3/4 (b11 (τ ))2 b31 (τ ) βλ − 3/4b31 (τ ) (b12 (τ ))2 βλ

− 3/4 (a12 (τ ))2 b12 (τ ) βλ

− 3/4 (a12 (τ ))2 b32 (τ ) βλ + 3/4 (b12 (τ ))2 b32 (τ ) βλ

− 3/2b12 (τ ) (a32 (τ ))2 βλ

− 3/2b12 (τ ) (b32 (τ ))2 βλ − 9/4 (b11 (τ ))2 b12 (τ ) βλ

+ 3/4 (b11 (τ ))2 b32 (τ ) βλ

+ 3/2b11 (τ ) (a31 (τ ))2 βλ + 3/2b11 (τ ) (b31 (τ ))2 βλ

+ 3/4b11 (τ ) (a12 (τ ))2 βλ

+ 9/4b11 (τ ) (b12 (τ ))2 βλ + 3/2b11 (τ ) (a32 (τ ))2 βλ

+ 3/2b11 (τ ) (b32 (τ ))2 βλ

− 3/2 (a31 (τ ))2 b12 (τ ) βλ − 3/2 (b31 (τ ))2 b12 (τ ) βλ

+ 3/4b31 (τ ) (a12 (τ ))2 βλ

+ 3/4 (a11 (τ ))2 b11 (τ ) βλ + 3/4 (a11 (τ ))2 b31 (τ ) βλ

− 3/4 (a11 (τ ))2 b12 (τ ) βλ

− d2

dτ 2
b12 (τ ) = 0,

3γ b31 (τ ) λζ − 3γ b32 (τ ) λζ + 3/4 (a31 (τ ))3 βλ

− 3/4 (a32 (τ ))3 βλ + 1/4 (a11 (τ ))3 βλ

− 1/4 (a12 (τ ))3 βλ +
(

d

dτ
a31 (τ )

)
λζ

− 6

(
d

dτ
b32 (τ )

)
γ + 9a32 (τ ) γ 2 −

(
d

dτ
a32 (τ )

)
λζ

− 3/2a31 (τ ) b31 (τ ) b32 (τ ) βλ + 3/2b31 (τ ) a32 (τ ) b32 (τ ) βλ

− 3/4 (b31 (τ ))2 a32 (τ ) βλ

− 3/4a32 (τ ) (b32 (τ ))2 βλ − 9/4 (a31 (τ ))2 a32 (τ ) βλ

+ 3/4a31 (τ ) (b31 (τ ))2 βλ

+ 9/4a31 (τ ) (a32 (τ ))2 βλ + 3/4a31 (τ ) (b32 (τ ))2 βλ

− 3b11 (τ ) a31 (τ ) b12 (τ ) βλ

− 3/2b11 (τ ) a12 (τ ) b12 (τ ) βλ + 3b11 (τ ) b12 (τ ) a32 (τ ) βλ

+ 3/2a11 (τ ) b11 (τ ) b12 (τ ) βλ

− 3a11 (τ ) a31 (τ ) a12 (τ ) βλ + 3a11 (τ ) a12 (τ ) a32 (τ ) βλ

+ 3/2 (a11 (τ ))2 a31 (τ ) βλ

− 3/4 (a11 (τ ))2 a12 (τ ) βλ − 3/2 (a11 (τ ))2 a32 (τ ) βλ

− 3/4a11 (τ ) (b11 (τ ))2 βλ

+ 3/4a11 (τ ) (a12 (τ ))2 βλ − 3/4a11 (τ ) (b12 (τ ))2 βλ

+ 3/2 (b11 (τ ))2 a31 (τ ) βλ

+ 3/4 (b11 (τ ))2 a12 (τ ) βλ − 3/2 (b11 (τ ))2 a32 (τ ) βλ

+ 3/2a31 (τ ) (a12 (τ ))2 βλ

+ 3/2a31 (τ ) (b12 (τ ))2 βλ − 3/2 (a12 (τ ))2 a32 (τ ) βλ

+ 3/4a12 (τ ) (b12 (τ ))2 βλ

− 3/2 (b12 (τ ))2 a32 (τ ) βλ − d2

dτ 2
a32 (τ ) = 0,

−3γ a31 (τ ) λζ + 3γ a32 (τ ) λζ + 3/4 (b31 (τ ))3 βλ

− 3/4 (b32 (τ ))3 βλ − 1/4 (b11 (τ ))3 βλ

+ 1/4 (b12 (τ ))3 βλ −
(

d

dτ
b32 (τ )

)
λζ + 9b32 (τ ) γ 2

+ 6

(
d

dτ
a32 (τ )

)
γ +

(
d

dτ
b31 (τ )

)
λζ

− 3/2a31 (τ ) b31 (τ ) a32 (τ ) βλ + 3/2a31 (τ ) a32 (τ ) b32 (τ ) βλ

+ 3/4 (a31 (τ ))2 b31 (τ ) βλ − 3/4 (a31 (τ ))2 b32 (τ ) βλ

− 9/4 (b31 (τ ))2 b32 (τ ) βλ + 3/4b31 (τ ) (a32 (τ ))2 βλ

+ 9/4b31 (τ ) (b32 (τ ))2 βλ − 3/4 (a32 (τ ))2 b32 (τ ) βλ

+ 3a11 (τ ) a12 (τ ) b32 (τ ) βλ

− 3b11 (τ ) b31 (τ ) b12 (τ ) βλ + 3b11 (τ ) b12 (τ ) b32 (τ ) βλ

− 3/2a11 (τ ) b11 (τ ) a12 (τ ) βλ

− 3a11 (τ ) b31 (τ ) a12 (τ ) βλ + 3/2a11 (τ ) a12 (τ ) b12 (τ ) βλ

− 3/2 (a11 (τ ))2 b32 (τ ) βλ

+ 3/2 (b11 (τ ))2 b31 (τ ) βλ + 3/2b31 (τ ) (b12 (τ ))2 βλ

− 3/4 (a12 (τ ))2 b12 (τ ) βλ

− 3/2 (a12 (τ ))2 b32 (τ ) βλ − 3/2 (b12 (τ ))2 b32 (τ ) βλ

+ 3/4 (b11 (τ ))2 b12 (τ ) βλ

− 3/2 (b11 (τ ))2 b32 (τ ) βλ + 3/4b11 (τ ) (a12 (τ ))2 βλ

− 3/4b11 (τ ) (b12 (τ ))2 βλ

+ 3/2b31 (τ ) (a12 (τ ))2 βλ + 3/4 (a11 (τ ))2 b11 (τ ) βλ

+ 3/2 (a11 (τ ))2 b31 (τ ) βλ

− 3/4 (a11 (τ ))2 b12 (τ ) βλ − d2

dτ 2
b32 (τ ) = 0. (B1)
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