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Abstract This paper presents an identification approach
to time delays in single-degree-of-freedom (SDOF) and
multiple-degree-of-freedom (MDOF) systems. In an SDOF
system, the impedance function of the delayed system is
expressed by the system parameters, the feedback gain, and
the time delay. The time delay can be treated as the “fre-
quency” of the difference between the impedance function
of the delayed system and that of the corresponding uncon-
trolled system. Thus, it can be identified from the Fourier
transform of the difference between the two impedance func-
tions. In an MDOF system, the pseudo-impedance functions
are defined. The relationships between the time delay and
the pseudo-impedance functions of the delayed system and
uncontrolled system are deduced. Similarly, the time delay
can be identified from the Fourier transform of the difference
between the two pseudo-impedance functions. The results
of numerical examples and experimental tests show that the
identification approach to keeps a relatively high accuracy.
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1 Introduction

In practical engineering, time delays exist in the process of
active control,which has attracted the attention of researchers
[1–3]. Researchers once ignored time delays as a simplifica-
tion. However, it has been shown that ignoring time delays
may lead to wrong conclusions [4]. Therefore, an approach
to identifying time delays is necessary. This paper proposes
such an identification approach to time-delay feedback. In
a single-degree-of-freedom (SDOF) system, the impedance
function is the reciprocal of the frequency response func-
tion (FRF). The impedance function of a delayed system is
expressed by the system parameters, the feedback gain, and
the time delay. The time delay can be identified from the
difference between the impedance function of the delayed
system and that of the corresponding uncontrolled system
since the time delay acts as the “frequency” of the differ-
ence curve. Then we consider a multiple-degree-of-freedom
(MDOF) systemwhere the FRFmatrix cannot be completely
measured in an experiment. This means the inverse matrix of
the FRFmatrix, namely, the impedance functionmatrix, can-
not be obtained. Therefore, a pseudo-impedance function is
defined and applied to identify the timedelay.Numerical sim-
ulations are presented to show the details of how time delays
are identified in SDOF and MDOF systems. An experiment
is conducted in an MDOF system with acceleration time-
delay feedback. The identification results of the time delay
demonstrate the high accuracy of the proposed identification
approach.

In early papers, time delays were treated as negative
because they could cause stable systems to become unsta-
ble [5,6]. However, a time delay does not always produce
negative effects. Instead, the appropriate use of a time delay
can help to improve the performance of a system [7–12].
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Whether a time delay brings harm or benefit to a system, it
inevitably exists in many practical engineering cases, such
as controlled wheel suspension systems and metal cutting
chatter [13,14].

Some evidence has shown that ignorance of time delays
may cause people to mistakenly regard an unstable system
with a time delay as stable or treat a stable system as unstable
if they ignore the time delay of the original system [4].

Research results indicate that time delays cannot be
ignored, so there must be some way to identify time delays
[15–19]. Orlov et al. [15] developed a synthesis of an adap-
tive parameter identifier for linear systems with finitely
many lumped delays in the state vector and control input.
Once the state of the system and the parameter identifia-
bility were guaranteed, online identification of the delays
were achieved. Hidayat and Medvedev [16] proposed a
method for Laguerre domain identification of continuous-
time-delay systems from impulse response data. Gu et al.
[17] proposed a general method to identify the time delays
in delayed systems based on the autosynchronization tech-
nique. Na et al. [18] proposed a method of adaptive online
parameter identification for linear single-input–single-output
(SISO) time-delay systems that made it possible to esti-
mate an unknown time delay. Karoui et al. [19] proposed
a fast online identification algorithm for linear-time invari-
ant multiple-time-delay systems. The identification problem
of multiple-input–single-output systems with two unknown
time delays was considered.

Although methods have been proposed to identify time
delays in linear systems, little theoretical work besides that
of Hu [20] has been published. In that paper [20], a time
delay was identified in an SDOF system with different dis-
placement and velocity time delay feedback. It was pointed
out that if the system is subject to a harmonic input of fre-
quencyω, the identified time delay may deviate from the real
values by 2pπ/ω, where p is a positive integer.

In the current paper, the basic idea of the identification
approach comes from the difference between the impedance
function of the delayed system and that of the correspond-
ing uncontrolled system. Specifically, the difference is an
oscillation curve in the frequency domain, with the time
delay being its “frequency.” In the SDOF system, the time
delay can be identified from the difference between the
impedance function of the delayed system and that of the
corresponding uncontrolled system. In the MDOF system,
the pseudo-impedance function is defined in such a way
as to play the same role as the impedance function in
SDOF system. Furthermore, apart from numerical simu-
lations in SDOF and MDOF systems, an experiment is
conducted in an MDOF system with acceleration time-
delay feedback. The identification results of the time delay
demonstrate the high level of accuracy of the proposed
approach.

The proposed identification approach has two features:
(1) a time delay can be identified without being given an
initial value in advance and (2) the approach is based on the
data in the frequency domain instead of the time domain.

This paper is organized as follows. Theories of the identifi-
cation approach to time delays in SDOF andMDOF systems
are presented in Sect. 2. Numerical examples are provided in
Sect. 3 to demonstrate the process of the identification. Sec-
tion 4 shows an experiment where a time delay is identified
in an MDOF system with acceleration time-delay feedback.
Conclusions are provided in Sect. 5.

2 Identification approach

In this section, the measuring points of a system are divided
into three types for the convenience of discussion. They are
input points, reference points, and feedback points. An input
point is a point upon which external force is applied. A ref-
erence point is a point whose controlling signal is collected
before the feedback. A feedback point is a point where the
feedback is applied.

2.1 SDOF system

The equation of motion in an uncontrolled linear system can
be expressed as

mẍ (t) + cẋ (t) + kx (t) = f (t) , (1)

where m, c, k, f (t) , x (t) denote the mass, damping, stiff-
ness, input, and displacement response, respectively.

We take the Fourier transform of Eq. (1) to obtain the
equation of motion in the frequency domain [21]:

−ω2mX (ω) + jωcX (ω) + kX (ω) = F (ω) , (2)

where ω denotes the frequency.
The acceleration impedance function Z (ω) and accelera-

tion FRF H (ω) of the uncontrolled system are as follows

Z (ω) = 1

(jω)2
F (ω)

X (ω)
= k − ω2m + jωc

(jω)2
, (3)

H (ω) = 1

Z (ω)
= (jω)2

k − ω2m + jωc
. (4)

The real part and imaginary part of Z (ω), denoted by
Re (Z (ω)) and Im (Z (ω)) respectively, can be obtained as
follows

Re (Z (ω)) = k − ω2m

−ω2 ,

Im (Z (ω)) = c

−ω
. (5)
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Since it is easy to measure the acceleration signal of a
system, acceleration feedback is applied to the uncontrolled
system. Thus, the equation ofmotion in a feedback controlled
system can be written as

mẍ (t) + cẋ (t) + kx (t) = f (t) + gẍ (t − τ) , (6)

where gẍ (t − τ) refers to acceleration feedback, with τ

being the time delay and g the feedback gain.
Like the process in the uncontrolled system (1), the accel-

eration impedance function ZD (ω), and acceleration FRF
HD (ω) of the delayed system (6) are expressed as follows,
with the superscript D denoting “delay”

ZD (ω) = k − ω2m + jωc + ω2ge−jτω

(jω)2
, (7)

HD (ω) = 1

ZD (ω)
= (jω)2

k − ω2m + jωc + ω2ge−jτω
. (8)

The real and imaginary parts of ZD (ω), denoted by
Re

(
ZD (ω)

)
and Im

(
ZD (ω)

)
respectively, are expressed as

follows

Re
(
ZD (ω)

)
= k − ω2m

−ω2 − g cos (τω) ,

Im
(
ZD (ω)

)
= c

−ω
+ g sin (τω) . (9)

Subtracting Eq. (5) from Eq. (9), we obtain

Re
(
ZD (ω)

)
− Re (Z (ω)) = −g cos(τω),

Im
(
ZD (ω)

)
− Im (Z (ω)) = g sin(τω). (10)

It can be seen that the difference between Re (Z (ω)) and
Re

(
ZD (ω)

)
is a harmonic function, with time delay τ being

the “frequency.” The difference between the two imaginary
parts has the same feature.

Therefore, τ can be identified from the difference between
the real parts of the two acceleration impedance functions
of the uncontrolled and delayed systems. Similarly, τ can
also be identified from the difference between the imaginary
parts of the two acceleration impedance functions. It should
be noted that τ is identified from a frequency domain curve
since ω is the independent variable.

2.2 MDOF system

The equation of motion in an uncontrolled linear systemwith
n degrees of freedom (DOF) can be given as

MẌ (t) + CẊ (t) + KX (t) = F (t) , (11)

whereM,C, K, F (t) , X (t) denote themassmatrix, damp-
ingmatrix, stiffnessmatrix, input, anddisplacement response,
respectively. M is a diagonal matrix, and C and K are posi-
tive definite real symmetric matrices.

We now take the Fourier transform of Eq. (11) to obtain
the equation of motion in the frequency domain:

−ω2MX (ω) + jωCX (ω) + KX (ω) = F (ω) . (12)

The acceleration impedance function matrix Z (ω) of the
uncontrolled system is expressed as follows

Z (ω) = 1

(jω)2
F (ω)

X (ω)
=

(
K − ω2M + jωC

)

(jω)2
. (13)

The acceleration FRF matrix is the inverse matrix of the
acceleration impedance function matrix:

H (ω) = Z−1 (ω) = adj (Z (ω))

det (Z (ω))

= 1

det (Z (ω))

⎡

⎢
⎢⎢
⎣

A11 (ω) A21 (ω) · · · An1 (ω)

A12 (ω) A22 (ω) · · · An2 (ω)
...

...
. . .

...

A1n (ω) A2n (ω) · · · Ann (ω)

⎤

⎥
⎥⎥
⎦

,

(14)

where det (Z (ω)) is the determinant of Z (ω). det (Z (ω)) is
a polynomial function of ω, denoted by Φ (ω). Apq (ω), the
algebraic cofactor of Z (ω), is also a polynomial function of
ω. Any element Hpq (ω) of H (ω) can be expressed as

Hpq (ω) = Aqp (ω)

det (Z (ω))
= Aqp (ω)

Φ (ω)
, p, q = 1, 2, . . . , n.

(15)

In the case of acceleration time-delay feedback, the equa-
tion of motion can be given as

MẌ (t) + CẊ (t) + KX (t) = F (t) + GẌ (t − τ) , (16)

where GẌ (t − τ) refers to the acceleration feedbackmatrix,
with τ being a time delay and G being the feedback gain
matrix.

We now take the Fourier transform of Eq. (16) to obtain
the equation of motion in the frequency domain:

−ω2MX (ω) + jωCX (ω) + KX (ω)

= F (ω) − ω2Ge−jωτ X (ω) . (17)
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The acceleration impedance function matrix ZD (ω, τ ) of
the delayed system can be expressed as follows

ZD (ω, τ ) =
(
K − ω2M + jωC + ω2Ge−jωτ

)

(jω)2
. (18)

Set point r as the reference point and all the measuring
points as the feedback points. The feedback gain matrix G
has only one column of nonzero elements:

G =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

0 · · · g1r · · · 0
...

. . .
...

...
...

0 · · · grr · · · 0
...

...
...

. . .
...

0 · · · gnr · · · 0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (19)

Then ZD (ω, τ ) can be expressed in detail as

ZD (ω, τ ) = 1

(jω)2

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

k11 − ω2m1 + jωc11 k12 + jωc12 · · · k1r + jωc1r + ω2g1r e−jωτ · · · k1n + jωc1n
k21 + jωc21 k22 − ω2m2 + jωc22 · · · k2r + jωc2r + ω2g2re−jωτ · · · k2n + jωc2n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

kr1 + jωcr1 kr2 + jωcr2 · · · krr − ω2mr + jωcrr + ω2grr e−jωτ · · · krn + jωcrn
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

kn1 + jωcn1 kn2 + jωcn2 · · · knr + jωcnr + ω2gnr e−jωτ · · · knn − ω2mn + jωcnn

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (20)

The acceleration FRF matrix HD (ω, τ ) of the delayed
system can be written as

HD (ω, τ) = 1

det
(
ZD (ω, τ )

)

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

AD
11 (ω, τ) AD

21 (ω, τ ) · · · AD
r1 (ω, τ) · · · AD

n1 (ω, τ )

AD
12 (ω, τ) AD

22 (ω, τ) · · · AD
r2 (ω, τ) · · · AD

n2 (ω, τ )
...

...
. . .

...
...

...

AD
1r (ω) AD

2r (ω) · · · AD
rr (ω) · · · AD

nr (ω)
...

...
...

...
. . .

...

AD
1n (ω, τ) AD

2n (ω) · · · AD
rn (ω, τ ) · · · AD

nn (ω, τ )

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

, (21)

where det
(
ZD (ω, τ)

)
represents the determinant of ZD (ω, τ ),

and AD
pq (ω, τ ) is the algebraic cofactor of ZD (ω, τ ).

As can be seen in Eq. (21), all the algebraic cofactors
of ZD (ω, τ ) are functions of ω. It should be noted that
AD
1r (ω) , AD

2r (ω) , . . . , AD
nr (ω) do not contain e−jωτ . This

means elements in the r th row of HD (ω, τ ) do not contain
e−jωτ in their numerators. In other words, numerators of the
elements in the r th row of HD (ω, τ ) are the same as those
in the r th row of H (ω). The expressions can be written as
follows

HD
rβ = AD

βr

det
(
ZD (ω, τ )

)

= Aβr

det
(
ZD (ω, τ)

) , (β = 1, 2, . . . , n) . (22)

According to Eqs. (13) and (18), we can obtain the relation-
ship between det

(
ZD (ω, τ )

)
and det (Z (ω)):

det
(
ZD (ω, τ )

)
= det (Z (ω))−

n∑

s=1

gsre
−jωτ Asr (ω). (23)

Since det (Z (ω)) has been denoted byΦ (ω), Eq. (23) can
be rewritten as

det
(
ZD (ω, τ )

)
= Φ (ω) −

n∑

s=1

gsre
−jωτ Asr (ω). (24)

Assume that point i is the input point. Then elements in the
i th column of acceleration FRFs measured in the experiment
can be expressed as

{
HD
1i (ω, τ) HD

2i (ω, τ) · · · HD
ri (ω, τ) · · · HD

ni (ω, τ)
}T

.

(25)

According to Eq. (21), the expression in Eq. (25) can be
rewritten as

{
AD
i1 (ω, τ ) AD

i2 (ω, τ ) · · · AD
ir (ω) · · · AD

in (ω, τ)
}T

det
(
ZD (ω, τ)

) . (26)
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From Eq. (21) it can be seen that all FRFs have the same
denominator, which inevitably contains a time delay τ . How-
ever, if the denominator and numerator of FRFs both contain
τ , it is difficult to extract τ . To construct an algorithm to
identify τ , an FRF whose numerator does not contain τ must
be found.

According to Eqs. (22) and (26), HD
ri (ω, τ ) can be mea-

sured in experiments. Moreover, it does not contain τ in its
numerator. Therefore, HD

ri (ω, τ ) is the right function to use
to identify τ :

HD
ri (ω, τ ) = AD

ir (ω)

det
(
ZD (ω, τ )

) = Air (ω)

det
(
ZD (ω, τ )

) . (27)

Substituting Eq. (24) into Eq. (27), we obtain

HD
ri (ω, τ ) = Air (ω)

Φ (ω) − ∑n
s=1 gsre

−jωτ Asr (ω)
. (28)

In this paper,wedefine thepseudo-acceleration impedance
functions at the reference point r of the uncontrolled and
delayed system as

Z̃ri (ω) = 1

Hri (ω)
,

Z̃D
ri (ω, τ ) = 1

HD
ri (ω, τ)

. (29)

Obviously, the pseudo-acceleration impedance function is
the reciprocal of the FRF. It should be noted that the pseudo-
acceleration impedance functions Z̃ri (ω) and Z̃D

ri (ω, τ )

are functions, while the acceleration impedance function
matrices Z (ω) and ZD (ω) are function matrices. Use
“∼” to show the difference between pseudo-acceleration
impedance functions and acceleration impedance func-
tions.

Substituting Eqs. (15) and (28) into Eq. (29), we obtain

Z̃ri (ω) = Φ (ω)

Air (ω)
, (30)

Z̃D
ri (ω, τ ) = Φ (ω)

Air (ω)
−

∑n
s=1 gsre

−jωτ Asr (ω)

Air (ω)
. (31)

It can be seen that Z̃D
ri (ω, τ ) consists of two parts. One

is Z̃ri (ω), the pseudo-acceleration impedance function at
point i of the uncontrolled system. The other part is an
amplitude-changing periodic function.

The difference between the two foregoing pseudo-
acceleration impedance functions can be expressed as

Z̃D
ri (ω, τ ) − Z̃ri (ω) = −

∑n
s=1 gsr Asr (ω)

Air (ω)
e−jωτ . (32)

The amplitude of the difference function, namely,∑n
s=1 gsr Asr (ω) /Air (ω), is related to all the parameters

except the time delay τ , while the “frequency” of the differ-
ence function is τ .

Therefore, the real part of the pseudo-acceleration
impedance function of a delayed system can be treated as
a superposition of the real part of the pseudo-acceleration
impedance function of an uncontrolled system and a cosine
curve, while the imaginary part of pseudo-acceleration
impedance function of the delayed system can be treated
as a superposition of the imaginary part of the pseudo-
acceleration impedance function of the uncontrolled system
and a sine curve. This means that if the difference between
the real parts of the two pseudo-acceleration impedance func-
tions is obtained, τ can be identified. Similarly, τ can also be
identified from the difference between the imaginary parts of
the two pseudo-acceleration impedance functions.

If the delayed system has only one feedback point f ,
Eq. (32) can be simplified to

Z̃D
ri (ω, τ ) − Z̃ri (ω) = −g f r A f r (ω)

Air (ω)
e−jωτ . (33)

3 Numerical simulation

In this section, numerical simulations in SDOF and MDOF
systems are presented to apply the aforementioned identifi-
cation approach.

3.1 Acceleration impedance function

For the SDOF delayed system described by Eq. (6), set k =
500N/m, c = 1N · s/m, m = 1 kg, g = 0.5N · s2/m, and
τ = 0.2 s. Since there is only one point, the input point,
reference point, and feedback point merge into one.

The curves of the uncontrolled system and delayed system
are shown in Fig. 1a shows the curves of the acceleration
FRFs, while Fig. 1b shows the curves of the acceleration
impedance functions.

Thedifference functions of the twoacceleration impedance
functions in Fig. 1b, with the real part and imaginary part
separated, are shown in Fig. 2.

After performing fast Fourier transform (FFT) on the data
in Fig. 2, we get the “frequencies” of the difference curves. It
can be seen from Fig. 3 that the “frequency” of the difference
curve of the two real parts is 0.1992s, which is very close
to the value of the time delay τ set at the beginning of the
simulation (0.2 s). τ can also be identified from the difference
curve of the two imaginary parts.
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Fig. 1 Curves of uncontrolled system and delayed system. a Curves
of acceleration FRFs. b Curves of acceleration impedance functions

Fig. 2 Difference curves of acceleration impedance functions

3.2 Pseudo-acceleration impedance function

To apply the aforementioned identification approach, a 5-
DOF system was constructed (Fig. 4).

Fig. 3 Identification results of time delay (τ = 0.2 s)

Assume that m1 = 4 kg, m2 = 3 kg, m3 = 1 kg,
m4 = 4 kg, m5 = 3 kg, k2 = k3 = 20,000N/m, k2 =
k3 = 20,000N/m, and k0 = k1 = k4 = k5 = 40,000N/m.
The damping ratios of each order are {2 2 2 2 1} × 10−3.
The feedback gain is 0.5 N · s2/m. The time delay τ is 0.5 s.

3.2.1 Single feedback

First, the delayed system with a single feedback is examined
in what follows. Set m3 as the reference point and m4 as the
feedback point (Fig. 5).

The acceleration FRFs at the reference point m3 can
be obtained, namely, H35 (ω) and HD

35 (ω, τ ), as shown in
Fig. 6a. H35 (ω) is the acceleration FRF of the uncontrolled
system, while HD

35 (ω, τ) is the acceleration FRF of the
delayed system. Accordingly, the two pseudo-acceleration
impedance function curves at the reference pointm3 can also
be obtained, namely, PAI35 (ω) and PAID35 (ω, τ), as shown
in Fig. 6b.

Thedifference functions of the twoacceleration impedance
functions in Fig. 6b, with the real and imaginary parts sepa-
rated, are shown in Fig. 7.

By performing an FFT on the data in Fig. 7, we obtain the
“frequencies” of the difference curves. As shown in Fig. 8,
the “frequency” of the difference curve of the two real parts
is 0.5 s, which is exactly the value of the time delay τ set at
the beginning of the simulation. τ can also be identified from
the difference curve of the two imaginary parts.

3.2.2 Multiple feedback

Now we consider a delayed system with multiple feedback.
Assume that the feedback gains are 0.5N · s2/m. The time
delay τ is 0.5 s. Set m3 as the reference point and all the
measuring points as the feedback points (Fig. 9).

The acceleration FRFs at the reference point m3 can
be obtained, namely, H35 (ω) and HD

35 (ω, τ ), as shown in

123



Experiment-based identification of time delays in linear systems 435

Fig. 4 A 5-DOF mechanical model

Fig. 5 A 5-DOF mechanical model with single feedback point

Fig. 6 Curves of uncontrolled system and delayed system. aCurves of
acceleration FRFs. b Curves of pseudo-acceleration impedance func-
tions

Fig. 10a. H35 (ω) is the acceleration FRF of the uncontrolled
system, while HD

35 (ω, τ ) is the acceleration FRF of the
delayed system. Accordingly, the two pseudo-acceleration
impedance function curves at the reference pointm3 can also
be obtained, namely, PAI35 (ω) and PAID35 (ω, τ ), as shown
in Fig. 10b.

Fig. 7 Difference curves of pseudo-acceleration impedance functions

Fig. 8 Identification results of time delay (τ = 0.5 s)

The differences between the real and imaginary parts of
the two pseudo-acceleration impedance functions in Fig. 10b
can be separated, as shown in Fig. 11.
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Fig. 9 5-DOF mechanical model with multiple feedback points

Fig. 10 Curves of uncontrolled and delayed systems. a Curves of
acceleration FRFs. b Curves of pseudo-acceleration impedance func-
tions

By performing an FFT on the data in Fig. 11, we obtain the
“frequencies” of the difference curves. As shown in Fig. 12,
the “frequency” of the difference curve of the two real parts
is 0.5 s, which is exactly the value of the time delay τ set at
the beginning of the simulation. τ can also be identified from
the difference curve of the two imaginary parts.

According to the preceding numerical simulations, the dif-
ference functions between the curves of the uncontrolled
system and delayed system are periodic functions in the
frequency domain. The fact that the time delay τ is the
“frequency” of the periodic functions is the principle of the
proposed identification approach.

Fig. 11 Difference curves of pseudo-acceleration impedance func-
tions

Fig. 12 Identification results of time delay (τ = 0.5 s)

4 Experiment

To verify the aforementioned identification approach, an
experiment is conducted (Fig. 13).

The aluminumblock, the actuator, and the four connecting
aluminum blocks on the top of the four rubber isolators are
all fixed. They constitute vibration-isolated substances. The
size of the slab foundation is 700mm × 500mm × 2mm.
The two long sides are clamped, while the other sides are
free. To approach the condition of clamping, six Φ8 high-
strength bolts are used on the long sides. To avoid the effects
of collision between the slab foundation and steel angles for
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Fig. 13 Experimental devices. The photo on the left shows a panoramic view of the test unit, while the one on the right shows the upper part of
the test unit. The test unit consists of the following parts: 1© cabinet base, 2© input source, 3© slab foundation, 4© link block, 5© rubber isolator,
6© aluminum block, 7© actuator, 8© connecting rod and force sensor

clamping, a damping layer is placed between them. The cab-
inet base consists of a 10 mm steel plate on the left side, right
side, and bottom. Between the two sides, steel angle and
high-strength bolts are applied to prevent obvious vibration
modes in the frequency band (0–200 Hz) concerned.

4.1 Time-delay feedback experiment

With respect to the time delay feedback experiment, the
arrangement of the measuring points is shown in Fig. 14.
The input point is point 37. The reference point is point 41.
The feedback point is also point 41. Several groups of experi-
ments are conducted with different time delay values applied
to the system.

As an example, we consider a delayed system with a time
delay τ of 1.0 s to explain the process of identification. The
identification results of the other time delay values are shown
in the last part of Sect. 4.2.

Figure 15 shows the acceleration FRF and pseudo-
acceleration impedance function at the reference point.
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Fig. 14 Distribution of measuring points

Fig. 15 Curves of delayed system with τ = 1.0 s. a Curve of acceler-
ation FRF HD

41−37. b Curve of pseudo-acceleration impedance function
PAID41−37

As explained in the aforementioned identification
approach, the oscillation of the acceleration FRFs is caused
by the time delay τ . This means τ can be identified from
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the difference between the real parts (or the imaginary parts)
of the two pseudo-acceleration impedance functions of the
uncontrolled and delayed systems.

However, in the time delay feedback experiment, what
we obtain are the FRF curves of the delayed system, which
means the curves of the uncontrolled systemare not available.
Thus, the curves of the uncontrolled system, namely, the trend
lines, should first be removed by a numerical method. In
this paper, the empiricalmodedecomposition (EMD)method
[22] is employed to remove the trend lines.

4.2 Identification results

The results of the EMD method can be divided into at least
two parts. One part is the trend line that contains the modal
information of the uncontrolled system. The other part is an
oscillation curve with a zero centerline. This curve includes
information on the time delay τ .

Figure 16 displays the results of EMD for the original
curve shown in Fig. 15b. The first component, namely, the
trend line, is shown in Fig. 16a, while the oscillation curve
containing the time delay τ is shown in Fig. 16b. After the

Fig. 16 Results of EMD for pseudo-acceleration impedance function
of delayed system. a Trend line. b Oscillation curve containing τ

Fig. 17 Identification results of delayed system (τ = 1.0 s)

Table 1 Identification results of time delay

Set value (s) Identified
value (s)

Absolute
error (s)

Relative
error (%)

0.2000 0.1999 −0.0001 0.05

0.2500 0.2479 −0.0021 0.84

0.3000 0.2998 −0.0002 0.07

0.4000 0.4007 0.0007 0.18

0.5000 0.5007 0.0007 0.14

0.6000 0.5997 −0.0003 0.05

0.7000 0.7005 0.0005 0.07

0.8000 0.7996 −0.0004 0.05

0.9000 0.9022 0.0022 0.24

1.0000 1.0007 0.0007 0.07

real and imaginary parts of the original curve are separated,
the curves of these two parts can be decomposed using the
EMD method.

By performing an FFT on the oscillation curve in Fig. 16b
with the real and imaginary parts separated, the “frequencies”
of the curves can be obtained. It can be seen from Fig. 17 that
the “frequency” of the real part is 1.002s, which is very close
to the value of the time delay τ set at the beginning of the
time delay feedback experiment. The time delay τ identified
from the imaginary part is 1.0 s, which is the same as the
value at which τ was set.

Several groups of experiments are conducted with differ-
ent time delay values applied to the system. The process of
identification is the same as earlier. The identification results
are shown in Table 1.

It can be seen from Table 1 that the identification results
have a high accuracy. Specifically, the maximum absolute
error is 0.0022s in the case where the time delay is 0.9 s. The
maximum relative error is 0.84% in the case where the time
delay is 0.25 s.
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5 Conclusions

This paper presented an time delays in linear systems. First,
in SDOF systems, the relationships between time delays and
impedance functions of uncontrolled and delayed systems
were derived. The time delay is the “frequency” of the dif-
ference curve of the two impedance functions. This is the
principle of the identification approach.

Second, inMDOFsystems, the impedance functionmatrix
is the inverse matrix of the FRF matrix. Because FRF
matrixes cannot be completely measured in experiments, a
pseudo-impedance function, the reciprocal of the FRF, was
defined. Then the relationships between the time delay and
pseudo-impedance functions of uncontrolled and delayed
systems were deduced. The time delay was identified from
the difference curve of the two pseudo-impedance func-
tions.

Apart from numerical simulations of an SDOF system
and a 5-DOF system, an experiment was conducted on an
MDOF delayed system with acceleration feedback to ver-
ify the identification approach. Although the FRF curve of
the delayed system was measured in experiments, that of
the corresponding uncontrolled system was not available.
This means the curve of the pseudo-impedance function
of the uncontrolled system could not be obtained. Then
the EMD method was used to remove the trend line of
the curve of the pseudo-impedance function of the delayed
system. The trend line was actually the curve of the pseudo-
impedance function of the uncontrolled system. The time
delay was identified from the remaining oscillation curve.
Different time delay values were applied to the MDOF sys-
tem. The identification results of the time delay using the
proposed identification approach showed the faithfulness of
the approach.
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