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Abstract The complex stress intensity factor K governing
the stress field of an interface crack tip may be split into two
parts, i.e., K̂ and s−iε, so that K = K̂ s−iε, s is a character-
istic length and ε is the oscillatory index. K̂ has the same
dimension as the classical stress intensity factor and charac-
terizes the interface crack tip field. That means a criterion for
interface cracks may be formulated directly with K̂ , as Irwin
(ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for
the classical fracturemechanics. Then, for an interface crack,
it is demonstrated that the quasiMode I andMode II tip fields
can be defined and distinguished from the coupled mode tip
fields. Built upon SIF-based fracture criteria for quasi Mode
I andMode II, the stress intensity factor (SIF)-based fracture
criterion for mixed mode interface cracks is proposed and
validated against existing experimental results.

Keywords Interface crack · Stress singularity · Fracture
criterion · Stress intensity factor

1 Introduction

Interfaces exist in numerous materials and structures, either
natural or man-made. The fundamental objective of interface
fracture mechanics is to develop a criterion for predicting the
extension of interface cracks, by extending Irwin’s pioneer-
ing work [1]. In 1957, Irwin identified three independent
modes of the singular stress field near a crack tip in a homo-
geneous isotropic body, and characterized each mode by a
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corresponding normalized parameter, called the stress inten-
sity factor (SIF). Then, Irwin [1] defined a new material
property, fracture toughness, as the critical SIF that a mate-
rial can sustain. This idea leads to the now well-established,
SIF-based fracture mechanics criterion.

In 1959, Williams [2] found that, under in-plane loading,
the singular exponent of a crack resting on the interface of
twobonded isotropicmaterials is a complex number, 1/2+iε,
where ε is a constant related to the elastic properties of two
isotropic materials and known as the oscillatory index. Thus,
if ε �= 0 (as it is for most cracks in dissimilar media), the
singular stress field near the interface crack tip is oscillatory
[2]. Later, to complicate the case further, England [3] demon-
strated the existence of crack/contact interference near the
tip of an interface crack. Such pathological singularity at an
interface crack tip caused the delay of an appropriate fracture
criterion governing interface crack extensions.

In 1988, Rice [4] extended Irwin’s concept to interface
cracks. Given that the two in-plane modes of an interface
crack are coupled, he ignored the pathological phenomena
in the vicinity of the interface crack tip and defined the com-
plex stress intensity factor K = K1 + iK2 as a new crack
tip characterizing parameter [5]. K1 and K2 are the SIFs of
the Mode I andMode II components of an interface crack tip
field, respectively. However, the dimension of K is depen-
dent upon iε, hence, it is difficult to employ K to establish
suitable fracture criterion for interface cracks. One year later,
to address this critical issue, Suo [6] introduced the combi-
nation Kl iε (l being an arbitrary length) so that combination
Kl iε has the same dimension as the classical SIF. While the
real and imaginary parts of the combination Kl iε depend on
the value of l, it does not affect the amplitude of the combi-
nation. He then introducedψ = tan−1

[
Im(Kl iε)/Re(Kl iε)

]

as the phase angle of an interface crack to develop an inter-
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face fracture criterion based on the strain energy release
rate G, namely, G (ψ) = GC(ψ) [6]. For a given bimate-
rial, the critical strain energy release rate GC (ψ), known
as toughness of the interface, depends on the phase angle
ψ [6,7]. Thereafter, Yuuki and Xu [8] presented a criterion
based on the maximum tangential stress theory while Yuuki
et al. [9] proposed the empirical elliptical fracture criterion
(K1/K1C)2 + (K2/K2C)2 = 1, which can well describe the
experimental results. Recently, assuming that the interface
possesses deformation capacities for volume and distortional
deformation energy, Cai and Xu [10] developed a fracture
criterion for an interface crack and an interfacial debonding
criterion for a perfectly bonded interface. Banks-Sills [11]
summarized comprehensively the progress in interface frac-
ture mechanics. Conceptually, despite the significant efforts
made by many scholars, it appears that the G–based fracture
criterion is so far the best criterion.

The aim of the current study is to establish a SIF-based
fracture criterion for interface cracks, which is not only con-
ceptually sound but also overcomes the limitations associated
with the G-based fracture criterion. To this end, firstly, the
dimension of the complex SIF K is re-investigated. For an
interface crack, its complex SIF is split into two parts, i.e.,
K = K̂ s−iε, where s is a characteristic length of the dissimi-
larmedia containing the crack, and K̂ has the samedimension
as the classical SIF and characterizes the interface crack tip
field. Secondly, the quasi Mode I andMode II crack tip fields
are then defined and distinguished from the crack tip fields
of general coupled modes. Finally, based on fracture crite-
ria involving quasi Mode I and Mode II SIFs, the fracture
criterion involving SIFs for the mixed mode is proposed.
Validation of the new criterion is carried out using existing
experimental results.

2 Stress intensity factor (SIF)

2.1 Dimensional dilemma

Rice solved the eigenvalue problem of a semi-infinite
traction-free crack lying along the interface between two
isotropic half planes with Muskhelishvili’s method, and
expressed the singular stress field near the crack tip [5] as

σi j = 1√
2πr

[
Re(Kr iε)σ̂ I

i j (θ, ε) + Im(Kr iε)σ̂ II
i j (θ, ε)

]
,

(1)

where the imaginary part of the singularity exponent ε is
termed as the oscillatory index, K is the complex SIF, and
σ̂ I
i j (θ, ε) and σ̂ II

i j (θ, ε) are the dimensionless angular distribu-
tion functions forMode I andMode II tip fields, respectively.

Typically, the unit of K is MPa
√
mm−iε, which depends

on the elastic properties of the two bonded materials via the
oscillatory index ε. As a result, the material dependent unit
of K causes difficulties when the system of units is changed
[5], hence, the dilemma of using K for constructing a fracture
criterion.

The dimension of K is:

K = [stress]
[
length

]1/2−iε
. (2)

Dimensional analysis dictates that K should be composed of
two parts:

K = K̂ s−iε, (3)

where s is a characterizing length (see next section) and the
normalized SIF K̂ has the same dimension as the classical
SIF defined by Erwin [1], as

K̂ = [stress]
[
length

]1/2
. (4)

Substitution of Eq. (3) into Eq. (1) leads to:

σi j = 1√
2πr

{
Re

[
K̂

(r
s

)iε]
σ̂ I
i j (θ, ε)

+ Im

[
K̂

(r
s

)iε]
σ̂ II
i j (θ, ε)

}
. (5)

Since K̂ characterizes the interface crack tip field as showed
in Eq. (5), a criterion for interface cracks may be formulated
directly with K̂ , as Irwin did in classical fracture mechanics.

2.2 Expression of SIF

Practically, the complex SIF K can only be determined by
solving a specific boundary value problem. Throughout this
study, the problem of an infinite bimaterial plane containing
an interface crack of length 2a subjected to in-plane stressing
(σ∞

yy , σ∞
xy ) at infinity is taken as a typical example.According

to the solution of Rice [5], K can be expressed as

K = (1 + 2iε)
(
σ∞
yy + iσ∞

xy

)
(2a)−iε√πa, (6)

where 2a is the length of the interface crack, and the real and
imaginary parts of K are:

K1 = √
πa

{
cos[ε ln(2a)]

(
σ∞
yy − 2εσ∞

xy

)

+ sin[ε ln(2a)]
(
σ∞
xy + 2εσ∞

yy

)}
, (7)

K2 = √
πa

{
cos[ε ln(2a)]

(
σ∞
xy + 2εσ∞

yy

)

− sin[ε ln(2a)]
(
σ∞
yy − 2εσ∞

xy

)}
. (8)
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It is seen from Eq. (6) that (2a)−iε in the expression of K is
the origin of its dimensional dilemma. To critically address
this issue, let K be re-expressed as

K = K̂ (2a)−iε, (9)

where

K̂ = (1 + 2iε)(σ∞
yy + iσ∞

xy )
√

πa. (10)

The real and imaginary parts of K̂ are:

K̂1 = √
πa(σ∞

yy − 2εσ∞
xy ), (11)

K̂2 = √
πa(σ∞

xy + 2εσ∞
yy ). (12)

In contrast to the conventional definition of complex SIF K
as showed in Eq. (6), the newly introduced complex SIF K̂
has the same dimension as the classical SIF.

In Eqs. (11) and (12), although the two in-plane modes
are coupled even if the interface crack is subjected to simple
tension or pure shear at remote, the quasi Mode I or quasi
Mode II crack tip fields can be defined as shown below.

2.3 Quasi Mode I and Mode II crack tip fields

For the case of σ∞
xy = 0, K̂1 and K̂2 of Eqs. (11) and (12)

are reduced to:

K̂1 = √
πaσ∞

yy , (13)

K̂2 = 2ε
√

πaσ∞
yy . (14)

It is seen that K̂1 and K̂2 are not mutually independent, both
depending on σ∞

yy . The singular crack tip field is not a pure
Mode I but one with substantial Mode I component, and
hence it may be called the quasi Mode I. Let K̂QI act as the
characterizing parameter of the quasi Mode I crack tip field.
Then, Eqs. (13) and (14) become:

K̂1 = K̂QI, (15)

K̂2 = 2εK̂QI. (16)

For the case of σ∞
yy = 0, K̂1 and K̂2 read as

K̂1 = −2ε
√

πaσ∞
xy , (17)

K̂2 = √
πaσ∞

xy . (18)

For the same reason, this is not a pure Mode II singularity
but one with substantial Mode II component, so it may be
called the quasi Mode II. Let K̂QII represent the characteriz-
ing parameter of the quasi Mode II crack tip field, then:

K̂1 = −2εK̂QII, (19)

K̂2 = K̂QII. (20)

For an interface crack of ε = 0, the quasi Mode I and quasi
Mode II degenerate exactly to Mode I and Mode II, respec-
tively.

2.4 Phase angle of mixed mode crack tip fields

For the case of combined loading σ∞
yy and σ∞

xy , K̂1 and K̂2

are:

K̂1 = K̂QI − 2εK̂QII, (21)

K̂2 = K̂QII + 2εK̂QI. (22)

This is amixedmode of K̂QI and K̂QII, and the corresponding
phase angle is defined as

ψ̂ = tan−1

(
K̂QII

K̂QI

)

. (23)

Quasi Mode I and Mode II are the particular cases corre-
sponding to ψ̂ = 0 and ψ̂ = π/2, respectively.

3 Stress intensity factor based fracture criterion
for interface cracks

Based on the newSIF expression for interface cracks detailed
in the previous section, the SIF-based fracture criterion is
presented below.

3.1 Criterion for quasi Mode I and Mode II

Equations (15) and (16) suggest that once K̂QI is determined,
K̂1 and K̂2 are determined. In other words, one may use
K̂QI to establish a fracture criterion for quasi Mode I cracks.
Accordingly, the quasi Mode I criterion governing the exten-
sion of an interface crack takes the form:

K̂QI = K̂QIC, (24)

where K̂QIC is the critical SIF for quasi Mode I to be deter-
mined by experiments.

Similarly, one may use K̂QII to establish a fracture crite-
rion for quasi Mode II cracks, it takes the form:

K̂QII = K̂QIIC, (25)

where K̂QIIC is the critical SIF for quasi Mode II to be deter-
mined by experiments.
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3.2 Criterion for mixed mode

It is proposed that the SIF-based fracture criterion for amixed
mode interface crack can be expressed in the following form:

F(K̂QI, K̂QII) = FC, (26)

where KQI and KQII are separately the quasi Mode I and
Mode II SIF components of a mixed mode crack tip field.

At present, the exact expression of function F in terms of
KQI and KQII is not known. In the present study, as a first
approximation, it is assumed that:

(
K̂QI

K̂QIC

)2

+
(

K̂QII

K̂QIIC

)2

= 1, (27)

where K̂QIC and K̂QIIC are the critical stress intensity fac-
tors defined in Sect. 3.1 for quasi Mode I and Mode II,
respectively. The validity of Eq. (27) will be checked against
experimental results in Sect. 5.

4 Energy release rate-based fracture criterion for
interface cracks

The fracture criterion of interface cracks can be formulated
either in terms of SIF or energy release rate, G. For interface
cracks between dissimilar media, the relation between SIF
and G is [12]:

G = |K |2
E∗ cosh2 (πε)

, (28)

where

1

E∗ = 1

2

(
1

E1
+ 1

E2

)
, (29)

and

E = E

1 − ν2
. (30)

On account of |K |2 =
∣∣∣K̂

∣∣∣
2
, substitution of Eqs. (21) and

(22) into Eq. (28) leads to:

G =
(
1 + 4ε2

) (
K̂ 2
QI + K̂ 2

QII

)

E∗ cosh2 (πε)
. (31)

As a result, the general G-based criterion may be formulated
in an alternative form, as

G
(
ψ̂

)
= GC

(
ψ̂

)
. (32)

The new expression of G-based criterion (Eq. (32)) is
advisable because ψ̂ and the mixed mode have a one-to-
one relationship. The new expression of G-based criterion
(Eq. (32)) and the original expression of G-based criterion
G (ψ) = GC(ψ) are substantially identical, for the phase
angle ψ̂ and phase angle ψ can be mutually conversed with
a given oscillatory index ε and arbitrary length l.

In addition, let GI and GII denote separately the energy
release rate contributed by K̂QI and K̂QII, the SIF-based frac-
ture criterion (Eq. (27)) can be equivalently transformed into
a criterion based on the energy release rate, as

(
GI

GIC

)
+

(
GII

GIIC

)
= 1, (33)

where GIC and GIIC represent the critical energy release
rate for quasi Mode I and Mode II, respectively. In view of

Eq. (33), the toughness curve GC

(
ψ̂

)
may be characterized

using two material property constants GIC and GIIC, as

GC

(
ψ̂

)
=

GIC

(
1 + tan2 ψ̂

)

1 + (GIC/GIIC) tan2 ψ̂
. (34)

The derivation of Eq. (34) is given in Appendix 1.
The new expression of G-based criterion (Eq. (32)) cou-

pled with Eq. (34) has a distinctive advantage: GC

(
ψ̂

)
is

a function of phase angle ψ̂ and depends on two material
constants GIC and GIIC only, so a tedious experimental task

is not needed to determine GC

(
ψ̂

)
. GIC and GIIC are deter-

mined either by experiments or by Eq. (31) once K̂QIC and
K̂QIIC are known.

5 Validation against experimental results

It is noted that Liechti and Chai [13] measured the critical
interface toughnesswith a plane strain specimen as showed in
the insert of Fig. 1. The problem associated with the interface
crack in this specimen has been solved analytically by Rice
[14]. The test specimen had a thickness h of 12.7 mm and a
length longer than the thickness. The bimaterial system used
was epoxy/glass with the properties: E1 = 2.07 GPa, ν1 =
0.37, and E2 = 68.9 GPa, ν2 = 0.20. The oscillatory index
ε was 0.06. The loading was restricted between ψ̂ = −76◦
and ψ̂ = 65◦.

The existing experimental data on the critical interface
toughness depicted in the GC ∼ ψ plane (see Fig. 13 in
Ref. [7]) are re-plotted in the GC ∼ ψ̂ plane with hollow
symbols, as shown in Fig. 1, (The relation between ψ and
ψ̂ is given in Appendix 2). The experimental critical energy
release rate for the quasi Mode I is GIC = 4.17 J/m2. As
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Fig. 1 Predicted toughness curve GC

(
ψ̂

)
compared with experimen-

tal results [13]

the critical energy release rate for the quasi Mode II GIIC is
not included in the experimental results, wemay estimate the
value of GIIC indirectly by Eq. (34) with another appropriate
data point, such as ψ̂ = −74◦,GC = 32 J/m2. Accord-
ingly, the critical energy release rate for the quasi Mode II
is assumed approximately as GIIC = 70.6 J/m2. Knowing
GIC = 4.17 J/m2 and GIIC = 70.6 J/m2, the interface
toughness curve predicted by Eq. (34) is also depicted in
Fig. 1 with a solid curve. It is seen that the predictions of the
G-based fracture criterion agree well with the experimental
results.

It should be pointed out that, as the experimental data of
Liechti and Chai [13] lacks values of GIIC as well as GC

when ψ̂ is close to ±π/2, further experimental verification
is needed.

6 Concluding remarks

The widely accepted fracture criterion for predicting the
extension of an interface crack has been based on an energy
release rate G (ψ), whereas in classical fracture mechanics
such a criterion for monolithic cracks is formulated in terms
of the SIF. In the current study, by modifying the definition
of SIF for interface cracks so that it has the same dimen-
sion as the classical SIF, a SIF-based fracture criterion is
formulated. Thereupon, three types of fracture criterion for
interface cracks are developed: the K̂QI ∼ K̂QII criterion, the

GI ∼ GII criterion, and the G
(
ψ̂

)
criterion with empirical

toughness curve GC

(
ψ̂

)
. The validity of the proposed frac-

ture criteria is checked against existing experimental data,
with good agreement achieved.

Up to now, oscillatory singularity and crack/contact inter-
ference are obstacles facing the further investigation of
interface fracture mechanics. However, the existing study
demonstrates that a fracture criterion for interface cracks can
be developed adequately. Then an obvious question is raised:
why the fracture criterion for interface cracks can bypass the
oscillatory singularity and crack/contact interference near the
tip of an interface crack? Future investigation of this critical
issue is needed to provide further insight into the nature of
stress singularities associated with interface cracks.
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Appendix 1

The criterion for mixed mode based on the energy release
rate for an interface crack is

(
GI

GIC

)
+

(
GII

GIIC

)
= 1, (35)

therefore,

GI = GIC − GIC
GII

GIIC
. (36)

Since

tan ψ̂ = K̂QII

K̂QI
, (37)

we have

tan2 ψ̂ = GII

GI
, (38)

and

G
(
ψ̂

)
= GI + GII = GI

(
1 + tan2 ψ̂

)
. (39)

Substitute Eq. (36) into Eq. (39),

G
(
ψ̂

)
= GIC

(
1 − GII

GIIC

) (
1 + tan2 ψ̂

)
, (40)

then, Eq. (40) may be simplified to the criterion based on the
energy release rate as follows,
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G
(
ψ̂

)
=

GIC

(
1 + tan2 ψ̂

)

1 + (GIC/GIIC) tan2 ψ̂
. (41)

Appendix 2

In addition, Liechti and Chai [13] measured the critical inter-
face toughness with a plane strain specimen as showed in the
insert of Fig. 1. The problem associated with the interface
crack in this specimen has been solved analytically by Rice
[14]. The solution is

K1 + iK2

=
√
2μ1μ2h−1/2−iεeiω (cV + iU )

(
1−β2

)1/2
(μ1+μ2)

1/2 [μ1 (1−ν2)+μ2 (1−ν1)]1/2
,

(42)

where

c =
{

2 (μ1 + μ2)

μ1 [(1 − 2ν2)/(1 − ν2)] + μ2 [(1 − 2ν1)/(1 − ν1)]

}
,

(43)

for this specimen system, ω = 16◦ and ε = 0.06.
The phase angle ψ is defined as

ψ = tan−1

[
Im

(
Kl iε

)

Re
(
Kl iε

)

]

, (44)

where

Kl iε =
√
2μ1μ2h−1/2 (l/h)iε eiω (cV + iU )

(
1 − β2

)1/2
(μ1 + μ2)

1/2 [μ1 (1 − ν2) + μ2 (1 − ν1)]1/2
.

(45)

The phase angle ψ is given in Sect. 4 of Ref. [7], as

ψ = γ + ω + ε ln (l/h) , (46)

where

γ = tan−1 [U/(cV )] . (47)

In the present paper,

K̂QI =
√
2μ1μ2h−1/2 (cV )Re

(
eiω

)

(
1 − β2

)1/2
(μ1 + μ2)

1/2 [μ1 (1 − ν2) + μ2 (1 − ν1)]1/2
,

(48)

K̂QII =
√
2μ1μ2h−1/2 (U ) Im

(
eiω

)

(
1 − β2

)1/2
(μ1 + μ2)

1/2 [μ1 (1 − ν2) + μ2 (1 − ν1)]1/2
,

(49)

and the phase angle ψ̂ is defined as

ψ̂ = tan−1

(
K̂QII

K̂QI

)

. (50)

From Eqs. (49)–(51), we have

ψ̂ = γ + ω. (51)

It follows that

ψ̂ = ψ − ε ln (l/h) . (52)
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