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Abstract In the 6th edition of the Chinese Space Trajec-
tory Design Competition held in 2014, a near-Earth asteroid
sample-return trajectory design problem was released, in
which the motion of the spacecraft is modeled in multi-body
dynamics, considering the gravitational forces of the Sun,
Earth, and Moon. It is proposed that an electric-propulsion
spacecraft initially parking in a circular 200-km-altitude low
Earth orbit is expected to rendezvous with an asteroid and
carry as much sample as possible back to the Earth in a
10-year time frame. The team from theTechnology andEngi-
neering Center for Space Utilization, Chinese Academy of
Sciences has reported a solution with an asteroid sample
mass of 328 tons, which is ranked first in the competition.
In this article, we will present our design and optimization
methods, primarily including overall analysis, target selec-
tion, escape from and capture by the Earth–Moon system,
and optimization of impulsive and low-thrust trajectories
that are modeled in multi-body dynamics. The orbital res-
onance concept and lunar gravity assists are considered key
techniques employed for trajectory design. The reported
solution, preliminarily revealing the feasibility of returning
a hundreds-of-tons asteroid or asteroid sample, envisions
future space missions relating to near-Earth asteroid explo-
ration.
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1 Introduction

The 6th edition of theChinese SpaceTrajectoryDesignCom-
petition held in 2014 was organized by the Chinese Society
of Theoretical and Applied Mechanics and the State Key
Laboratory of Astronautic Dynamics. Following the tradi-
tion of the past editions, participating teams are required to
design extremely complex flight trajectories for an innova-
tive space mission in a two-month time frame. In the year
of 2014, a challenging trajectory design problem for a near-
Earth asteroid (NEA) sample-return mission was released on
July 15. The most significant uniqueness of this problem is
that the spacecraft’s motion is supposed to be simultaneously
influenced by the gravitational forces of the Sun, Earth, and
Moon. As far as we know, trajectory design usingmulti-body
dynamics might be much more difficult than that using the
patched-conic model, which is employed for proposing all
the problems in the past editions and even in all the editions
of the worldwide Global Trajectory Optimization Competi-
tion (GTOCs) [1]. Therefore, the trajectory design problem
in the 6th edition to be described in the subsequent section
is obviously a milestone in the development process of the
trajectory design competitions.

A spacecraft parking in a circular 200-km-altitude low
Earth orbit is expected to rendezvous an NEA that will be
selected among a total of 791 potential targets. The space-
craftwill stay on an asteroid for at least 30 days for a sampling
operation, and then carry asteroid samples back to the Earth.
The total mission duration is limited within 10 years and
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the mission’s starting time window is between January 1,
2021 (MJD59215) and December 31, 2030 (MJD62867).
The inclination of the parking orbit, which is referenced in
an Earth-centered inertial coordinate frame (its XY plane is
selected to be the ecliptic plane), is set to be within 20◦–90◦.
The right ascension of ascending node and the true anomaly
of the parking orbit can be arbitrarily chosen. The sample-
return trajectory ends up with Earth atmospheric reentry at
the altitude of 200 km and the reentry velocity must be no
more than 11 km/s. The initial mass of the spacecraft is
2 tons and the propellant mass is 1.5 tons. The spacecraft
is assumed to be propelled by electric propulsion with the
specific impulse of 3000 s and the thrust amplitude in the
range of 0 –10 N. The thrusting direction could be arbitrarily
directed. It is noted that the proposed configuration of the
propulsion system has not been validated by practical engi-
neering. The allowable minimum ranges from the spacecraft
to the Earth and the Moon are set to be 6578 and 1838 km,
respectively. The spacecraft’s motion is influenced simulta-
neously by the gravitational forces of the Sun, Earth, and
Moon, and the motion of an asteroid is assumed to follow a
simplified heliocentric Keplerian elliptical orbit. The perfor-
mance index of trajectory design is to maximize the mass of
the asteroid sample carried back to the Earth.

In the past decade, exploration ofminor bodies in the solar
system (asteroids and comets) has been a fascinating topic
in space science research. Among numerous minor bodies,
NEAs are easier to access than the others. Any new scientific
discovery of NEAs is thought to be beneficial for us to gain-
ing deeper understanding of the origin and evolution of the
solar system. Besides, we might have other motivations for
NEA exploration. As far as we know, more and more poten-
tially hazardous NEAs are being discovered. These NEAs’
orbits cross the Earth revolution orbit about the Sun, posing
unforeseen impact threats to the Earth. Therefore, propos-
ing strategies for deviating the orbits of these small bodies
is quite urgent. On the other hand, asteroids may contain
resources that are scarce on the Earth, and bringing these
resources back to the Earth is promising in the near future
[2]. NEAs are also related to manned spaceflight. Human’s
landing on NEAs might be a good step-stone for the manned
flight to the Mars. There is another scheme of the manned
NEA mission scenario, in which a total or a part of a NEA
is captured and redirected to an Earth orbit or a lunar orbit
and then a manned spacecraft is launched to land on this
asteroid. This is the main content for the “asteroid redirect
mission” recently proposed by NASA. Some researches on
this topic have appeared. For example, Brophy et al. [3] pro-
posed the mission for retrieving asteroids, and Sanchez [4]
categorized a class of retrievable asteroids, which can be
captured into the Sun–Earth L1 and L2 with a total of veloc-
ity impulses no more than 500 m/s. In addition, Neus et al.
[5] addressed the feasibility of capturing small NEAs into

the vicinity of the Sun–Earth L2 using a continuous-thrust
propulsion system assumed to be attached to the asteroid,
and listed the candidate NEAs to be captured. Other rep-
resentative research work on capturing an asteroid can be
found in Refs. [6–8]. Whatever we propose as NEA explo-
rationmissions, there are several fundamental questions to be
answered: how to select asteroid target, how to rendezvous
asteroids, how to deviate their orbits or capture them back to
the Earth–Moon system, etc.? All these questions are closely
related to design and optimization of spaceflight trajecto-
ries.

Because the spacecraft flying toward NEAs are signif-
icantly influenced by the gravitational forces of the Sun,
Earth, and Moon simultaneously, the research on trajectory
design using multi-body dynamics for an NEA exploration
missions has attracted our attention in the past decade, which
emphasizes designing low-energy transfer trajectories by
fully making use of multiple gravitational forces. As we
know so far, Venus,Mars, and Earth could be used for gravity
assist to reduce fuel consumption for interplanetary flights to
NEAs. Meanwhile, lunar gravity assists might play impor-
tant roles in fuel-optimal escape from and capture by the
Earth–Moon system, thus providing insight for designing
low-energy transfers between geocentric orbits and NEAs.
The traditional analysis of gravity assist is based on the
patched-conic model, in which the third-body gravitation
occurs at the flyby time instant only. The continuous effect of
the third-body gravitation (usually caused by the moons in a
planetary system) has been also studied [9]. When the space-
craft periodically encounters the third body (for example the
Moon), the spacecraft is deemed tomove in amoon resonance
orbit. This design strategy was employed for analyzing the
orbital periapsis raising of the ESASmart-1 [10]. Also, Cam-
pagnola and Russell [11] used the resonance orbit concept to
design the trajectories with cheap insertion maneuvers into
the moons’ science orbit in the Jovian and Saturnian sys-
tems. Meanwhile, Cuartielles et al. [12] and Alessi et al. [13]
have conducted studies on the semi-major axis, eccentricity,
and inclination of resonance orbits in the circular restricted
three-body dynamics, which is used to design the asteroid
retrieving missions. These representative researches indicate
that the orbital resonance concept is a useful tool for design-
ing low-energy transfer trajectories.

Trajectory design in multi-body dynamics is challenging
and currently no versatile methods are found in the exist-
ing literature. A designer must conduct detailed analysis
for trajectory design, which usually depends on designer’s
understanding of the flight mechanics in multi-body dynam-
ics. In this article, wewill present our strategies for designing
the NEA sample-return trajectory, primarily including over-
all analysis, target selection, escape from and capture by the
Earth–Moon system, and optimization of impulsive and low-
thrust trajectories that are modeled in multi-body dynamics
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in this article. Lunar resonance orbits are employed to make
use of lunar gravity assists, which is a highlight of our
efforts to design low-energy transfer trajectories. The remain-
der of the article is organized as follows. In Sect. 2, the
dynamical model of the spacecraft and overall analysis of
its flight trajectory are presented. In Sect. 3, the meth-
ods for asteroid target selection are described. Section 4
presents the orbital resonance concept and its application
for designing trajectories of escape from and capture by
the Earth–Moon system. Section 5 presents a near-optimal
steering scheme for low-thrust orbital raising. In Sect. 6,
the techniques for converting velocity impulses into low-
thrust arcs are described. The trajectory design solution
and the conclusions are given in Sects. 7 and 8, respec-
tively.

It is noted that our attention is focused on presenting
our design methodology and routine numerical techniques
are not described in detail. As a result, the specific data
of trajectory solutions at intermediate steps might be hard
to exactly duplicate by independent attempts for solving
the problem because a number of sophisticated numerical
techniques might be implemented by different subroutines,
algorithms, and the relevant parameter setup, which are triv-
ial to be enumerated herein. However, it is no doubt that the
proposed methods, following which the solution with a sim-
ilar design performance index could be obtained, shed light
on interpreting the flight mechanism designed for carrying
back hundreds-of-tons asteroid sample.

2 The dynamical model and overall analysis
of flight trajectories

Considering the gravitational forces of the Sun, Earth, and
Moon, the equation of motion for the spacecraft is modeled
by a restricted four-body (Sun, Earth, Moon, and spacecraft)
dynamics in an Earth-centered ecliptic inertial reference
frame (see xEyEzE as shown in Fig. 1):

Fig. 1 The motion of the spacecraft and an NEA in the Sun–Earth–
Moon system

ṙ =v,

v̇ = − μe
r

‖r‖3 + μs

(
rs − r

‖rs − r‖3 − rs
‖rs‖3

)

+ μm

(
rm − r

‖rm − r‖3 − rm
‖rm‖3

)
+ F

m
α,

(1)

where the spacecraft’s position and velocity vectors are
r = [x y z]T and v = [ẋ ẏ ż]T, and μe, μs, and μm are
the gravitational parameters of the Earth, Sun, and Moon,
respectively. The position vectors of the Sun and the Moon
in the Earth-centered inertial coordinate frame are denoted
by rs and rm, respectively, which are computed from a given
ephemeris presented in the Appendix. The spacecraft mass,
thrust amplitude, and the unit vector of thrust direction is
denoted by m, F , and α, respectively. The time rate of the
spacecraft mass is formulated as

ṁ = − F

ge Isp
, (2)

where ge (ge = 9.80665 m/s2) is the sea-level acceleration
and Isp is the specific impulse of the propulsion system ( Isp =
3000 s). The illustration of the asteroid motion in the Sun–
Earth–Moon system is depicted in Fig. 1. The asteroidmotion
follows a heliocentric Keplerian elliptical orbit referenced in
the heliocentric coordinate frame xSySzS, which is assumed
to be parallel to xEyEzE. When the spacecraft stays on the
asteroid, its motion remains the same as that of the asteroid.
Once the spacecraft leaves the asteroid, it carries an asteroid
sample; and therefore, the total mass of the spacecraft has an
instantaneous increment of sample mass.

Currently, there are no mature systematic methods for tra-
jectory design in the restricted four-body dynamical system
(or the Sun–Earth–Moon-spacecraft system). For the NEA
sample-return flight trajectories, the gravities of the Sun,
Earth, andMoon have variable influences on the spacecraft’s
motion at its different flight phases. This fundamental char-
acteristic makes the problem more complicated to solve, and
it is very likely that participating teams employ different
design strategies to obtain different results. The compari-
son of these results is an important means for promoting our
understanding of advanced techniques of trajectory design
and optimization using multi-body dynamics. The following
content in this section reflects our overall analysis of design-
ing the NEA sample-return trajectories.

In order to reduce the complexity of trajectory design,
a logical approach is to divide the flight trajectory into a
number of segments. These segments should be patched
together eventually. Based on our understanding of space-
flight mechanics, we divided the whole trajectory into four
segments: (1) from the low Earth parking orbit to the first
lunar flyby; (2) from the lunar flyby to asteroid rendezvous;
(3) asteroid departure to lunar flyby; (4) from the last lunar
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Fig. 2 Illustration of the pre-defined four segments for constructing
asteroid sample-return trajectories

flyby to Earth atmospheric reentry. These four segments are
illustrated in Fig. 2. The connection of the 1st and 2nd seg-
ments and the connection of the 3rd and 4th segments are
both implemented using lunar resonance orbits (see details
in Sect. 4). We then assumed that a Hohmann transfer from
the low Earth parking orbit to the Moon is employed for
the 1st segment, and the required velocity impulses are eas-
ily computed. For the 4th segment, according to the reentry
velocity constraint, it is estimated that the spacecraft could
be placed in an Earth-centered highly elliptical orbit with
the reentry speed at 11 km/s (at 200 km altitude) in terms
of two-body dynamics. In this elliptical orbit, the spacecraft
velocity relative to the Earth is 1.37 km/s when it crosses the
lunar orbit. Therefore, if the spacecraft encounters the Moon
with a proper velocity level, it might implement atmospheric
reentry without exerting extra velocity impulses.

According to the above-mentioned trajectory segmenta-
tion andour knowledge of trajectory design andoptimization,
we then figured out the following guidelines for detailed
design, and they are concerned with three aspects: tar-
get selection, escape from and capture by the Earth–Moon
system, and optimization of impulsive and low-thrustmaneu-
vers.

(1) Low-energy flight trajectories are desired so that the
spacecraft may carry as much sample as possible. In
order to implement low-energy flight, the heliocentric
orbit of the potential target should be close to that of the
Earth. If we consider that the time interval between two
consecutive Earth’s closest encounters with an asteroid
should be less than 10 years, a large number of asteroids
can be excluded.

(2) Lunar gravity assists might provide considerable veloc-
ity impulses without consuming propellant. In the Earth-
centered coordinate frame, if the spacecraft cannot
escape from or be captured by the Earth–Moon system
via a single lunar flyby, the spacecraft might be inserted
into lunar resonance orbits. In this way, the spacecraft is
able to re-encounter the Moon and use the lunar gravity
assist for the second time. The lunar resonance orbit is
useful to patch the trajectory segments in the interplan-
etary space and in the Earth–Moon system.

(3) All trajectory segments are designed using velocity
impulses as orbital maneuvers at the first step except
the one of orbital raising from a low Earth orbit using
low thrust. After we obtain the trajectory solution with
impulsive thrust, velocity impulses are then converted
into low thrust orbital arcs.

In fact, the collinear point periodic orbits and their associ-
ated invariant manifolds in the restricted circular three-body
dynamics provide an effective tool for designing flight tra-
jectories modeled in multi-body dynamics. The theory of
invariant manifolds associated with halo orbits apparently
can be used for trajectory design and also for solving the
proposed problem in this competition. However, we specu-
lated that the trajectory design solely depending on invariant
manifolds might not result in a globally optimal solution
(this statement is based on our knowledge only and is
not a validated conclusion). In addition, in order to obtain
new understanding of the flight mechanics in the Sun–
Earth–Moon system, we employed lunar resonance orbits (or
multiple lunar gravity assists) for solving the NEA sample-
return trajectories, instead of using invariant manifolds.

3 Searching the asteroid target in terms of design
performance index

We need to select one asteroid for sample-return among
a total of 791 candidate targets, which requires an effec-
tive approach for asteroid target screening. First, we made
a simple analysis for estimating the design performance
index. Subsequently, we proposed a numerical computation
and optimization process for further target screening. This
process is divided into three steps: (1) grid search with the
Lambert algorithm for the asteroid–Earth and Earth–asteroid
trajectory segmentsmodeled using the heliocentric two-body
dynamics; (2) the solution in the two-body dynamics is
placed in the restricted four-body dynamics and optimized
with multiple-impulse orbital maneuvers; (3) continuation
on the asteroid departure time instants for locating potential
global optimum in the restricted four-body dynamics. The
first step is described in Sect. 3.2 and the second and third
steps in Sect. 3.3.

3.1 Simplified estimation of the design performance
index

As described in Sect. 2, the whole trajectory is divided
into four segments. The total velocity impulses for each
of these four segments are denoted by �v1,�v2,�v3, and
�v4, respectively. For the 1st segment, the Hohmann transfer
is used for approximately computing the required veloc-
ity impulses of the transfer from the low Earth orbit to the
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Moon. We then assumed that the spacecraft would fly into
interplanetary space via one or more times lunar flybys.
Therefore, only the velocity impulse required for depart-
ing the low Earth orbit is needed and no velocity impulse
is needed for rendezvousing with the Moon, which results
in �v1 = 3.24 km/s for the 1st segment. For the 4th seg-
ment, we assumed that no velocity impulse is needed (�v4 =
0 km/s) by considering that the capture could be achieved
using lunar gravity assists. It is noted that fully taking advan-
tages of lunar gravity assists for escape from and capture
by the Earth–Moon system is a key technique in our design
strategy that results in our assumptions for estimating �v1
and �v4, and these assumptions are finally validated by the
designed solution.

Therefore, other velocity impulses required are counted
in the 2nd and 3rd segments. As a result, the total required
velocity impulses for the 2nd and 3rd segments determine
the design performance index, thus providing a principle
for asteroid target selection. We proposed a simple equa-
tion to approximately calculate the design performance index
(J in Eq. (3), the asteroid sample mass) that is modeled as
follow

J = m1c0 − mf

1 − c0

m1=m0exp

(
−�v1+�v2

ge Isp

)
, c0=exp

(
−�v3+�v4

ge Isp

)
,

(3)

where m0 (=2 tons) is the initial spacecraft mass, m1 is the
spacecraft mass at asteroid arrival, and mf (mf = 0.5 tons
if 1.5-tons propellant is consumed) is the spacecraft mass at
Earth atmospheric reentry. It is noted that mf + J = (m1 +
J )c0 leads to Eq. (3). Considering that �v1 = 3.24 km/s
and �v4 = 0 km/s, the contour of J (in kg) about �v2 and
�v3 are plotted in Fig. 3.

As shown in Fig. 3, taking the contour of J = 300000 kg
as an example, the contour’s ratio in �v2 and �v3 is about
1:200. This fact indicates that the 3rd segment from the aster-
oid to the Moon is the key segment, and as fewer velocity
impulses as possible are desired, which ensures as much
asteroid sample as possible to be carried back. Therefore,
we focus our attention on designing this segment with more
effort and on the 2nd segment from the Moon to the asteroid
with less effort.

3.2 Searching asteroid target using the Lambert
algorithm

In the heliocentric two-body dynamical model, the trans-
fer from the Earth to the asteroid is considered (the Moon
and the Earth are assumed to be the same point). For the
Earth-to-asteroid segment, we assume that Earth departure

Fig. 3 The contour of the design performance index with respect to
�v2 and �v3

Fig. 4 Illustration of the 2nd and 3rd segments in the heliocentric two-
body dynamical model

occurs at t1 with �v2,1 exerted and asteroid arrival at t2 with
�v2,2. For the asteroid-to-Earth segment, we assume that
asteroid departure occurs at t3 with �v3,1 exerted and Earth
arrival at t4 with �v3,2. In this way, the 2nd and 3rd seg-
ments described in Fig. 2 are then illustrated in details by
Fig. 4.

Wefirst devised a grid search of t3 and t4 using theLambert
algorithm for the first step of asteroid target screening. The
Lambert algorithm with multiple orbits (N = 1, 2, 3, 4 where
N denotes the number of orbits, and for each N there are
two branches of Lambert solutions) are utilized to compute
the total velocity impulses (�v3 = ||�v3,1|| + ||�v3,2||).
The time interval of t3 and t4 is set to be 5 days, and the
search domains of t3 and t4 (both in days) are defined to
be

MJD59215 � t3 � MJD66519,

(t3 + 365N + 5) � t4 � (t3 + 365N + 360).
(4)

The solution pruning condition is set to be

||�v3,1|| � 0.5 km/s,

||�v3,2|| � 4 km/s.
(5)

It is noted that the empirical values for defining time
domains and solution pruning are loosely set such that poten-
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tial targets will not be omitted at the expense of some
unnecessary computation (the same case applied for the fol-
lowing Earth-to-asteroid segment). Also, if ||�v3,2|| is set
to be a large value (4 km/s), the spacecraft might not be
captured by the Earth–Moon system with one or two lunar
gravity assists only.

Based on the searching results of the asteroid-to-Earth
segment, the Earth-to-asteroid segment is searched using the
similar approach. Considering the minimum stay time on an
asteroid of 30 days, the Lambert algorithm is employed (N =
1, 2, 3, 4) to calculate the total impulses (�v2 = ||�v2,1|| +
||�v2,2||). For a set of solution of specific values of t3 and
t4, the search domains of t2 and t1 (both in days and the time
interval of t2 and t1 is set to be 5 days) are set to be

(t3 − 1000) � t2 � (t3 − 30),

(t2 − 365N − 360) � t1 � (t2 − 365N − 5),

(t4 − t1) � 10 years,

t1 � MJD59215.

(6)

The solution pruning condition is set to be

||�v2,1|| � 5 km/s,

||�v2,2|| � 5 km/s.
(7)

The grid search results are shown inTable 1 (“2003SM84”
is the final selection but is not ranked first in this step). At
this step, there are 39 targets and more than 2000 trajecto-
ries are remaining, which are then considered to be a set
of candidate solutions. However, the two-body dynamics is
not accurate enough for target selection, but used as a pre-
liminary screening process. The solutions in Table 1 will be
optimized with multiple-impulse maneuvers in the restricted
four-body dynamics, which is presented in the subsequent
Subsection.

3.3 Trajectory optimization with multiple-impulse
maneuvers and a continuation technique

The grid search using the Lambert algorithm in the preceding
Subsection does not consider whether the spacecraft could
be captured by the Earth–Moon system using lunar grav-
ity assists. In addition, the multiple-impulse instead of the
two-impulse orbital maneuver might be useful to reduce the
total velocity impulses, especially formultiple-orbit Lambert
solutions. Therefore, we devised a trajectory optimization
procedure for solving multiple-impulse transfer problems
modeled in the Sun–Earth–Moon system using the solutions
given in Table 1 as the initial guess. In this procedure, the
asteroid-to-Moon and Moon-to-asteroid trajectory segments
(corresponding to the Earth-to-asteroid and asteroid-to-Earth
segments in Sect. 3.2) are to be optimized using a direct opti-
mization method.

For the asteroid-to-Moon segment (corresponding to the
3rd segment in Fig. 2), the asteroid departure date is denoted
by τ0 (the initial value of τ0 is t3) and a departure impulse is
�vτ0 (the initial value of�vτ0 is set to be�v3,1). TheMoon’s
arrival date is τf (the initial value of τf is t4). We empirically
allocated six time nodes (τ1, τ2, . . . , τ6 ) equally spaced into
the time interval from τ0 to τf, and the velocity impulse at
each node is assigned to be�vτ1 ,�vτ2 , . . . ,�vτ6 (the initial
values are all set to be null). It is noted that the number of
velocity impulses is empirically selected and optimization
of multiple impulses in the restricted four-body dynamics is
still a challenging problem that deserves further study.

At Moon’s arrival, let us define the spacecraft position
and velocity vectors to be r(τf) and v(τf), respectively, and
the Moon’s position and velocity vectors to be rm(τf) and
vm(τf), respectively. In order to avoid the singularity result-
ing from trajectory numerical integrationwhen the constraint
r(τf) = rm(τf) is satisfied, the Moon’s gravitation is not
counted (μm = 0 in the Eq. (1)) in the preceding 0.4 days

Table 1 The velocity impulses exerted and the design performance index

Asteroid ||�v2,1|| (km/s) ||�v2,2|| (km/s) ||�v3,1|| (km/s) ||�v3,2|| (km/s) J (kg)

2001 US16 3.21 0.74 0.02 3.86 1828957.79

2001 AV43 1.02 2.56 0.03 3.65 1267176.50

2001 FR85 2.86 0.50 0.04 2.71 978434.89

2010 CE55 3.88 1.04 0.05 3.84 714188.61

2003 MM 4.28 0.08 0.09 3.99 374236.32

2003 SM84 2.02 0.29 0.14 2.12 263959.71

2009 CV 2.41 1.09 0.17 3.81 209289.57

… … … … … …

2012 BB14 2.09 0.37 0.23 2.37 164407.81

2009 OS5 2.60 0.27 0.28 2.20 134324.74

2001 QJ142 2.40 0.40 0.30 2.02 124402.98
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(an empirical value) of lunar encounters. At lunar flyby, the
relative velocity is computed as

vn(τf) = v(τf) − vm(τf). (8)

The lunar gravity assist is modeled as a rotation of vn(τf),
which rotates about the vertex of vm(τf) with an angle δ to
obtain the relative velocity after lunar flyby (the correspond-
ing illustration is presented in Fig. 7). The rotation angle δ is
computed by

sin

(
δ

2

)
= μm/rflyby

v2n + μm/rflyby
, (9)

where rflyby is the orbital radius of the spacecraft relative to
theMoon at the lunar closest approach, vn is the amplitude of
lunar relative velocity (vn = ||vn||) at lunar flyby. The orbital
energy after lunar flyby referenced in the Earth-entered iner-
tial frame is approximately computed as

E(τf) = ||vm(τf) + v′
n(τf)||2

2
− μe

||rm(τf)|| , (10)

where v′
n(τf) is the relative velocity after lunar flyby and

μe is the Earth gravitational parameter. If E(τf) < 0, we
then consider that the spacecraft is captured by the Earth
gravitation. Specifically, the atmospheric reentry constraint
(the reentry velocity of 11 km/s at the altitude of 200 km)
is corresponding to E(τf) = −0.096 km2/s2. For simplicity,
we set δ = δmax where δmax is corresponding to theminimum
lunar flyby radius (the range from theMoon to the spacecraft
is set to be rflyby = 1838 km).

For the Moon-to-asteroid segment (corresponding to the
2nd segment in Fig. 2), the same analysis are conducted.
Considering the inverse flight in time, the asteroid arrival
date is denoted by τf (the initial value of τf is set to be t2)
and an impulse exerted at asteroid arrival is �vτf (the initial
values of �vτf is �v2,2). The Moon’s departure date is τ0
(the initial value of τ0 is t1), and the orbital energy before
lunar flyby (following the same computation in Eq. (10)) is
denoted by E(τ0).

We finally set up trajectory optimization problems in
the restricted four-body dynamical model with multiple-
impulse orbital maneuvers, and they are transformed to
be parameter optimization problems shown in Table 2, in
which the Prob.(a) and Prob.(b) are corresponding to the
asteroid-to-Moon and Moon-to-asteroid segments, respec-
tively. The design performance index is to minimize the total
velocity impulses of each segment. The nonlinear parame-
ter optimization problems are solved by using the subroutine
“fmincon.m” in MATLAB.

Table 3 presents a part of multiple-impulse trajectory
solutions obtained by solving the nonlinear optimization
problems in Table 2, in which �v2 and �v3 represent the

Table 2 The parameter optimization problems for the asteroid-to-
Moon andMoon-to-asteroid trajectory segments with multiple-impulse
maneuvers

Prob.(a)

Optimization τ0, τ1, τ2, . . . , τ6, τf,

Variables �vτ0 ,�vτ1 ,�vτ2 , . . . , �vτ6

Minimize
∑6

i=1 ||�vτi || + ||�vτ0 ||
Constraints r(τf) = rm(τf), E(τf) � −0.096 km2/s2,

τ0 < τ1 < τ2 < · · · < τ6 < τf

Equation of motion Eq. (1)

Prob.(b)

Optimization τ0, τ1, τ2, . . . , τ6, τf,

Variables �vτ1 ,�vτ2 , . . . , �vτ6 ,�vτf

Minimize
∑6

i=1 ||�vτi || + ||�vτf ||
Constraints r(τ0) = rm(τ0), E(τ0) � 0,

τ0 < τ1 < τ2 < · · · < τ6 < τf

Equation of motion Eq. (1)

Table 3 The candidate asteroid targets via solving parameter optimiza-
tion problems in Table 2

Asteroid �v2 (km/s) �v3 (km/s) J (kg)

2003 SM84 0.4126 0.3744 98387.36

2009 OS5 0.4127 0.3923 93846.52

2001 QJ142 0.4772 0.4204 87228.95

2012 BB14 0.6056 0.6072 59678.7

total velocity impulses required for the 2nd and 3rd segments,
respectively. By ranking �v3 (or J calculated by Eq. (3)),
we finally chose the asteroid “2003 SM84” as the target for
sample-return and its orbit is shown in Fig. 5.

For the best multiple-impulse solution obtained via tra-
jectory optimization (the target asteroid is “2003 SM84”),
the asteroid stay time is 1415 days and the asteroid arrival
and departure dates are 2028-08-01 (MJD61984) and 2032-
06-16 (MJD63399), respectively. In order to improve the
design performance index further, a continuation technique
is employed to find a potential global optimum. This tech-
nique is simple and termed continuation on the time instants
of asteroid departure. For the trajectory optimization of the
3rd segment given in Table 2, an additional velocity impulse
(denoted by �vτ ′

0
and its initial value is set to be null) is

added at an earlier time instant τ ′
0 (the initial value is set

to be τ ′
0 = τ0 − 60 days), and a new optimization problem

modeled in Table 4 is set up and solved (rast and vast denote
the asteroid position and velocity vectors, respectively). In
the results obtained, the velocity impulses that are less than
1 m/s are finally removed.

The same procedure is repeated by allocating a velocity
impulse at the time instant (a new asteroid departure date)
initially 60 days preceding the previous asteroid departure
date, and a new optimization problem similar to that setup in
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Fig. 5 The asteroid orbit viewed in the a Heliocentric inertial frame and b Sun–Earth system rotating frame

Table 4 The new optimization problem for the spacecraft trajectory of
the asteroid-to-Moon segment

Optimization τ ′
0, τ0, τ1, τ2, · · · , τ6, τf,

Variables �vτ ′
0
,�vτ0 ,�vτ1 ,�vτ2 , . . . , �vτ6

Minimize
∑6

i=1 ||�vτi || + ||�vτ0 || + ||�vτ ′
0
||

Constraints r(τ ′
0) = rast(τ ′

0),

v(τ ′
0) = vast(τ

′
0),

r(τf) = rm(τf), E(τf) � −0.096km2/s2,

τ ′
0 < τ0 < τ1 < τ2 < · · · < τ6 < τf

Equation of motion Eq. (1)

Table 4 is solved and a new solution is then obtained. This
procedure continues until the asteroid departure date is earlier
than 2028-08-31 (MJD62014). In this way, we then obtained
a series of transfer trajectories from the asteroid to the Moon
with different asteroid departure dates. Via sorting all these
solutions in terms of the total velocity impulses, the optimal
asteroid departure date is finally selected to be 2029-10-
01(MJD62137) that corresponds to theminimal total velocity
impulses of 0.1037 km/s for the asteroid-to-Moon segment,
which is a key solution for carrying as much sample as pos-
sible back to the Earth. In terms of this approach, the orbital
states at lunar flyby of the 2nd and 3rd segments are pre-
sented in Table 5, which are used for analysis of the escape
from and capture by the Earth–Moon system.

4 Escape from and capture by the Earth–Moon
system

4.1 Orbital resonance concept and simplified modeling

In celestial mechanics, orbital resonance is a fundamental
concept, usually referring to the fact that some celestial bod-

Table 5 The spacecraft orbital states at lunar flyby of the 2nd and 3rd
segments (in the Earth-centered inertial coordinate frame)

Parameters The 2nd segment The 3rd segment
(for escape) (for capture)

Time (MJD) 61565.47 64125.30

Position x = 218040.75 x = 19788.19

vector (km) y = −327942.47 y = −385892.19

z = −25049.22 z = −8095.15

Velocity ẋ = 1.3603 ẋ = 1.7951

vector (km/s) ẏ = 0.4234 ẏ = 0.6529

ż = −1.3086 ż = −1.3211

Lunar relative
velocity (km/s)

1.3453 1.5885

ies follow orbital mechanics inwhich their orbital periods are
related by a ratio of small integers. In this study, orbital reso-
nance occurs between a spacecraft and the Moon. When the
orbital period of a spacecraft is in an integer ratio with that of
the Moon, the spacecraft flies in a lunar resonance orbit. For
simplicity and clearance, a resonance ratio in this article is
defined as the ratio of the number of orbits completed in the
same time interval. As a result, if the spacecraft completes p
orbits and the Moon completes q orbits, the resonance ratio
is p:q where p and q are positive integers. In this study, lunar
resonance orbits provide a useful approach for making use
of multiple lunar gravity assists.

The illustration of lunar gravity assist and orbital reso-
nance is shown in Fig. 6, in which the lunar position and
velocity vectors are denoted by rm and vm, respectively, vn
is the lunar relative velocity vector (before flyby), and v is
the velocity vector of the spacecraft relative to the Earth. All
these variables are evaluated in the Earth-centered coordi-
nate frame. After lunar flyby, vn becomes v′

n. In this way, the
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Fig. 6 Illustration of lunar gravity assist

lunar gravity assist is modeled as an instantaneous velocity
change via a rotation of vn about the vertex of vm with an
angle of δ (see Eq. (9)).

For interpreting lunar gravity assists (LGA) and resonance
orbits, we defined the following definitions for further analy-
sis:

(1) vn-sphere: the origin of the sphere is the vertex of the
lunar orbital velocity vector vm, and the sphere radius is
the module of vn.

(2) LGA-sphere-surface: a portion of the vn-sphere’s surface
on which the vertex of v′

n resides after rotating vn about
the vertex of vm with an angle of δ.

(3) p:q-resonance-circle: the circle on the vn-sphere on
which the module of v is a constant value that is
corresponding to the p:q resonance ratio (1:1-resonance-
circle and 1:2-resonance-circle in the figure as examples)
and the normal of the circle is parallel to vm.

(4) LGA-p:q-arc: the crossing arc of the LGA-sphere sur-
face and the p:q-resonance-circle. If v′

n resides on this
arc, the spacecraft will return to the Moon after p orbits
(or q lunar orbits) in terms of the two-body dynamics.

Each lunar flyby is then related to a rotation of vn. If
vn resides on the p:q-resonance-circle, the spacecraft may
periodically fly by theMoon and then periodically exploit the
lunar gravitation. Therefore, the LGA-p:q-arc is a potential
bridge to connect the current and target vn. If the spacecraft
cannot hop to the target vn directly with a single LGA, it may
try to hop to a LGA-p:q-circular-arc at first and then hop to
the target. In order to describe the rotation of vn, the SWT
coordinate frame is introduced, as shown in Fig. 7, where the
W-axis is along the Moon’s velocity ( j as the unit vector),
the T-axis is perpendicular to the lunar orbit plane (k as the
unit vector and k = rm × vm/||rm × vm|| ), and the S-axis
is determined by the right handed principle (i as the unit
vector).

The direction of vn can be expressed by two angular para-
meters ρ and σ that are computed as follows (also as shown
in Fig. 7)

Fig. 7 Illustration of the vector vn and the parameters [ρ, σ ] (S′ and
T′ are parallel to S and T, respectively)

cos ρ = vn · j
||vn|| ,

cos σ = vn · i
||vn|| sin ρ

, sin σ = vn · k
||vn|| sin ρ

,

(11)

where the domains of ρ and σ are defined as ρ ∈ [0, π]
and σ ∈ [−π, π] in terms of the illustration in Fig. 7. The
parameter ρ is located in [0, π /2] if vn · j � 0 and in
[π /2, π] if vn · j � 0 (ρ = arccos(cos ρ) + π), and the
parameter σ is located in [0,π] if vn · k � 0 and in [−π, 0]
if vn · k � 0. It is noted that if ρ = 0 or π, σ is undefined.
Inversely, vn can be computed if ||vn||, ρ, and σ are given.

According to the definitions of ρ and σ , the p:q-
resonance-circle can be expressed by the parameter ρ.
Assuming that the period of the lunar orbit is Pm and the
resonance ratio is p:q, the period of the spacecraft orbit and
the orbital energy in the Earth-centered reference frame are
computed as

P = Pm · q
p

= 2π

√
a3

μe
, (12)

E = −μe

2a
= v2

2
− μe

r
, (13)

where a is the semi-major axis of the spacecraft orbit, r is the
orbital radius (r = ||r|| where r is the spacecraft’s position
vector), and v is the velocity amplitude (v = ||v||). In terms
of the period and energy (see Eqs.(12–13)), the amplitude of
velocity is calculated as

v2 = 2μe

r
− 2π pμe

Pmq
. (14)

Consider the triangle encircled with vn, vm , and v, ρ is
computed as follows in terms of the p:q resonance ratio

ρ = π− cos−1
(

vm · vm + vn · vn − v2

2||vm|| · ||vn||
)

. (15)
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Once ρ is chosen, the upper and lower limits of σ are also
determined with the corresponding LGA-p:q-arc. If vn can
not turn to the target state directly, the lunar resonance orbit
will be employed. In this way, vn first hop to a LGA-p:q-arc
and then hop to the target state, andwe expected that the lunar
resonanceorbit is a bridge to connect the 1st and2nd segment,
and also the 3rd and 4th segments. Therefore, the design of
lunar resonance orbit is converted to the determination of
[ρ, σ ]. It is noted that all the analysis in this section are
based on the two-body dynamics.

4.2 Escape with double lunar flybys

For the set of orbital states at lunar flyby of the 2nd seg-
ment given in Table 5, the parameters [ρ, σ ] of vn is
[69.75◦,−70.21◦] and ||vn|| = 1.3453 km/s, which is cor-
responding to the lunar relative velocity just after escaping
from the Earth–Moon system. A challenge to be tackled is
that we need to design a transfer trajectory for the spacecraft
from an Earth orbit to reach this set of orbital states using
multiple lunar gravity assists.

First, let us consider vn just before the first lunar flyby,
which is corresponding to an Earth-centered elliptical orbit
that crosses the lunar orbit. Considering that the amplitude of
vn (1.3453 km/s) at lunar flyby (MJD61565.47) is set to be
equal to that given in Table 5, an optimum set of [ρ, σ ] should
be chosen in terms of the minimized apogee of the corre-
sponding Earth-centered elliptical orbit, which should satisfy
the following three constraints: (1) the perigee altitude is con-
strained to be 200km.This constraint is prepared for patching
the trajectory segment of low-thrust orbit raising from the
200-km-altitude low Earth orbit to a highly elliptical orbit
whose perigee altitude is also close to 200 km; (2) the apogee
should be no less than the Moon’s orbital radius, which is a
necessary condition for using lunar gravity assist. However,
the higher the apogee the more velocity impulses needed
for departing the low Earth orbit; (3) the orbital inclination is
between 20◦ and 90◦, which is the problem constraint. There-
fore, grid search of ρ and σ (0 � ρ � π,−π � σ � π) is
performed to find vn and the corresponding elliptical orbit,
whichfinally results in [ρ, σ ] = [136.72◦, 13.43◦] to express
vn (||vn|| = 1.3453 km/s) before the first lunar flyby.

Next,wewill determine how [ρ, σ ] change from the initial
([136.72◦, 13.43◦]) to the target ([69.75◦,−70.21◦]), and the
required rotation angle of vn is 100.41◦. In terms of Eq. (9),
the maximum rotation angle of vn is computed as δmax =
73.13◦ with the minimum flyby radius (rflyby = 1838 km).
We noticed that the required rotation change of vn can not
be completed via a single lunar gravity assist. Therefore, a
lunar resonance orbit is employed as a bridge (or finding
a proper p:q-resonance-circle and the LGA-p:q-arc). The
p:q-resonance-circle is corresponding to a specific value of

Fig. 8 The change of [ρ, σ ] for the escape from the Earth–Moon sys-
tem

ρ, and the guideline to determine ρ is that both the initial and
target vn are capable of hopping to a p:q-resonance-circle.

Based on δmax, ρ could be determined to be in 63.59◦–
142.88◦ and ρ = 131.51◦ is selected that is corresponding
to a 1:1 lunar resonance orbit. Once ρ is determined, we
performed a grid search of σ in terms of the concept of the
LGA-p:q-arc, and σ = −40.77◦ is finally chosen such that
the lunar flyby radius is not quite large, which implies that the
gravity assist model in Fig. 6 is a good approximation to the
lunar close flyby in the restricted four-body dynamics. The
lunar flyby radius is computed as follow in terms of Eq. (9)

rflyby = μm(1 − sin δ
2 )

||vn||2 · sin δ
2

. (16)

The rotational change of vn (or changes of ρ and σ ) is
depicted in Fig. 8. It is noted that the selection of ρ and σ for
lunar resonance orbit is not unique, which implies that the
utilization of lunar resonance orbits is quite flexible.

4.3 Capture with double lunar flybys

Let us now consider the connection of the 3rd and 4th
segments. In terms of the orbital states at lunar flyby for
the 3rd segment given in Table 5, the amplitude of vn is
set to be 1.5885 km/s and the parameters [ρ, σ ] of vn is
[55.71◦,−117.43◦]. If the minimum lunar flyby radius (=
1838 km) is adopted, the maximum rotation angle is com-
puted as δmax = 61.85◦. With an optimal rotation angle,
the minimum orbital energy (see Eq. (10)) is obtained to
be −0.096 km2/s2, which theoretically results in a capture
orbit in terms of the two-body dynamics but the reentry con-
dition might not be satisfied. If the perigee of this capture
orbit is deemed at the altitude of 200 km (for reentry), the
orbital apogee reaches over 2 million km and the Sun’s grav-
itation can not be ignored. In this case, the two-body model
is not accurate enough to approximate the trajectory in the
restricted four-body dynamics. In the presence of the signifi-
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cant Sun’s gravitation, it is hard to use the method described
in Sect. 4.2 because there does not exist the lunar resonance
orbit with small ratios such as 1:1 or 1:2, etc. that is used to be
a bridge.Weneed to extend the the concept of lunar resonance
orbits to accommodate the effect of the Sun’s gravitation.

In these circumstances, we implemented trajectory inte-
gration forward in time with a grid search of ρ and σ (the
search domains are set to be 0 � ρ � π, −π � σ � π,
respectively). TheMoon’s departure time is set to be the value
given in Table 5. The trajectory integration is conducted in
the restricted four-body dynamics, and the Moon’s gravita-
tion is not counted if the spacecraft is close to the Moon
(μm = 0 in the Eq. (1) in the preceding and following 0.4
days (an empirical value) of lunar encounters). We focused
our attention on the trajectories that would return to the vicin-
ity of the Moon. These trajectories are then re-optimized
to construct the Moon-to-Moon transfers by exerting proper
intermediate velocity impulses. It should be emphasized that
the module of vn at Moon’s departure and return (not strictly
constrained to be the values in Table 5) could be changed
by adjusting intermediate velocity impulses. Among these
Moon-to-Moon transfers, we found a solution in which ρ

and σ of vn are [100.37◦,−164.64◦] at Moon’s departure
and [99.71◦,−116.23◦] at Moon’s return, and the module of
vn remains almost the same (intermediate velocity impulses
are not necessary in this case). This Moon-to-Moon transfer
takes about 12 months; and, therefore, it could be deemed an
1:12 lunar resonance orbit. An important reason to choose
this solution is that the vn just before the 4th lunar flyby is
capable of resulting in atmospheric reentry condition via a
single lunar flyby (vn changes from [99.71◦,−116.23◦] to
[90.53◦, 173.51◦] with ||vn|| = 1.5885 km/s).

In fact, the Moon-to-Moon transfer is employed to re-
target the reentry condition. The change of ρ and σ are shown
in Fig. 9. The dashed circular arc connects the two sets of ρ

and σ via a Moon-to-Moon transfer in the restricted four-
body dynamics. This dashed arc vanishes in Fig. 8 because
the lunar resonance orbit is close to a two-body Keplerian
orbit such that vn at Moon’s departure and return appear

Fig. 9 The change of [ρ, σ ] for the capture by the Earth–Moon system

almost the same. The Moon-to-Moon transfer (a modified
form of lunar resonance orbit considering the Sun’s gravita-
tion) is deemed a bridge to connect the 3rd and 4th trajectory
segments. It should be pointed out that, in order to further
reduce the velocity impulses in the 3rd and 4th segments, the
trajectory segment of “asteroid-Moon-Moon-reentry” is re-
optimized as awhole (see Sect. 4.4 for details) and only about
103 m/s velocity impulses are required. The optimized solu-
tion does not show the lunar orbital resonance with integer
ratio.

It is noted that the lunar resonance orbits depicted in
Figs. 8 and 9 appear in a different manner. In order to unify
the concept of lunar resonance orbits in this study, we pro-
posed two definitions: the two-body and multi-body lunar
resonance orbit (or Moon-to-Moon transfer). In summary,
if the flight trajectory is significantly influenced by multiple
gravitational fields (see the case in Fig. 9), it is termed the
multi-body lunar resonance orbit with different initial and
target vn that are expressed by two distinct sets of the para-
meters [ρ, σ ]. It is noted that the amplitudes of the initial
and target vn might be also different. If the Earth’s grav-
ity is dominant, it is termed the two-body lunar resonance
orbit with almost the same initial and target vn that corre-
sponds to a set of the parameters [ρ, σ ]. Compared with
the two-body lunar resonance orbit, the multi-body lunar
resonance orbit in Fig. 9 appears complex to some extent.
From the point of view of flight mechanics, it could be also
termed lunar-gravity-assisted 1:1 Earth resonance orbit. The
multi-body lunar resonance orbit with necessary intermedi-
ate orbital corrections is a useful approach to change vn with
the consideration of the Sun’s gravitation, therefore serving
as an enhanced bridge to connect the interplanetary flight and
the flight within the Earth–Moon system.

4.4 Resonance flyby orbits optimized in the restricted
four-body dynamics

Based on the proposed methods described in Sect. 4.2, the
lunar relative velocity vectors (vn) just before and after lunar
flybys are obtained, which are deemed the initial values of
the solution to be obtained with subsequent optimization in
the restricted four-body dynamics. For each lunar flyby, we
proposed a model shown in Fig. 10 for constructing lunar
close flybys. First, we introduced a Moon-centered inertial
frame xMyMzM that is parallel to xEyEzE (see Fig. 1), the rel-
ative velocity vectors before and after flyby are denoted by
vin and vout, (||vin|| = ||vout|| = ||vn||), respectively, and the
angel between vin and vout is δ. It is noted that the transfor-
mation of orbital states expressed in the Moon-, Earth- and
Sun-centered inertial frames is required, but not presented in
detail herein.

At the lunar closest approach point, the spacecraft’s posi-
tion and velocity vectors are denoted by rGA and vGA,
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Fig. 10 Modeling lunar gravity assist in the restricted four-body
dynamics

Fig. 11 The capture trajectory in the restricted four-body dynamics

respectively. They are approximately computed as follow in
terms of r in, rout, and flyby radius rflyby

rGA = rflyby
vin − vout

||vin − vout|| , (17)

vGA = vGA
vin + vout

||vin + vout|| , vGA =
√

2μm

rflyby
+ ||vin||2. (18)

For the capture trajectory (from the asteroid departure to
Earth reentry), the spacecraft orbital states are denoted by
Ψ1(t1) at t1 for the first lunar flyby and Ψ2(t2) at t2 for the
second lunar flyby. The orbital states of the asteroid at t0
(asteroid departure time instant) are denoted by Ψ0(t0). The
orbital states of the spacecraft at t0 could be obtained by tra-
jectory integration backward in time with Ψ1(t1) at t1, and
Ψ1(tm) are obtained by integration forward to tm that is a time
instant between t1 and t2. In the same way, the orbital states
Ψ2(tm) at tm are obtained by trajectory integration backward
in time withΨ2(t2) at t2 and the orbital states at Earth reentry
(Ψ2(t3) at t3) are obtained by integration forward in time. The
illustration of trajectory integration is depicted in Fig. 11. The
velocity impulses are needed at t0 and tm and some interme-
diate time instants to construct the whole capture trajectory.
Finally, a nonlinear parameter optimization problem can be
set up in Table 6, which is solved by NLP solver.

In the similar way, the escape trajectory (from an Earth
elliptical orbit to asteroid rendezvous) is solved with addi-

Table 6 The nonlinear optimization problem for the capture trajectory
via two times lunar flybys

Optimization
variables

t0, t1,Ψ1(t1), tm, t2,Ψ2(t2), t3, velocity impulses
at t0, tm, and other intermediate time instants

Minimize The sum of all the velocity impulses

Constraints The position vectors in Ψ0(t0) and Ψ1(t0) are
equal

The position vectors in Ψ1(tm) and Ψ2(tm) are
equal

Orbital radius of Ψ2(t3) is equal to 6578 km

The velocity amplitude of Ψ2(t3) is no more than
11 km/s

Table 7 The orbital states in the eccentric orbit and at Earth reentry (in
the Earth-centered inertial coordinate frame)

Parameters Elliptical orbit at
a selected epoch

Earth atmospheric
reentry

Time (MJD) 61534.08 64539.30

Position x = 26912.4 x = −4265.4

vector (km) y = −53663.8 y = −4796.3

z = 61246.7 z = 1439.6

Velocity ẋ = −1.2786 ẋ = 9.6634

vector (km/s) ẏ = 2.2573 ẏ = −5.1166

ż = −1.1706 ż = −1.0178

tional constraints (the perigee of the eccentric orbit is
between6578 and6678kmand the inclination is between20◦
and 90◦). Our experience shows that the design results using
the concept of lunar resonance orbits provide good initial
solutions that are then corrected in the restricted four-body
dynamics. Finally, we obtained a whole impulsive trajectory
starting from an Earth-centered elliptical orbit to the final
Earth atmospheric reentry, including four times lunar flybys.

The orbital states in the elliptical orbit (before the 1st lunar
flyby) at a selected epoch and the orbital states at atmospheric
reentry are shown in Table 7. The epoch and orbital states in
the first column in Table 7 is used to patch the low-thrust
transfer from the low-Earth orbit, which is to be described in
the next section.

5 Low-thrust orbital raising and escape from the
Earth–Moon system

Starting from a circular low Earth orbit with 200 km altitude,
the spacecraft must endure a low-thrust multiple-revolution
transfer to a highly elliptical orbit even with the thrust
amplitude at its maximum value. The research on optimiza-
tion of this type of multiple-revolution transfer is somewhat
limited due to the difficulty of resolving the optimal bang-
bang thrusting structure. To tackle this trajectory segment,
we defined two simplified and easily-understood steering
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Fig. 12 Illustration of the thrusting steering for multiple-revolution
orbital raising

strategies: perigee-centered tangential steering and apogee-
centered inertial steering [14]. As shown in Fig. 12, the
former is aligned with the orbital velocity direction, and the
latter is perpendicular to the line connecting the osculating
perigee and apogee. The tangential steering is employed for
raising the altitude of apogee, and the inertial steering is uti-
lized for maintaining the altitude of perigee above 200 km. In
this way, the circular orbit gradually becomes highly ellip-
tical. The apogee of the transfer trajectory is continuously
raised and the altitude of perigee does not change signifi-
cantly.

We then define θ to be true anomaly, and γ flight-path
angle (the angle from the local horizontal plane to the velocity
vector) to model the proposed steering directions and the
thrust vector. In this way, the pitch angle of the thrust vector
(the angle from the local horizon plane to the thrust vector)
is then computed as follows (see Ref. [14] for details)

α=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
θ, if we > 0,

θ + π, if we < 0,
if cos θ � cos(π−|we| π),

{
γ, if ws > 0,

γ + π, if ws < 0,
if cos θ > cos(−|ws| π) .

(19)

As a result, the projection of the thrust vector on the local
horizon is denoted by Fr = F sin α and Fc = F cosα, a
radial and a circumferential component. Meanwhile, we set
the out-of-plane thrusting component to be null. These com-
ponents can be trivially transformed into those expressed in
the Earth-centered inertial coordinate frame. The parame-
ters ws and we are set to be constant values (between −1
and 1). In fact, they can be variable with time and how to
optimize ws and we is still challenging for the transfer from
a low Earth orbit to a highly eccentric orbit. With empiri-
cal selection of ws and we by trial-and-error, we obtained a
flight sequence with a large number of thrusting and coasting
arcs, and themulti-revolution transfer is then computed using
numerical integration with the predefined guidance control
laws in Eq. (19), considering the gravities of the Sun and the
Moon. It is noted that if we = 0 and ws �= 0 (no inertial
steering is applied) when the orbit is eccentric, the perigee
might decrease to below 200 km with the perigee-centered

piecewise tangential steering only. For this case, the orbital
raising is the main purpose and the perigee altitude mainte-
nance is axillary, which results in the fact that |we| is much
smaller than |ws|.

Finally, we = −0.0005 and ws = 0.27 is selected and
the low-thrust flight time is set to be 180 days. At the end of
the low-thrust orbital raising trajectory, the osculating orbital
perigee and apogee are 8606 and 260654 km, respectively.
Subsequently, the spacecraft needs to transfer to the ellip-
tical orbit depicted in Table 7. By optimally selecting the
orbital elements of the low Earth orbit and re-optimizing the
orbital states at the selected epoch presented in Table 7, the
low-thrust orbital raising trajectory is finally connected to
the first lunar flyby by using a phasing orbit as a bridge.
The apogee of this phasing orbit is beyond the lunar orbit,
which is a necessary condition for lunar encounter. A rela-
tively longer thrusting arc near perigee is needed for boosting
the spacecraft to this phasing orbit.

6 Converting velocity impulses into low thrust arcs

All trajectory segments are designed using velocity impulses
as orbital maneuvers at the first step except for the one of
orbital raising from a low Earth orbit to a highly eccentric
orbit using low thrust only. After we obtained the designed
solution with impulsive maneuvers, these velocity impulses
are then converted into low thrust arcs accordingly. All
exerted velocity impulses are classified into two cases. In
the first case, unpowered coasting arcs are located before and
after the impulse and in the second case the impulse is exerted
when the spacecraft just arrives at or departs from the aster-
oid. The illustration of these two cases is shown in Fig. 13.
For both cases, the starting time instant of the low thrust
arcs to be converted is marked as t0 (also the time instant for
exerting the impulse) and the final time instant tf. For the first
case, we specified two time instants tA (or point A) and tB (or
point B) on each side of t0 where tA = t0 − c · �tthrust,i and
tB = tf+c·�tthrust,i . Note that c is an arbitrary positive quan-
tity and �tthrust,i (tf = t0 +�tthrust,i ) denotes the duration of
thrusting arc that is converted from the i-th impulse. From
A to B, the propulsion sequence is then defined as “coast-

Fig. 13 Illustration for converting impulses into low-thrust arcs
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thrust-coast”. For the second cases (use asteroid departure
as an example), the propulsion sequence is then defined as
“thrust-coast” and tB = tf+c ·�tthrust,i . Based on the funda-
mental rocket equation, the duration of thrusting arc�tthrust,i
is estimated through the following equation

F

ge Isp
· �tthrust,i = mi0

[
1 − exp

(
− �vi

ge Isp

)]
, (20)

where mi0 is the spacecraft mass before exerting the i-th
impulse that is denoted by�vi , and F is the thrust amplitude.

According to the optimal control theory, the system
Hamiltonian can be derived as follows

H(r, v, F,α,λ, t) = λT f (r, v, F,α, t), (21)

where f (r, v, F,α, t) is the right side of Eq. (1), and the
differential equations of the costate variables λ = [λTr λT

v ]T
can be derived via computing the partial derivatives of the
Hamiltonian with respect to the state variables x = [rTvT]T.

The optimal thrusting direction considering the constraint
||α|| = 1 is derived as

α∗ = − λv

||λv|| . (22)

We then employed an indirect/direct hybrid optimization
method [15] to solve the proposed optimal problem. Finally,
the trajectory optimization problems are transformed into
the nonlinear programming problems. The trajectories are
numerically integrated in terms of the sequence of “coast-
thrust-coast” or “thrust-coast” (using Fig. 13 as an example).
With the orbital states at A (r∗(tA), v∗(tA)) or at aster-
oid departure (rast(t0), vast(t0)) that are obtained from the
design solution with impulsive maneuvers, we can compute
the states at B (r∗(tB), v∗(tB)) that are constrained to the
orbital states at tB in the designed solution. The time instants
(tA, t0, tf, tB) are then constrained via setting a number of
inequalities. These two cases of conversion are finally cat-
egorized to be the nonlinear programming problems listed
in Table 8. The initial costate variables should be guessed.
Because the low thrust arcs are relatively short, the iterations
of nonlinear programming problems appear easy to converge.

7 Trajectory solution with the sample mass of 328
tons

The team from the Technology and Engineering Center for
Space Utilization, Chinese Academy of Sciences finally sub-
mitted a solution with the design performance index of
J = 328313 kg, which is ranked first in this competition.
The designed solution is presented in Table 9, and the flight
trajectory is shown in Fig. 14. It is noted that there are four

Table 8 The nonlinear programming problem for converting velocity
impulses into low thrust

Case Case I Case II
(asteroid departure)

Optimization
variables

λr (t0),λv(t0), t0, tf λr (t0),λv(t0), t0, tf

Performance
index

max(m(tf)) max(m(tf))

Equality r(tB) = r∗(tB) r(tB) = r∗(tB)

constraints v(tB) = v∗(tB) v(tB) = v∗(tB)

Inequality
constraints

tA � t0 � tf � tB t0 � tf � tB

Initial r(tA) = r∗(tA) r(t0) = rast(t0)

states v(tA) = v∗(tA) v(t0) = vast(t0)

times at which lunar close flybys play important roles in car-
rying a hundreds-of-tons asteroid sample back to the Earth.
Theflyby altitudes (the flyby radiusminus theMoon’s radius)
for these lunar flybys are no more than 1700 km, which indi-
cates that the effect of lunar gravity assists is significant. The
relative velocity (if it is denoted by v∞ ) in Table 9 is com-
puted through v2∞/2 ≈ v2p/2 − μm/rp where rp and vp are
the position and velocity at the lunar closest approach in a
Moon-centered inertial coordinate frame.

Let us note the asteroid target “2003 SM84”. In fact, the
semi-major axis of the asteroid’s heliocentric orbit is slightly
larger than 1 astronomic unit (AU), such that the asteroid pos-
sesses a roughly 6:7 resonance with the Earth, which means
that the repeated heliocentric phase angles of the Earth and
the asteroid is about 7 years. In this 7-year time interval,
also the duration between the 2nd and 3rd lunar flybys, the
asteroid orbits the Sun about 6 revolutions.

As shown in Fig. 14, the trajectory segment of return (or
the 3rd segment) is much longer than the outbound segment
(or the 2nd segment), containing two segments of significant
low thrust arcs (about 30 days and the equivalent impulse is
about 100 km/s). The other thrusting arcs are much shorter
and even harder to be identified in the figure.

The trajectory segment from a low Earth orbit to escaping
from theEarth–Moon system is shown inFig. 15. The altitude
of apogee is raised by primarily using the tangential steering
near perigee. The thrusting arcs near the apogee are quite
short, which indicates the perigee altitude maintenance does
not require much control effect. When the apogee altitude
reaches about 260000 km, the spacecraft exerts a relatively
longer thrustingmaneuver near perigee to boost itself beyond
the lunar revolution orbit about the Earth. With about one
orbit for phasingwith proper intermediate orbital maneuvers,
the spacecraft encounters the Moon for the first time and is
then inserted into a 1:1 lunar resonance orbit via a single lunar
flyby. After roughly a lunar orbital period about the Earth,
the spacecraft encounters the Moon for the second time and
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Table 9 A description of the designed solution

Event seq. no. Events Event date year-month-day Spacecraft mass (kg) Remarks

1 Low Earth orbit 2026-11-02 2000 Inclination 89.975◦

Altitude 200 km

2 1st LGA 2027-05-12 / Flyby radius 2554.65 km

Relative velocity 1.312 km/s

3 2nd LGA 2027-06-09 / Flyby radius 2164.45 km

Relative velocity 1.345 km/s

4 Asteroid rendezvous 2028-08-01 1687 Staying on asteroid for 153 days

5 Asteroid departure 2029-01-01 330000 Sampling mass of 328313 kg

6 3rd LGA 2034-06-11 / Flyby radius 2027.66 km

Relative velocity 1.926 km/s

7 4th LGA 2035-05-31 / Flyby radius 2456.60 km

Relative velocity 1.681 km/s

8 Earth reentry 2035-07-31 328829 Reentry altitude 200 km

Reentry speed 10.98 km/s

Final spacecraft mass 516 kg

Fig. 14 The optimally
designed flight trajectory of
sample-return mission in the
Sun–Earth rotating coordinate
frame

Fig. 15 The trajectory segment
to escape from the Earth–Moon
system (including double lunar
gravity assists)
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Fig. 16 The return trajectory
segment ended up with Earth
atmospheric reentry (including
double lunar gravity assists)

the close lunar flyby makes the spacecraft escape from the
Earth–Moon system and then head for the asteroid.

The trajectory from interplanetary space to Earth
atmospheric reentry is shown in Fig. 16. The equivalent
velocity impulses for the segment shown in the figure are
just a few meters per second; and, therefore the low-thrust
arcs seem absent. For the capture by the Earth–Moon system,
there are also two lunar gravity assists, which appear differ-
ent from those for the escape (see Fig. 15). If we consider
that the spacecraft is in a resonance orbit with respect to the
Moon, it is a roughly 1:12 lunar resonance orbit, in which
the furthest distance from the Earth is about 20-million km
that exceeds the Earth gravitational sphere. This lunar reso-
nance orbit, interpreted to be multi-body resonance orbit, is
an extension of the resonance orbit modeled in the two-body
dynamics. After roughly a year, the spacecraft return to the
Earth–Moon system again and Earth atmospheric reentry is
achieved via the last lunar flyby. When we observe the helio-
centric trajectory shown in Fig. 17, the spacecraft is inserted
into a heliocentric 1:1 resonance orbit with respect to the
Earth. It is shown that the first (the third for the entire trajec-
tory) lunar flyby occurs at the time instant when the range
between the Earth and asteroid is almost smallest. The semi-
major axis, eccentricity, and inclination of the spacecraft’s
heliocentric orbit are much similar to those of the Earth after
lunar flyby, but similar to those of the asteroid before lunar
flyby. As a result, the return leg is a typical low-energy flight,
fully exploiting lunar gravity assists via the concept of orbital
resonance. The equivalent velocity impulses are about 103
m/s, much less than that of the outbound segment to the aster-
oid. This result is a key characteristic that a hundreds-of-tons
of asteroid sample could be carried back.

8 Conclusions

We have reported our design methods for solving an
NEA sample-return trajectory, which shows that returning

Fig. 17 The heliocentric return trajectory segment (corresponding to
the trajectory shown in Fig. 15)

a hundreds-of-tons asteroid or an asteroid sample is theo-
retically possible. The designed solution brings us a new
understanding of spaceflight for NEA’s explorationmissions.
It is indicated that capturing a selected asteroid might not
require much propellant and the asteroids, whose heliocen-
tric orbits appear 6:7 or less resonance ratio with that of
the Earth, are potential targets for asteroid (or asteroid sam-
ple) capture missions. Direct trajectory optimization with
multiple-impulse maneuvers is proved to be effective to
determine the target asteroid and required optimal velocity
impulses. If the technology of solar electric propulsion is
developed further, NEA’s sample return will become more
and more promising. The designed solution, resolved just in
a two-month time frame, can be deemed a baseline solution
for future comparative study.

Meanwhile, we have realized that trajectory optimization
in the Sun–Earth–Moon system might be quite challenging.
In our design methods, orbital resonance and lunar grav-
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ity assists are deemed the crucial techniques to obtain the
reported solution, and also proved to be efficient for design-
ing flight trajectories for NEA exploration missions. The
concept of lunar resonance orbits plays a role for fulfilling
fuel-optimal escape from and capture by the Earth–Moon
system. It is shown from this study that when the space-
craft flies by the Moon with the relative velocity up to 2
km/s (this is not the upper limit), it could be captured by
the Earth–Moon system with quite few velocity impulses.
Specifically, the lunar resonance orbit for achieving low-
energy atmospheric reentry is also deemed resonance with
the Earth–Moon system with respect to the Sun. Moreover,
the lunar resonance orbit model presented in this study pro-
vides an efficient design tool for constructing multiple lunar
gravity assists.

We still think there might be other design methods for
constructing low-energy trajectories. The invariantmanifolds
of halo orbits in the circular restricted three-body dynam-
ics provide a good tool for trajectory design in multi-body
dynamics. However, it is not explicitly employed for solving
this problem. It is believed that the invariant manifolds and
lunar resonance orbits could be combined for designing a
variety of low-energy transfer trajectories in the Sun–Earth–
Moon system, especially for the trajectories for capturing the
asteroid sample into lunar orbit, which is the scenario of the
asteroid redirect mission.
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Appendix: Ephemerides of the Sun, the Moon, and
the asteroid “2003 SM84”

See Tables 10, 11, 12.

Table 10 The epoch and classical orbital elements of the Earth (refer-
enced in the heliocentric ecliptic coordinate frame)

Epoch (MJD) 59215

Semi-major axis (km) 149474418.329

Eccentricity 0.015933

Inclination (degree) 0.013304

Right ascension of ascending node (degree) 185.840151

Argument of periapsis (degree) 96.733526 + 180

Mean anomaly (degree) 357.988371

Table 11 The epoch and classical orbital elements of the Moon (refer-
enced in the Earth-centered ecliptic coordinate frame)

Epoch (MJD) 59215

Semi-major axis (km) 390948.694681267

Eccentricity 0.039215

Inclination (degree) 5.242997

Right ascension of ascending node (degree) 79.738154

Argument of periapsis (degree) 118.019399

Mean anomaly (degree) 289.118853

Table 12 The epoch and classical orbital elements of the asteroid “2003
SM84” (referenced in the heliocentric ecliptic coordinate frame)

Epoch (MJD) 56400

Semi-major axis (AU) 1.125476062

Eccentricity 0.082085935

Inclination (degree) 2.795197032

Right ascension of ascending node (degree) 87.40173315

Argument of periapsis (degree) 186.7156647

Mean anomaly (degree) 1.45531279
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