
Acta Mech. Sin. (2016) 32(4):670–683
DOI 10.1007/s10409-016-0557-3

RESEARCH PAPER

Analytical and finite-element study of optimal strain distribution
in various beam shapes for energy harvesting applications

B. L. Ooi1 · J. M. Gilbert2 · A. Rashid A. Aziz3

Received: 28 September 2015 / Revised: 14 December 2015 / Accepted: 4 January 2016 / Published online: 9 May 2016
© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin
Heidelberg 2016

Abstract Owing to the increasing demand for harvesting
energy from environmental vibration for use in self-powered
electronic applications, cantilever-based vibration energy
harvesting has attracted considerable interest from various
parties and has become one of the most common approaches
to converting redundant mechanical energy into electrical
energy. As the output voltage produced from a piezoelec-
tric material depends largely on the geometric shape and
the size of the beam, there is a need to model and compare
the performance of cantilever beams of differing geometries.
This paper presents the study of strain distribution in various
shapes of cantilever beams, including a convex and concave
edge profile elliptical beam that have not yet been discussed
in any prior literature. Both analytical and finite-element
models are derived and the resultant strain distributions in
the beam are computed based on a MATLAB solver and
ANSYS finite-element analysis tools. An optimum geome-
try for a vibration-based energy harvesting system is verified.
Finally, experimental results comparing the power density for
triangular and rectangular piezoelectric beams are also pre-
sented to validate the findings of the study, and the claim, as
suggested in the literature, is verified.
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1 Introduction

Energy harvesting is the process by which energy is captured
from ambient resources (e.g., solar, thermal, wind, biochem-
ical, vibration) and converted to electrical energy for storage
or use. Over the last decade, owing to advances in inte-
grated circuits, the size and power consumption of electronic
devices have been dramatically reduced [1], which has made
it possible to power devices by energy harvesting techniques
without any external power sources. Wireless sensor sys-
tems are creating much interest because of their flexibility
and wider range of usable applications. Removing wires or
replaceable batteries from devices unlocks the potential for
placing the devices in previously inaccessible locations, such
as, for example, rooftops, underneath floor panels, or embed-
ded in building walls. In addition, by incorporating energy
harvesting into devices, several shortcomings of conventional
electronic devices may be overcome, such as the limited
lifetime that results from finite battery capacity and higher
maintenance costs for batteries replacement programs.

Vibration energy is one of the common resources that
is available at many locations targeted for wireless sensors.
For example, vibration energy is generally left unused and
redundant in buildings, machinery, traffic infrastructures and
many more locations. This makes vibration energy one of
the most attractive energy harvesting areas to be investigated
further for use as the power source in electronic devices and
wireless sensor networks. A few different types of trans-
ducer are generally used for the conversion of vibrations into
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electricity, including electrostatic [2], electromagnetic [3],
magnetostrictive [4], and piezoelectric [5] transducers. Each
type has its own advantages and drawbacks in term of device
size, output power density, cost, and so on. However, owing
to their energy conversion efficiency, piezoelectric transduc-
ers have rapidly gained momentum in recent years as one
of the most reliable mechanisms for converting mechanical
energy into electrical form [6]. Piezoelectric materials are
resilient, chemically inert, and small in size and allow oper-
ation at high temperature and humidity levels, as well as in
other challenging environmental conditions. This makes this
type of transducer suitable for many industrial applications,
such as powering machinery sensors that operate over a wide
temperature range and in dusty environments.

Although many other types of beam configurations are
available [7–10], cantilever beam configurations are still in
favor because they give lower resonant frequencies and rel-
atively higher strain for a given force input [11], whereas
the successful maximum power harvested has shown to be
greater for beams with lower resonant frequencies [12]. An
electrical potential difference will be generated from a piezo-
electric material when pressure is applied to it. This effect is
widely utilized by many researchers in energy harvesting to
convert kinetic motions into electrical energy. Many sources
in the literature have shown that piezoelectric transduction
is an effective conversion mechanism for use in energy har-
vesting [13–16]. These energy harvesting devices typically
consist of a cantilever beam made from a piezoelectric ele-
ment and a tip mass. Vibration of the cantilever mounting
causes deformation of the beam and, hence, the generation
of electricity. To extract the greatest output voltage from a
piezoelectric material, the type of materials and shape of the
beam must be carefully selected. Because of its high piezo-
electric coupling coefficient, lead zicronate titanate (PZT)
is preferable to other materials [17], including zinc oxide
(ZnO), galliumorthophosphate (GaPO4), andpolyvinylidene
difluoride (PVDF). Apart from the material, the geometric
parameters, such as the beam width, thickness, and length,
will also affect the amount of output emanating from the
beam [18]. Tomaximize the output, one canmatch the electri-
cal circuit impedance to the output load [19] or maximize the
material efficiency by maintaining a higher level of average
strain in the beam elements. However, the peak strain must
be limited to avoid permanent damage to the beam. Thus,
the greatest power density can be achieved if all parts of the
cantilever experience equal strain at a value just below the
maximum acceptable strain on the material (the maximum
acceptable strain might be set to the yield strength of the
material or, at a lower value, selected to give an appropriate
number of cycles before failure due to fatigue). Some work
has been performed to mathematically compare the perfor-
mance from various shapes of piezoelectric beam [20,21].
It has been concluded that for the same volume of piezo-

electric material, a tapered beam (approaching a triangular
shape) will have more evenly distributed strain throughout
the structure, as opposed to a rectangular beam that contains a
nonuniform strain distribution. Hence, a smaller, higher aver-
age output power density and less expensive harvester can
be achieved by implementing a truncated triangle cantilever
beam energy harvesting system. However, it is worthwhile to
investigate the output response and behavior from elliptically
profiled beams, which, to the authors’ best knowledge, have
not yet been considered. It is known that the fundamental
vibration frequency for almost all energy harvester applica-
tions is under some lower frequency, typically from 10 to
250Hz [22]. Hence, it is assumed that all beams under inves-
tigation in this paper will only be oscillated in a first-mode
vibration; because of this assumption, it is appropriate and
sufficient to model the beams using static analysis.

Themain focus of this paper is to compare the strain distri-
bution of various geometric shapes of single-layer cantilever
beams, including the elliptically profiled beams. The strain
effects in each beam are studied analytically and numerically
using the MATLAB solver and ANSYS multiphysics tools,
respectively. Both simulated results are then discussed and
benchmarked among themselves to validate the findings in
this investigation. Experimental results are also presented to
validate thefindings fromanalytical andfinite-element analy-
sis studies. Finally, the results are discussed and conclusions
drawn.

2 Analytical modeling of a cantilever beam

2.1 Model

An analytical model is developed to determine the strain
along the center line of the cantilever in the x direction. It
will be assumed that the strain is uniform in the y direction,
as given in Fig. 1.

Fig. 1 Center line on a rectangular cantilever beam
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Fig. 2 Cantilever beam with concentrated force at free end

For a cantilever beamwith one end fixed and the other end
free to move, as shown in Fig. 2, the bending moment, M , at
a point x along the cantilever beam from point A to point B
can be given as [23]

M(x) = F(L − x). (1)

When thewidth of the beam, b(x), is allowed to vary along
its length, x , the moment of inertia at a distance x from the
root is

I (x) = b(x)h3

12
, (2)

where F is the free-end force, x is the position along the beam
from the origin point A, L is the total length of the beam, and
b and h are the width and height dimensions of the beam,
respectively. Assuming that the strain across the width of the
cantilever beam is constant and that the deflection is small, it
is clear that when x = L , the bending moment at the free end
for the cantilever will be zero. Generally, the tensile stress
experienced by the beam can be expressed as [23]

σ = M(x)c

I (x)
= Ec

∂2u

∂x2
, (3)

where c is the distance from the beam’s neutral axis to a
point of interest (c is constant along the x direction for a
fixed-height cantilever beam), ∂2u

∂x2
is the second derivative

of the beam deflection u, and E is the Young’s modulus
for the material used in the beam. The relationship between
the bending strain at any x location as a function of beam
curvature, R, and the distance from the neutral axis can be
given as [24]

ε(x) = c

R
. (4)

Since the Young’s modulus for the material is E = σ/ε,
this gives the axial strain above the neutral axis as

ε(x) = c
∂2u

∂x2
= M(x)c

I E
. (5)

This implies that the second derivative of the beam deflection
is equal to the inverse of the radius of curvature, ∂2u

∂x2
= 1

R .
Five different geometric beam structures were inves-

tigated in this study (Fig. 3). Structure 1 is an ordinary
rectangular beam, structure 2 is a trapezoidal beam, and struc-
ture 3 is a triangular beam (ultimate trapezoidal condition).
Two elliptically profiled beams were also included in the
study to further investigate the effect on the beam strain if the
width geometry varies elliptically; they are structures 4 and 5,
which have convex and concave edge profiles, respectively.
If a line along the beam length is drawn through the center
line of the beam surface perpendicular to the fixed end, then
the strain values at all points on the center line (shown only
in structure 3 but applying to all structures in Fig. 3) can be
considered and plotted. All tested structures are fixed on one
side while a constant tip force is applied at the free end. For
the purposes of these calculations, it is assumed that the beam
length, L , and height, h (not shown in the figure), are set at 30
and 2mm, respectively. The width dimensions of the beam
ends for all the tested structures are summarized in Table 1.

Due to the differences in the beam profiles given in Fig. 3,
the strains in the beams for a given load are not directly
comparable. Hence, to normalize all the relative strains from
the different structures, the ratio of relative strain values at

Table 1 Fixed- and free-end width dimensions for different beam geo-
metric structures

Structure Fixed-end width,
b0 (mm)

Free-end width,
bfree (mm)

1 10 10

2 15 5

3 15 Very small, < 1

4 16 4

5 16 4

Fig. 3 Different geometric shapes of cantilever beams under investigation
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each point along the center line to the maximum strain of that
particular structure is considered in the comparison. This is to
ensure that all results computed from the different geometric
structures are normalized and comparable regardless of the
differences in geometric parameters. The normalized strain
for a given point on a beam can be given as

εn(x) = ε(x)

εm
, (6)

where x is the position along the beam structure, ε(x) is the
relative strain at position x , and εm is the maximum relative
strain in that particular beam structure. Equation (6) is then
used as an analytical model to compute the relative strain of
the different beam geometries.

2.2 Results and discussion for analytical modeling

In this study, the relative strain on each node was computed
analytically based on Eq. (6), and the normalized strains var-
ied along the beam position (Fig. 4). It is known that for one
to extract the maximum output voltage from piezoelectric
materials, the average strain in the entire beam across the
width and length must be maximized to the value where the
material encounters maximum strain, yet below the mater-
ial breakage limit that will cause permanent damage to the
beam.

For structure 1, an ordinary cantilever beam with a
rectangular profile, it can be seen that the highest strain
concentration is created at the fixed end where the bending
moment,M , is at itsmaximum.However, the strain decreases
as the position x along the beam increases, which implies
that, other than at the fixed end, most of the material ele-
ments on this beam are not stressed to their limit and, hence,
lower output is expected. Similarly, in structure 2, an increas-
ingly triangular trapezoidal profile beam, the highest strain
is created at the fixed end and decreases as the position x
increases. However, in this structure, the rate of decrease of
the normalized strains increases until the strain reaches zero
at the free end of the beam. Thus, averaged over the length
of the beam, this structure will have higher normalized strain
in the beam elements compared to structure 1. For the trian-
gular geometry in structure 3, most of the beam elements are
strained to a level that is very close to the material breakage
limit, and a dramatic decrement occurs only in the region
close to the free end of the beam. Hence, this strain energy
plot is considered a close-to-perfect curve since the majority
of thematerial in this beam is stressed to the level just slightly
below the material failure limit, which could generate most
output for the given volume of material. Furthermore, for
the profile of structure 4, the average strain for this beam is
slightly greater than the curve, as provided by structure 1, but
less than the ideal curve, as provided by structure 3. Finally,

for structure 5, it can be seen that the highest strain concen-
tration is not created at the fixed end as in the other four
tested structures but instead forms in the intermediate region
of the beam length. This structure shows a greater average
strain curve than any other structures in this study, except
for the profile in structure 3. It is also noteworthy that ellip-
tical beams, such as structures 4 and 5, are more difficult
to fabricate than a trapezoidal beam configuration, such as
structures 2 and 3. Hence, better average strain curves can
be achieved using structure 3 and yet at lower fabricating
cost.

Figure 4 shows the relative normalized strain curves along
the center line for various beam profiles. However, it is the
volume of material experiencing a particular strain that is of
interest. This can be estimated by assigning the normalized
strains obtained from the center line of the beam to the entire
width of the beam at the particular x value (assuming that the
strain across the width of the cantilever beam is constant).
Then the general equation of the total nodes available across
the beam width at x for those tested structures can be given
as

Nb(x) = b(x)

bfree(3)
, (7)

where the b(x) is the beam width of the tested structure at x
and bfree(3) is the free-endwidth in structure 3 (smallest beam
width among the tested structures). Theparticular normalized
strain, εn(x), can be obtained using Eq. (6), and the value
is then assigned to all the available nodes determined from
Eq. (7) for the given x position. By taking the sum of the
total nodes available across the beam width for the entire x
positions along the cantilever length, the total available nodes
in a particular structure can be determined by

NT =
L∑

x=0

Nb(x) = Nb(0) + Nb(1) + · · · + Nb(L). (8)

The values of normalized strain assigned to all the nodes
in the structures may conveniently be visualized as his-
togram plots with an equally split set of bins. The data are
normalized into the number of nodes as a percentage by
Np(#) = (N#/NT) × 100%, as given in Fig. 5, where the
N# is the number of nodes available in that particular bin for
# = 0, 0.05, 0.1, . . . , 0.95, 1. The percentage of nodes for
the five tested structures are summarized in Table 2. Only
nodes having a normalized strain larger than 0.5 [Np(>0.5)]
and 0.75 [Np(>0.75)] are considered.

From Fig. 5 it can be observed that structure 1 has almost
an equal proportion of nodes at each bin level, meaning that
the structure has a nonuniform strain distribution along the
cantilever beam. Followed by structure 2, the number of
nodes increases as the normalized strain goes from a lower
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Fig. 4 Normalized strain (analytical) along center line of various tested beam shapes

to a higher strain, meaning the majority of available nodes
are highly (>0.5) strained in this structure. For structure 3, it
shows an almost perfect strain distribution across the beam,
with almost all the available nodes highly strained at the high-
est level of the bin. For the elliptically shaped structure 4,
most of the available nodes are distributed around the mid-
dle ranges of the normalized strain. Lastly, for structure 5,
though most of the available nodes are highly strained, it
is still less efficient than structure 3. Table 2 clearly indi-

cates that structure 3 gives the best strain distribution among
the tested structures (Fig. 3) since the available nodes in this
structure are strained at the normalized strain level, which is
greater than 0.5 and 0.75. Although structure 5 does give a
large strain distribution compared to structures 1, 2, and 4,
this elliptical beam configuration ismore difficult to fabricate
than structure 2 or 3. Furthermore, structure 3 still provides a
larger number of nodes that are strained at the highest strain
level.
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Fig. 5 Histogram plots (analytical) for number of nodes against various values of normalized strain

3 Finite-element modeling of cantilever beam

3.1 Model

In the previous analytical modeling, the strain was assumed
to be constant across the width of the cantilever beam,
but practically this is not the case. Hence, in this section,

modeling is carried out on similar structures (Fig. 3) using
the ANSYS structural static stress analysis tool to com-
pare the strain distribution for a single-layer piezoelectric
(PZT-5A4E) cantilever beam. The Young’s modulus and
Poisson’s ratio for the material used in the beam are given as
66 N·m−2 and 0.31, respectively. Like the analytical mod-
eling, all the tested structures are fixed on the left end,
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Table 2 Number of nodes with normalized strain (analytical) bigger
than 0.5 and 0.75 for beams under test

Structure Number of node structures
with εn > 0.5, Np(>0.5) (%)

Number of nodes with
εn > 0.75, Np(>0.75)(%)

1 50 25

2 84.32 62.44

3 100 100

4 78.15 38.88

5 91.78 85.55

Fig. 6 Tip mass block with a constant force on striped surface

but now with the tip mass represented as a block of mate-
rial (10mm × 5mm × 2mm) attached at the free end of the
cantilever. A constant force is then applied on the striped sur-
face of the block, as illustrated in Fig. 6. All the structures
under test are discretized (meshed) with a fixed element size
of 1mm in length (Fig. 7). Finally, the location of the block of
tip mass on each structure is indicated by the dashed lines in
Fig. 7.

By applying a fixed force to all the structures on the tip
mass, which is placed at the free end of each structure, the
strain distribution for these beams can be computed using
the ANSYS tool as given in Fig. 8. The color tones on each
structure indicate the strain level at that particular point. To
obtain pragmatic strain outputs from these structures, one
should carefully select the applied force so that the high-
est strain in the material of the structure is limited below
the material breakage limit. Because the maximum strain for
every structure is altered when the geometry changes, it is
necessary to normalize the strain for a given point obtained
from the beam according to Eq. (6). The normalization is to
ensure that all data obtained from the various geometries are
comparable not only within this model but also with those
obtained from the previous analytical model, as discussed in
Sect. 2.

3.2 Results and discussion for finite-element modeling

From Fig. 8 it can be seen that the strain distribution on
each structure varies when the beam geometry changes and
is not uniform across the beam width, as was assumed in
the previous analytical model. However, it is difficult to
determine which structure provides the best strain distrib-
ution by just observing the color tone (red means highly
strained zone, blue means the opposite). Hence, to make this
finite-element model comparable with the previous analyt-
ical model, the relative strain along the beam center line
(see Fig. 3) and the histogram based on the number of
nodes against various values of normalized strain bins are
plotted in Figs. 9 and 10, respectively. Because the strain
across the width of the cantilever is no longer constant in
each geometry, as computed by ANSYS analysis, the data
presented in Figs. 9 and 10 are more variable than those
obtained from the analytical model and shown in Figs. 4
and 5.

Despite the variability of the data from the structural
analysis, both finite-element analysis and analytical data are
similar in their behavior. The trend of the curves in Fig. 9
and the histogram plots in Fig. 10 can be compared with
those obtained analytically in Figs. 4 and 5. Note that in
this strain distribution study, the ANSYS structural study
is a more precise model that considers all the nonuniform
strain distributions in each structure compared to the ana-
lytical model computed using the MATLAB solver, which
assumed that the strains are constant across the width of the
beam length.Although it ismathematically possible tomodel
the strain distribution without analytically making any con-
stant strain assumption, this would add complexity to the
calculation in the model, and the ANSYS structural analy-
sis method may be considered more effective and less time
consuming.

From the data given in Fig. 8, it can be seen that there
are regions of beam material that are highly strained at
the positions next to the fixed end in each structure. Simi-
larly, in Fig. 9, the normalized strain plots show that all the
tested structures have a spike approximately at the beam
position x ≈ 1mm, which implies a high stress concen-
tration at that beam section. In practical terms, this reduces
the maximum strain, which can be applied to each structure
before the material breakage limit is reached. In structure 5,
the stress concentration in the middle section of the beam
seems to be higher than that near the fixed-end section; how-
ever, this kind of strain distribution pattern will result in
beam failure if an average strain of the beam is the main
concern because the strain in the beam will exceed the mate-
rial breakage limit if the average strain is pushed to the
limit.

Similarly to the analytical model, the percentage of the
nodes having a normalized strain larger than 0.5 [Np(>0.5)]
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Fig. 7 Discretization of tested beam structures

and 0.75 [Np(>0.75)] in the five tested structures are sum-
marized in Table3. Although the overall percentages shown
in this table are lower than those in Table2, they are sim-
ilar in behavior. From Figs. 9 and 10 it can be noticed that
structure 5 is comparable to structure 3 in terms of their aver-
age strain in the beam. However, Table3 clearly indicates
that structure 3 still gives the best average strain distrib-
ution according to the percentage of nodes. It consists of
79.33% of the nodes having a normalized strain, which is

greater than 0.5 and63.37%of the nodes having a normalized
strain, which is greater than 0.75. This clearly demonstrates
that structure 3 is still the most efficient structure in terms
of maintaining the optimum average strain in the material
across the beam. Furthermore, it is also more cost effec-
tive to fabricate a triangular structure than an elliptical beam
structure, which could comewith various elliptical geometric
profiles.
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Fig. 8 (Color online) ANSYS structural analysis of tested beam structures

4 Experimental results

According to both the aforementioned analytical and finite-
element model outputs, structure 3 is the most highly
strained and cost-effective geometry for use in a piezoelectric
cantilever-based energy harvesting system. Because of the
good agreement between the analytical and finite-element
outputs, this demonstrates the reliability of both models.
In addition, it is also costly and difficult to cut the piezo-
electric material manually into an elliptical shape without

breaking the piezoelectric elements. Piezoelectric material
is best cut using a special diamond saw; however, even with
practice this method still produces destructive cuts to the
parts, which may affect the behavior of the beam. Hence,
in this section, only an actual output power from a conven-
tional rectangular beam (structure 1) will be compared with
the output from a triangular beam (structure 3); it is believed
that these models will provide sufficient validation for other
structures.
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Fig. 9 Normalized strain (finite element) along center line of various tested beam shapes

Piezoelectric bimorph actuators from Piezo System Inc.
MA, USA are used in this experiment. Each beam consists
of a layer of brass sandwiched between layers of PZT-5A4E
material. Figure11 shows the rectangular bender beam and
a smaller bender beam that is carefully cut into triangu-
lar shape from a square beam. The control system setup

for this experiment is shown in Fig. 12. Both beams were
mounted on a vibration shaker (LDS-V406/8) that was driven
by a range of driving frequencies from 40 to 60Hz at an
acceleration amplitude of 0.5g. To determine the maximum
available power that can be delivered to the load, both beam
outputs were connected to their optimum matched resis-
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Fig. 10 Histogram plots (finite element) for number of nodes against various values of normalized strain
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Table 3 Number of nodes with normalized strain (finite element)
greater than 0.5 and 0.75 for tested beams

Structure Number of nodes with
εn > 0.5, Np(>0.5) (%)

Number of nodes with
εn > 0.75, Np(>0.75) (%)

1 42.35 20.10

2 68.45 38.28

3 79.33 63.37

4 63.23 19.54

5 72.01 60.06

Fig. 11 Rectangular and triangular benders

tances, which were experimentally determined to be 71 and
22k� for the triangular and rectangular benders, respec-
tively. The outputs from the prototypes were recorded and
analyzed using a data acquisition adapter (ADLINK DAQ-
2205). The generated power was then computed as P =
V 2/R, where V is the peak voltage transferred to the resis-
tive load for the system R, and the output response of the
power against the sweep driving frequencies is plotted as in
Fig. 13.

Figure 13a illustrates the recorded outputs fromboth trian-
gular and rectangular beams. It indicates that the maximum
power recorded from the rectangular beam is higher than
the output recorded from the triangular beam. The rectan-
gular and triangular beams produce 1.58mW at 43.7Hz
and 0.23mW at 45.5Hz, respectively, which contrast with
the finding in the aforementioned analytical and finite-
element models, suggesting that a triangular beam is a
better beam structure for an energy harvesting system. How-
ever, this contrast is due mainly to the difference in the
size of the piezoelectric bimorph actuators used in the
experiment. Comparing the power density for the two can-
tilevers, which have effectivematerial volumes of 721.7mm3

(44.5× 31.8× 0.51) and 56.1mm3 (0.5× 20× 11× 0.51),
respectively, results in the frequency responses shown in
Fig. 13b. After normalizing the output power, the triangu-
lar beam is seen to record a higher output power density
than the rectangular beam. The peak normalized power den-
sities (NPDs) are obtained as 2.19 and 4.05µW/mm3 for
the rectangular and triangular beams, respectively, which is
in agreement with the findings of the analytical and finite-
element models, meaning the triangular beam will produce
higher output power than the rectangular beam. To further
clarify the comparison, Table4 summarizes the maximum
output power, beam volume, and NPD of both beams tested
in this experiment. Roundy et al. [11] claimed that with the
same volume of PZT and an increasingly triangular trape-
zoidal beam profile, the strain distribution can be made more
even. Hence, an ultimate trapezoidal beam geometry (trian-
gle) can produce twice the power (per unit volume of PZT)
as the conventional rectangular beam geometry. However,
less than twice the energy was obtained in this experiment
(4.05/2.19 = 1.85). This may be a result of the imperfection
of the triangular profile of the structure during the shearing
process, which was completed manually instead of by using
a machine.

Fig. 12 Experimental setup of a vibration shaker system
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Fig. 13 Comparison of output from rectangular and triangular beams. a Initial. b Normalized output power

Table 4 Summary of comparison between triangular and rectangular
beams

Shape Maximum
output power
(mW)

Volume
(mm3)

Normalized
power density
(NPD, µW/mm3)

Rectangular 1.58 721 2.19

Triangular 0.23 56.1 4.05

5 Conclusion

This paper presents a strain distribution analysis of five
cantilever structures that come with different geometric
configurations, including elliptically profiled beams never
before considered in the literature. Analytical and finite-
element models of the tested structures were implemented
in the MATLAB solver and ANSYS finite-element analy-
sis, respectively. All the strain values on the investigated
nodes from each structure were computed and normalized
so that the results obtained from different sets of models
could be compared and the structure with the greatest aver-
age strain determined. The results recorded frombothmodels
are comparable with respect to their behavior: both models
suggested that a triangular (structure 3) cantilever beam is the
best geometry in terms of improving the output power for a
vibration-based energy harvester. The triangular structure not
only maximizes the material average strain for a given input
but also improves robustness by reducing the stress concen-
tration on the cantilever beam. With this improvement, both
the size and the cost of a system can be greatly reduced.
Although the results show that a concave elliptical profiled
beam (structure 5) looks very promising in terms of its out-
put power compared to any of the other tested structures,
numerical tabulation still shows that structure 3 gives the

best average strain distribution according to the percentage
of the nodes, thereby filling a gap in the literature, leading
to the conclusion that a triangular beam is still better than
an elliptical profiled beam, but such a beam was not consid-
ered in any previously published studies. In addition, the cost
of fabricating a triangular structure can be relatively lower
compared to the shape of an elliptical beam structure that
is more complex. Lastly, this finding is also supported by
the experimental outcome, which clearly proved that a tri-
angular geometry can definitely produce a greater NPD than
an ordinary rectangular geometry. A roughly 85% power
density improvement is achieved, as recorded from the tri-
angular beam compared to a conventional rectangular beam,
as a result of the greater average strain in the beam material.
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