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Abstract This paper presents a criterion for high-cycle
fatigue life and fatigue strength estimation under periodic
proportional and non-proportional cyclic loading. The cri-
terion is based on the mean and maximum values of the
second invariant of the stress deviator. Important elements
of the criterion are: function of the non-proportionality of
fatigue loading and the materials parameter that expresses
the materials sensitivity to non-proportional loading. The
methods for the materials parameters determination uses
three S–N curves: tension–compression, torsion, and any
non-proportional loading proposed. The criterion has been
verified using experimental data, and the results are included
in the paper. These results should be considered as promis-
ing. The paper also includes a proposal for multiaxial fatigue
models classification due to the approach for the non-
proportionality of loading.

Keywords Multiaxial fatigue · Non-proportional loading ·
Multiaxial fatigue criterion · Fatigue life prediction · Fatigue
strength

1 Introduction

To determine multiaxial fatigue life and strength in the case
of service loadings, the influence of non-proportional load-
ings should often be considered. In cases of these kinds of
loadings, the rotation of stress or strain principal axes takes
place. For many materials non-proportional loading results
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in additional cyclic hardening and a significant decrease of
fatigue life (even a 10-fold [1,2]) and fatigue limit (even
25% [3,4]). Materials of low value for stacking fault energy
are particularly sensitive to non-proportional loadings [5].
There are a lot of proposals for multiaxial fatigue criteria.
The proper evaluation of the criteria is hampered by the lack
of their classification due to the way of taking into account
the non-proportionality of loading. Below, such a classifi-
cation of multiaxial models is presented. Two features have
been chosen for the classification of the criteria: introduction
of loading non-proportionality function fnp and the mater-
ial sensitivity for non-proportional loading λnp. Four classes
have been distinguished:

• NP1 class models which do not take into account
the influence of non-proportionality on fatigue life or
strength. An example of a criterion which lacks fnp and
λnp can be the Sines criterion [6]:

√
J2a + pσH,mean = q, (1)

where
√
J2a is the amplitude of the square root of the

second invariant of the stress deviator,σH,mean is themean
hydrostatic stress, p, q are materials parameters. Other
solutions of this type include namely the Machas criteria
[7,8].

• NP2 class models which take into account the influ-
ence of non-proportionality, but do not calculate the
degree of non-proportionality. Thus, the degree of non-
proportionality is only passively included in these mod-
els. Among these models one can distinguish those in
which the degree of non-proportionality is calculated by
other, associatedmodels, e.g., by cyclic plasticitymodels.
The influence of non-proportionality in this case can be
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taken into consideration through the relationship between
strains and stresses. Owing to the above, quantities fnp
and λnp do not occur in a fatigue model. An example of
this model is, e.g., the solution proposed by Fatemi and
Socie [9]:

�γ

2

(
1 + k

σmax

σy

)
= f (N f ), (2)

where �γ is a range of the shear strain, σmax is maxi-
mum normal stress, σy is yield stress and k is a material’s
parameter. This group includes all strain–stress models,
namely: Chen et al.’s [10], or Lagoda andMachasmodels
[11].

• NP3 classmodels that allow the calculating of the degree
of the non-proportionality of load, thus the degree of
non-proportionality λnp is actively integrated within the
criterion. A simple example of this solution type is Lees
criterion [11] for out-of-phase sinusoidal loading:

(
τa

τ−1

)2 fnp
+

(
σa

b−1

)2 fnp
= 1, (3)

where τa is the nominal amplitude of shear stress, σa is
the nominal amplitude of normal stress, τ−1 is the fatigue
limit in torsion, b−1 is the fatigue limit in bending, fnp =
1+q sin δ, q is the materials parameter and δ is the phase
shift angle. Othermodels that can be classified as being in
this group are the criteria of Sonsino [12], Papadopoulos
[13], and de Freitas and coworkers [14].

• NP4 class models which include a function defining
the non-proportionality degree λnp and sensitivity to the
loadings non-proportionality parameter. Such a crite-
rion is the criterion of Lee and Chiang [15]. This is
the generalised Findleys experimental criterion for non-
proportional loadings:

(
τa

τ−1

)2 fnp
+

(
σa

b−1

) 1
2λnp fnp

= 1, (4)

whereλnp = 1+q sin(δ) andλnp = b−1/τ−1.Remaining
designations are identical to those as in Lees criterion (3).
Another, well known example is a solution proposed by
Itoh et al. [16,17]:

�εNP = (
1 + λnp fnp

)
�ε1, (5)

where fnp = π
2ε1max

∫
t ε1(t)| sin β|dt, ε1(t) is the max-

imum absolute value of principal strain at time t, ε1max

is the maximum value of ε1(t), β is the angle between
vectors ε1(t) and ε1max, λnp = 0.8α + 0.1 for face cen-
tered cubic materials or 2(0.8α + 0.1) for body centered
cubic and α is a materials parameter for evaluating the

degree of additional hardening. This group also includes
the models of Skibicki and Sempruch [18], Skibicki [19]
and Lee et al.’s [20].

2 Criterion proposal

2.1 Assumptions

The proposed criterion is stress-based, hence, it is applica-
ble to a high-cycle fatigue range, which is assumed to be
the fatigue life range for which elastic strains dominate over
plastic strains. The criterion is formulated for periodical load-
ings with no superimposed static mean value. Since it is
considered that the presence of superimposed tensile static
stress always reduces compressive static stress increases so
the overall material fatigue strength and non-zero mean tor-
sional stress can be neglected [21,22], the influence of mean
normal stress can be taken into account with equivalent nor-
mal stress given by the presentedmodel using theGoodmans,
Gerbers, Soderbergs, etc., relationships similarly as in other
works [23–25]. The considered biaxial state of stress is given
by:

σ11(t) = σ11,a sin (ω1t) ,

σ12(t) = σ12,a sin (ω2t − δ) ,
(6)

where σ11 and σ12 are normal and shear components of a
stress tensor. In such a state of stress, the following parame-
ters decide on the non-proportionality of loading: amplitudes
ratioλa = σ12,a/σ11,a, frequency of components ratioω2/ω1

and the phase shift angle δ. This is due to the formula for the
position of principal stress axes:

tan(2ϕ(t)) = 2
σ12(t)

σ11(t)
= 2

σ12,a sin(ω2t − δ)

σ11,a sin(ω2t)

= 2λa
sin(ω2t − δ)

sin(ω2t)
,

(7)

where ϕ is an angle between the principal axes and the
axes of the coordinates system. Proportional loading, that
is tan(2ϕ(t)) = const, takes place when ω2/ω1 = 1 and
δ = 0.For each of these cases of loading, correctly calculated
proportional equivalent stress σeq,P, for a particular fatigue
life, should have the same value. For uniaxial loadings [ex.
tension–compression (TC), torsion T, Fig. 1a] and various
complex loadings, equivalent stress produces approximately
the same S–N curve (Fig. 1b).

The crucial role is played by the λm parameter, which
includes the contribution of shear–normal stress ratio in the
equivalent stress value. Because of the method of determin-
ing the value λm parameter, three groups of solutions can be
specified:

123



698 Ł. Pejkowski, D. Skibicki

a b

Fig. 1 a S–N curves for uniaxial loadings in a nominal stresses coordi-
nates system, and b S–N curves for uniaxial loadings in a proportional
equivalent stress coordinates system. TC tension–compression, T tor-
sion

(1) group λm1 class, where λm = const. In these models, the
same value of λm is assumed for different materials. The
Garuds energetic criterion can be the example [6],

(2) group λm2 class, where λm �= const. λm is dissimilar for
different materials and constitutes a function of uniaxial
properties (fatigue limits, Fig. 1a) of the material. Exam-
ples include Crossland [26], Zenner and Simburger [27]
or Papadopoulos [13] criteria,

(3) group λm3, where λm �= const. = f (Nf). For every
material, λm is a different function of the number of
cycles to failure. An example is the criterion of Kurek
and Lagoda [28]. Thanks to such, it is possible to take
into account the cases when S–N curves of component
loadings are non-parallel.

A non-proportional loading takes place when ω2/ω1 �= 1
or/and δ �= 0. In this case determining the S–N curves
on the basis of a proportional criterion σeq,P, results in
errors in estimation of fatigue life (for example in underes-
timation Fig. 2a). Applying the non-proportional criterion
σeq,NP produces approximately the same S–N curves for
loadings of different non-proportionality levels (Fig. 2b).
In the authors opinion it can be achieved by introducing
the non-proportionality function fnp into the criterion and
the materials parameter expressing its sensitivity to non-
proportional loadings λnp.To summarise, it can be stated that
an effective calculation method of multiaxial fatigue should
include at least two material parameters λm, λnp and a func-
tion characterising non-proportional loading fnp.

2.2 Generalization of the criterion for non-proportional
loadings

For proportional loading the general form of the criterion can
be written as follows:

√(
λmσ11,a

)2 + σ12,a2 � c, (8)

where the right side of the inequality c can be the limit quan-
tity, depending on the application: S–N curve for σTC(Nf) or

a b

Fig. 2 a S–N curves for multiaxial loadings in a proportional equiva-
lent stress coordinates system, and b S–N curves for multiaxial loadings
in a non-proportional equivalent stress coordinates system. P pro-
portional, NP1, NP2 non-proportional loadings cases with increasing
non-proportionality degree

fatigue limit for fully reversed σ−1. Obviously, for λm =
1/

√
3 the right side of the Eq. (8) gives the Huber–von

Mises criterion for biaxial state of stress. Let us introduce
the following designation fp =

√
(λmσ11,a)2 + σ12,a2 into

the Eq. (8). Then we get:

σeq,NP = 1

λm

√
fp2 � c. (9)

For non-proportional loading, a following development of
(9) is proposed:

σeq,NP = 1

λm

√
fp2 + λnp fnp2 � c, (10)

where fp = max
√

σ12(t)2 + (λmσ11(t))2, fnp is a function
of loadings non-proportionality, λnp is a parameter express-
ing materials sensitivity to non-proportional loading. We
require that for non-proportional loading fnp = 0.

2.3 A proposal of fnp function

The fp function for Huber–von Mises criterion has a clear
physical interpretation, which is the second invariant of the
stress deviator:

fp =
√(

1√
3
σ11,a

)2

+ σ12,a2 = √
J2a. (11)

In the proposed method (8), it has been assumed that λm
doesn’t have to be equal to 1/

√
3, so to distinguish them, the

designation with prime has been introduced:

fp =
√(

λmσ11,a
)2 + σ12,a2 =

√
J ′
2a, (12)

and for non-proportional loadings respectively:

fp = max
√

(λmσ11(t))2 + σ12(t)2 =
√
J ′
2max. (13)

The proposal of fmax p function present in Eq. (10) is based

on the analysis of
√
J ′
2 evolution during the fatigue load-

ing’s cycle. In the Fig. 3 values of
√
J ′
2max, and

√
J ′
2mean
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and loading paths during different multiaxial fatigue load-
ing cycles are shown. Quantities on the axes denoted as s′

1
and s3 are components of the stress deviator after the trans-
formation described in Ref. [29]. As previously, the prime
designation has been introduced to distinguish from the orig-
inal stress deviators component s1 = 1/

√
3σ11. Figures

have been drawn for three cases of loading: proportional
(Fig. 3a, b), non-proportional of some non-proportionality
degree (Fig. 3c, d) and the most damaging, for which the
loading path is a circle (Fig. 3e, f). Such a state is achieved
for phase shift angle δ = 90◦, frequency ratio ω2/ω1 = 1
and amplitudes ratio λa = σ12,a/σ11,a = λm [30]. It has
been assumed that such a state is the state of the highest
degree of non-proportionality or the most non-proportional
loading state. Components of loadings have been selected in

order to provide the same value of
√
J ′
2max in each case.

Therefore, the
√
J2

′
paths for proportional (Fig. 3b) and

non-proportional (Fig. 3d) loading are inscribed into the
path for the most non-proportional loading (Fig. 3f). From

the time courses of
√
J ′
2, the maximum

√
J ′
2max and mean

√
J ′
2mean = 1

T

∫ T
0

√
J ′
2(t)dt values have been calculated. Let

us note that for proportional loading of sine waveform shape,
there is a relationship:
√
J ′
2mean = 2

π

√
J ′
2max, (14)

and the loading path is a straight line (Fig. 3b). For any non-
proportional loading (Fig. 3c), we have:

2
π

√
J ′
2max <

√
J ′
2mean <

√
J ′
2max. (15)

For the most non-proportional loading, the following rela-
tionship is satisfied (Fig. 3e, f):
√
J ′
2mean =

√
J ′
2max. (16)

With an increase of non-proportionality of load, the value of√
J ′
2mean rises, that is, the ratio

√
J ′
2mean to

√
J ′
2max. On this

basis the following form of non-proportionality function has
been proposed:

fnp =
√
J ′
2mean − 2

π

√
J ′
2max. (17)

As it is apparent from Eq. (14), for sine-shaped propor-

tional loading, the value
√
J ′
2mean is equal to

√
J ′
2max. Con-

sequently, fnp equals zero when proportional case of load-
ing is being analyzed. Whereas for most non-proportional

loading, when
√
J ′
2mean =

√
J ′
2max, fnp reaches value of

√
J ′
2max

(
1 − 2

π

)
.By introducing these quantities to Eq. (10)

we ultimately have:

σeq,NP � c

= 1

λm

√(√
J ′
2max

)2

+λnp

(√
J ′
2mean−

2
π

√
J ′
2max

)2

.

(18)

2.4 A proposal of λnp parameter

For a given fatigue life the equivalent stress σeq,NP should
take the same value for proportional and non-proportional
loading:

σeq,NP
(P) = σeq,NP

(NP). (19)

After introducing the components of proportional loading to
formula σeq,NP (10), the expression simplifies to 1

λm
fp(P),

because fnp = 0. Then we have:

1

λm
fp

(P) = 1

λm

√
fp(NP)2 + λnp fnp(NP)2. (20)

Through conversion, we achieve:

λnp = fp(P)2 − fp(NP)2

fp(NP)2
, (21)

or after taking into account of Eqs. (13) and (17) fnp =√
J ′
2mean − 2

π

√
J ′
2max:

λnp =
√
J ′
2max

(P)2 −
√
J ′
2max

(NP)2

(√
J ′
2mean − 2

π

√
J ′
2max

)(NP)2
. (22)

In most non-proportional loadings cases, there is the follow-
ing relationship:

√
J ′
2mean = 2

π

√
J ′
2max. (23)

Formula (22) can be written as:

λnp =
√
J ′
2max

(P)2 −
√
J ′
2max

(NP)2

(√
J ′
2mean − 2

π

√
J ′
2max

)(NP)2

=
√
J ′
2max

(P)2 −
√
J ′
2max

(NP)2

√
J ′
2max

(NP)2
· 1
(
1 − 2

π

)2

=

⎡

⎢
⎢
⎣

⎛

⎜
⎝

√
J ′
2max

(P)

√
J ′
2max

(NP)

⎞

⎟
⎠

2

− 1

⎤

⎥
⎥
⎦ ·

(
1 − 2

π

)−2

.

(24)

123



700 Ł. Pejkowski, D. Skibicki

a b

c d

e f

π

π

π

Fig. 3 a Evolution of stresses during the proportional loadings cycle. b
√
J ′
2 path for ω2/ω1 = 1, δ = 0◦, λa = 0.4, λm = 0.6. c Evolution of

stresses during the non-proportional loadings cycle. d
√
J ′
2 path for ω2/ω1 = 2, δ = 60◦, λa = 0.4, λm = 0.6. e Evolution of stresses during the

non-proportional loadings cycle. f
√
J ′
2 path for ω2/ω1 = 1, δ = 90◦, λa = 0.6, λm = 0.6, on the background of previous paths

By multiplying the numerator and denominator of Eq. (18)
by 1/λm and taking into account of Eq. (23), the formula (26)
can be also written in the following way:

λnp =
⎡

⎣

(
σeq,P

(P)

σeq,P(NP)

)2

− 1

⎤

⎦
(
1 − 2

π

)−2

. (25)
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Fig. 4 Illustration of �Nfλ life range

3 Determination of materials parameters λm
and λnp

3.1 A method of determining the value of λm parameter

The proposed procedure of determination of λm parameter
can be presented in three steps:

(1) Determination of S–N curves using the Basquins equa-
tion in the following form:

σa = ATCNf
bTC ,

τa = ATNf
bT .

(26)

(2) Determination of fatigue life range �Nfλ = [Nfλ min,

Nfλ max], which includes experimental data for both uni-
axial tests (Fig. 4), where:

Nfλ min = max
(
NfTCmin , NfTmin

)
, (27)

Nfλ max = min
(
NfTCmax , NfTmax

)
, (28)

where NfTCmin , NfTCmax , NfTmin , and NfTmax denotes the
beginning and the end of the fatigue life range in which
S–N curves are designated appropriately for TC and tor-
sion.

(3) Determination of λm:

λm = 1

2

(
ATNfλmin

bT

ATCNfλmin
bTC

+ ATNfλmax
bT

ATCNfλmax
bTC

)

. (29)

In the special case, when we assume parallelism of the S–
N curves for TC and torsion (bT = bTC), the Eq. (30) comes
down to the AT/ATC quotient. If we only know the values of
fatigue limits for fully reversed TC σ−1 and the fully reversed
torsion τ−1, the λm parameter can be optionally determined
as λm = τ−1/σ−1 (Fig. 1a).

3.2 A method of determining the value of λm parameter

Formally, according to the formula (27) to determine the λnp
parameter, there is a need to know the values of two equiv-

Fig. 5 Proportional equivalent stresses calculated for proportional
σeq,P

(P) and non-proportional σeq,P
(NP) loadings, for the same fatigue

life

const

mean max max meanπ

Fig. 6 Linear relationship between the proportional and non-
proportional part of the criterion. p: proportional coordinate, n: non
proportional coordinate

alent stresses calculated using the formula for proportional
stress σeq,P in Eq. (8). These stresses have to be calculated
for the same fatigue life for two loading cases (Fig. 5):

(1) TC (or optionally other proportional loading) σeq,P
(P),

(2) the most non-proportional loading σeq,P
(NP).

It turns out however, that to determine the λnp parameter,
it is enough to know the S–N curve for non-proportional
loading of any degree of non-proportionality. This is due
to observed linear relationship between proportional fp and
the non-proportional fnp part of the proposed criterion. This
relationship can be illustrated in the n–p diagram, on which
ordinates are a function of the proportional part p = f ( fp)
and the abscissas are a function of the non-proportional part
n = f ( fnp) (Fig. 6).

We assume that the non-proportional coordinate n is

equal to:
√
J ′
2mean −

√
J ′
2max. For the proportional its equal

to 0, because
√
J ′
2mean =

√
J ′
2max (Fig. 3a). We also

require that for the most non-proportional loading the pro-
portional coordinate p will be equal to 0. Therefore, for
the most non-proportional loading, there is a relationship√
J ′
2mean =

√
J ′
2max (Fig. 3e),we assume that p =

√
J ′
2max−√

J ′
2mean. Points O (Fig. 6), that lay on the line, repre-

sent loading cases for which Nn(n,p) = const. The linear
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characteristic intersects the axes of coordinates system in
two points: the first one representing a proportional state
P(0, pg) and the second one representing the most non-
proportional state N (ng, 0).Values of pg and ng coordinates
are:

pg =
√
J ′
2max

(P)
(
1 − 2

π

)
, (30)

ng =
√
J ′
2max

(NP)
(
1 − 2

π

)
. (31)

The assumption of linearity of n–p characteristic has been
verified using the experimental data in Sect. 5.1. From the
n–p diagram we have relation:

pg
ng

= pg − pi
ni

, (32)

√
J ′
2max

(P) (
1 − 2

π

)

√
J ′
2max

(NP) (
1 − 2

π

) = pg − pi
ni

, (33)

√
J ′
2max

(P)

√
J ′
2max

(NP)
= pg − pi

ni
. (34)

Knowing the pg coordinate for TC (or any other propor-
tional loading) and the coordinates for any non-proportional
loading (ni, pi) lets us determine the value of the quotient
present in the formula (23) and thereby determine the value of
λnp.

4 Discussion

Considering the proposed methods of classification of the
criteria, the presented criterion falls within the:

(1) λm2 group in view of λm �= const,
(2) NP4 class in view of occurrence of fnp and λnp in the

criterions formula.

A similar form to the proposed criterion has been presented
by Vu et al. [31]. As a function of non-proportionality of
loading,

√
J2mean has been introduced. In this criterion three

materials parameters are present, which, as authors admit
themselves, are difficult to determine due to the complicated
form of the criterion. The authors suggest constant values
of two of these parameters, and only for specific groups of
materials, that is two classes of steels: low-strength steels
and high-strength steels. This is a limitation of applica-
bility of the criterion. It seems that the proposed criterion
has the following advantages with respect to the Vu et al.
criterion:

(1) λm has a clear definition, which allows for easy deter-
mination of its value using two S–N curves for uniaxial
loadings,

(2) the formof the non-proportionality function fnp makes as
it takes the value equal to zero for proportional loadings,

(3) theλnp parameter, which expresses thematerials sensitiv-
ity to non-proportional loadings, has been introduced as
well as the method of its determination using S–N curves
for uniaxial and any non-proportional loading,

(4) the proposed criterion allows for estimation of the fatigue
life and not only the fatigue limit.

5 Verification

In order to verify the assumption of the linearity of the n–p
characteristic and the quality of fatigue life and fatigue limit
estimation using the proposed criterion, experimental data
taken from the literature have been used. The data includes
loading cases with different values of amplitude ratio λa,

different values of loading frequencies ratio ω2/ω1 and dif-
ferent phase shift angles δ. The data have been divided into
two groups: (1) fatigue life results for high-cycle fatigue and
(2) fatigue limit values. Group 1 includes tests conducted on
Cu-ETP copper [30], X2CrNiMo17-12-2 steel [30], 18G2A
steel [32], 30NCD16 [33] after Ref. [34], 1045 steel [35],
1045 steel [36], 7075-T651 aluminum alloy [37], C35 steel
Ref. [38], LY12CZ aluminum alloy [39], SM45C steel [33]
after Ref. [34]. Group 2 includes tests performed on 34Cr4
steel [40] after Ref. [14], 39NiCrMo3 steel [41], 42CrMo4
steel [42] after Ref. [43], C20 steel [44] after [31,45], EN-
GJS800 cast iron [46,47] after Refs. [31,45], FGS 800-2
cast iron [46,48,49], Nishiharas and Kawamotos hard steel
[4] after Ref. [14], and XC18 steel [48,49].

5.1 Verification of assumption of linearity
of n– p characteristic

In the Fig. 7a–j, the results of verification of the assumption
that the n–p characteristic is linear are shown for data from
group1.Twoor three limiting lines corresponding todifferent
fatigue lives have been drawn. A number of lines depend on
the fatigue lives range in which S–N curves for all types of
loadings are available. In the Fig. 7k–r results for group 2,
that is for fatigue limits, are presented. In these diagrams,
one line, corresponding to the base number of N0 has been
drawn.

5.2 Verification of fatigue life and fatigue limit
estimation

The verification of the proposed criterion for group 1 is
based on the comparison of calculated fatigue lives Nfcal with
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a b

c d

e f

g h

i j

1×105

2×104

8×105
2×105

3×105

1×106

3×105

3×104

9×104 2×104

2×105

3×105

1×105

1×105

2×104

2×105

5×103

6×104

1×106

3×1052×104

2×105

Fig. 7 n–p diagram for limited life in testing of a Cu-ETP copper [25], b X2CrNiMo17-12-2 steel [25], c 18G2A steel [27], d 30NCD16 steel
[28] after Ref. [29], e 1045 steel [30], f 1045 steel [31], g 7075-T651 aluminum alloy [32], h C35 steel [33], i LY12CZ aluminum alloy [34],
j SM45C steel [28] after Ref. [29] and for fatigue limits in testing of k XC18 steel [43,44], l 34Cr4 steel [35] after Ref. [14], m 39NiCrMo3 steel
[36], n 42CrMo4 steel [37] after Ref. [38], o C20 steel [39] after Refs. [26,40], p EN-GJS800 cast iron [41,42] after Refs. [26,40], q FGS 800-2
cast iron [41,43,44], and r Nishiharas and Kawamotos hard steel [4] after Ref. [14]
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Fig. 7 continued

experimental Nfexp ones. Calculated fatigue lives have been
obtained by converting Basquins equation to:

Nfcal =
(

σeq,NP

ATC

) 1
bTC

, (35)

where ATC and bTC stand for a coefficient and exponent of
the Basquins equation determined in a σTC–nf coordinates
system, for TC. In the event of lack of data for any of the

uniaxial loading, available proportional loading is selected.
The results of fatigue life comparisons are presented in
Nfcal–Nfexp diagrams (Fig. 8). In the diagrams, the solid line
corresponds to the scatter band of factor 2 and the dashed line
to the scatter band of factor 3. The diagram legend describes
testing conditions specifying in order λa − δ − ω2/ω1 after
the graphic symbol.

For data included in group 2, the verification consisted of
the comparison of obtained equivalent stress with the fatigue
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Fig. 8 Nfcal–Nfexp diagram for a Cu-ETP copper [25], b X2CrNiMo17-12-2 steel [25], c 30NCD16 steel [28] after Ref. [29], d 1045 steel [30],
e 1045 steel [31], f 7075-T651 aluminum alloy [32], g C35 steel [33], h LY12CZ aluminum alloy [34], i SM45C steel [28] after Ref. [29], and
j 18G2A steel [27]

limit value for TC. The comparison was made using the error
index I applied previously for the same purpose in [29]:

I = σeq,NP − σ−1

σ−1
(%). (36)

Distribution of error index frequency for the data in group 2
is presented in Fig. 9. In the Fig. 10 a summary of error index
for all fatigue limits data is shown.

5.3 Discussion of the verification results

The limit lines of n–p diagrams take the form of straight
lines. In the majority of cases, limit lines for different lives
are parallel to each other. Their non-parallelism stemsmostly
from the non-parallelism of uniaxial S–N characteristics. In
this case the points of the axis p for a given life do not overlap
(Fig. 8g, j). The results of fatigue life estimation generally
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Fig. 8 continued

lie in the scatter band of factor 2 (Fig. 8e) or 3 (Fig. 8a, g, j).
Often, estimation errors stem fromconsiderable non-parallelism
of S–N characteristics for uniaxial loadings (e.g., Fig. 8f), see
torsion Inf–0–Inf and Fig. 8i, see torsion Inf–0–Inf) or non-
parallelism of non-proportional characteristics with regard to
proportional ones (e.g., Fig. 8h, see 0.57–45–1). It is worth
stressing, that the formula proposed for λm (30) averaging
the values of strength ratio in the whole fatigue life range
�Nfλ and this reduces the influence of non-parallelism uni-
axial S–N curves for the fatigue life estimation results. The
achieved results of fatigue life estimation have been com-
pared with results analyzes carried out by other authors. The
works that uses the same experimental data have been taken
into account:

(1) work [34] in which CST criterion and the author model
have been tested for 30NCD16 steel [33] after Ref. [34],
7075-T651 aluminum alloy [37] and SM45C steel [33]
after Ref. [34],

(2) work [50] in which SWT and modified SWT models
have been tested for 7075-T651 aluminum alloy [37],

(3) work [51] in which the author model has been tested for
LY12CZ aluminum alloy [39],

(4) work [52] in which the author model has been tested for
SM45C steel [33] after Ref. [34].

In all cases the results are comparable, that is they lie in
the same scatter bands. The experimental results, which are
hard to describe using the proposed criterion, are character-
ized by significant scatter also in other works (e.g., Fig. 8h
and Ref. [39]). Fatigue limit estimation errors rarely exceed
10% (Fig. 10). Fatigue limits are more often underestimated
thanoverestimated.The achieved results havebeen compared
with verification carried out by Papadopoulos in Ref. [29]
for six criteria. The comparisons have been carried out for
materials which coincide in both analyzes, namely: 34Cr4
steel [40] after Ref. [14], 42CrMo4 steel [42] after Ref. [43]
and Nishiharas and Kawamotos hard steel [4] after Ref. [14].
Asummary of error index for these materials is presented
on Fig. 11a. It can be stated, that for five criteria analyzed
by Papadopoulos (Crossland, Sines, Matake, McDiarmid,
Dietmann and Papadopoulos criteria), the obtained results
have lower scatter and are comparable with the Papadopou-
los criterion. A similar comparison have been carried out
for the Vu et al. [31] results. In this case, Crossland, Dang
Van, Papadopoulos, Papuga and authors criterions have been
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Fig. 9 Distribution of error index frequency for a 39NiCrMo3 steel [36], b 42CrMo4 steel [37] after Ref. [38], c C20 steel [39] after Refs. [26,40],
d EN-GJS800 cast iron [41,42] after Refs. [26,40], e FGS 800-2 cast iron [41,43,44], f Nishiharas and Kawamotos hard steel [4] after Ref. [14],
g XC18 steel [43,44], and h 34Cr4 steel [35] after Ref. [14]

analyzed. In the Fig. 11b results for materials are the sub-
ject of a common analysis, namely: 34Cr4 steel [40] after
Ref. [14], 42CrMo4 steel [42] after Ref. [43], C20 steel
[44] after Refs. [31,45], EN-GJS800 cast iron [46,47] after
Refs. [31,45], and Nishiharas and Kawamotos hard steel [4]
after Ref. [14], have been presented. Based on a comparison,
it can be stated that the proposed criterion gives a result of
lower scatter than Crossland, Dang Van, and Papadopoulos
criterions and are comparable to results obtained with the
Papugas and Vu et al. criteria.

6 Verification

The n–p characteristics used to determine the materials sen-
sitivity to non-proportional loadings λnp are linear for the
high-cycle fatigue life range and for the fatigue limit equally

Fig. 10 Summary of error index for fatigue limit data

well. In the majority of cases, limit lines for different fatigue
lives are parallel to each other. Their non-parallelism stems
mostly from non-parallelism of uniaxial S–N curves, which
causes the points on the p axis for a given life to not overlap
(Fig. 7 g, j).
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a

b

Fig. 11 a Summary of the error index for fatigue limit data for 34Cr4
steel [35] after Ref. [14], 42CrMo4 steel [37] after Ref. [38] and Nishi-
haras and Kawamotos hard steel [4] after Ref. [14], and b summary
of the error index for fatigue limit data for 34Cr4 steel [35] after
Ref. [14], 42CrMo4 steel [37] after Ref. [38], C20 steel [39] after
Refs. [26,40], EN-GJS800 cast iron [41,42] after Refs. [26,40], Nishi-
haras and Kawamotos hard steel [4] after Ref. [14]

The results of fatigue life estimation generally fit the scat-
ter band of factor 2 (Fig. 8e) or 3 (Fig. 8a, g, j). Often,
estimation errors stem from considerable non-parallelism of
S–N characteristics of uniaxial loading, which is difficult to
describe using the formula proposed for λm (e.g., Fig. 8f, i)
or non-parallelism of non-proportional characteristics in
regard to proportional ones (e.g., Fig. 8h).

Fatigue limit estimation errors rarely exceed10%(Fig. 11).
Fatigue limits are more often underestimated than overesti-
mated.

Based on the obtained results, it has been concluded that
the main problem that needs to be solved in the next version
of the criterion is taking into account the non-parallelism of
S–N curves for uniaxial loadings and for non-proportional
compared to proportional loadings.
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