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Abstract An anisotropic micromechanics model based on
the equivalent inclusion method is developed to investigate
the rafting direction of Ni-based single crystal superalloys.
The micromechanical model considers actual cubic structure
and orthogonal anisotropy properties. The von Mises stress,
elastic strain energy density, and hydrostatic pressure in dif-
ferent inclusions of micromechanical model are calculated
when applying a tensile or compressive loading along the
[001] direction. The calculated results can successfully pre-
dict the rafting direction for alloys exhibiting a positive or
a negative mismatch, which are in agreement with pervious
experimental and theoretical studies. Moreover, the elastic
constant differences and mismatch degree of the matrix and
precipitate phases and their influences on the rafting direction
are carefully discussed.

Keywords Ni-based single crystal superalloys · Rafting ·
Equivalent inclusion theory · Stroh formalism

1 Introduction

Ni-based single crystal superalloys are used as indispens-
able materials for the blades and vane applications in gas
turbines, owing to their excellent reliability and mechanical
properties. They are strengthened by a high volume frac-
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tion of hard cubical γ ′ precipitates embedded coherently in a
softer γ matrix. When superalloys are subjected to external
stress at above 1123 K, the γ ′ precipitates coarsen direction-
ally to form rafts generally aligned along the [001] direction.
This rafting behavior directly affects the creep fatigue life
of Ni-based single crystal superalloys and fracture surface is
usually along the direction of rafting [1–3]. Therefore, the
rafting mechanism is the key rule of precipitation hardening
and mechanical properties in Ni-based single crystal super-
alloys.

The rafting of γ ′ precipitates under the influence of an
applied stress was first studied in detail by Tien and Cop-
ley [4]. Subsequently, γ ′ rafting and its influence on the
creep resistance of superalloys have been widely observed
by experiments [2,5,6]. Moreover, some theoretical mod-
els based on dislocation [7,8], phase-field multi-component
models incorporating elastic driving forces in the presence of
a latticemisfit [9], crystal plasticitymodel taking into account
microstructure evolutions [10], and numerical models in the
framework of the finite element method [11–13] have been
proposed to describe and predict the rafting behavior at high
temperatures. These models have their own advantages for
predicting the directional coarsening (rafting) and inelastic
behaviors from a different point of view, mainly taking into
account the influences of interfacial dislocations,microstruc-
ture evolutions, lattice mismatch, and the applied external
stress, whereas they rarely consider the influence of the elas-
tic constant differences of γ and γ ′, two phases on the rafting
direction.

Furthermore, we have noticed that some micromechani-
cal models based on Eshelby’s equivalent inclusion theory
have been successfully applied to describe the rafting,
which occurs in the Ni-based single crystal superalloys. The
isotropic elastic energy based on the theory of inclusion and
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inhomogeneity byEshelbywas calculated and applied to pre-
dict correctly the γ ′ rafting [14,15]. Afterwards, Miyazaki et
al. [16] and Ratel et al. [17] developed the inclusion theory
with anisotropic elasticity to calculate elastic energy caused
by the change in the shapeof theγ ′ precipitates, andpredicted
effectively the directional coarsening of the γ ′ precipitates
in the case of a creep stress applied along the [001] direction.
Based on this model, Ratel et al. [18] further analyzed the
effect of the plastic strain in the horizontal channels and verti-
cal channels in the γ matrix on the γ ′ rafting. In these equiv-
alent inclusion models, the γ ′ precipitates was taken as an
ellipsoidal inclusion, however, the actual γ ′ precipitates with
a cubic structure, and the volume fraction of γ ′ may reach
as high as 70%. Due to the equivalent inclusion method, it is
being limited to applications for a material system in which
the inclusions exist with a low volume fraction in an isolated
style [19,20]. A three-phase micromechanical model with
consideration of the cubic structure and high volume fraction
ofγ ′ wasdevelopedbyWuet al. [21] to predict the directional
coarsening direction in Ni-based single crystal superalloys.
However, this micromechanical model does not consider the
anisotropyofNi-based single crystal superalloys. Thus, in the
present paper, we aim at improving that model and develop-
ing an anisotropicmicromechanicsmodel basedonEshelby’s
equivalent inclusion theory to predict the γ ′ rafting direction.
The anisotropic cubical γ ′ precipitates with a volume frac-
tion of 70 % embedded in the γ matrix is taken into account
in our model, which equates to the actual structure in the Ni-
based single crystal superalloys. Moreover, the effects of the
mismatch degree and the elastic constant differences on the
rafting direction are carefully discussed.

This paper is organized as follows: First, in Sect. 2.1,
we introduce the anisotropic equivalent inclusion model. In
Sects. 2.2–2.3, the Eshelby’s equivalent inclusion theory is
applied to this model and the solution of the average Eshelby
tensor is given. Next, according to the equivalent inclusion
model in Sect. 2, the von Mises stress, elastic strain energy
density and hydrostatic pressure in different inclusions are
calculated when the external stress is applied along the [001]
direction in Sect. 3.Meanwhile, the effects of the sign ofmis-
match (positive or negative) and the external load (tensile or
compressive) on the rafting direction are analyzed. Then the
effects of mismatch degree and elastic constant differences
on von Mises stress are discussed in Sect. 4. Finally, some
key conclusions are drawn in Sect. 5.

2 Model and method

2.1 Micromechanical model

The material micromechanical model and its representative
volume element are shown in Fig. 1. As shown in Fig. 1a,

Fig. 1 Material model of Ni-based single crystal superalloys: the cubi-
cal γ ′ precipitates are uniformly embedded in the γ matrix and the
volume fraction of the γ ′ phase is 70 % a, and the representative vol-
ume element for micromechanical analysis b

the γ ′ precipitates with the cubical shapes are uniformly
distributed in the γ matrix and the volume fraction of the
γ ′ precipitate is 70 %. Generally, the equivalent inclusion
method is limited to application for a material system in
which the inclusions exist with a low volume fraction in an
isolated style. However, the current Ni-based single crystal
superalloys contain γ ′ precipitates with a very high volume
fraction. Based on our previous model [21], we take the γ ′
precipitates as the matrix and the γ matrix as the inclusions.
In addition, the horizontal matrix γH and the vertical matrix
γV are considered as the inclusion I and the inclusion II,
respectively, as shown in Fig. 1b. Therefore, a three-phase
compositematerialmodel is established in the selected repre-
sentative volume element, consisting of the matrix, inclusion
I and inclusion II.

In the present model, the elastic tensors of the matrix,
inclusion I and inclusion II, are denotedbyC ,C1,C2; the vol-
ume fractions by f , f1, f2 (with f = 0.7, f1 = f2 = 0.15),
respectively. As in Zhou et al. [13], when the temperature is
at 1323 and 1023 K, the elastic constants of the γ ′ precipi-
tates and the γ matrix for negative and positive mismatch are
listed in Table 1.

In the calculation, the coordinate system is identical to
the crystal coordinate axes. Due to the material along the
direction of [100] being uniform and in a periodic array, this
model is simplified as a plane strain problem.As inChen et al.
[22], a thermal expansion method is used to realize the effect
of lattice mismatch. The thermal mismatch strains can be
given such that εt = [−δ,−δ, 0, 0, 0, 0]T, with superscript
T denoting the transpose of the vector and δ denoting lattice
mismatches.
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Table 1 Elastic constants (in GPa) of γ matrix and γ ′ precipitates at
1323 and 1023 K for the negative mismatch δ = −0.38% and positive
mismatch δ = 0.56%, respectively

Material δ (%) C11 C12 C44

γ matrix −0.38 202 139 95

γ ′ precipitates −0.38 179 120 88

γ matrix 0.56 112 63 57

γ ′ precipitates 0.56 167 107 99

2.2 Micromechanical method

According to Mori and Tanaka [20], the average stress σ r
i j of

the inclusions can be written as

σ r
i j = σ 0

i j + σi j + σ r
i j , r = 1, 2, (1)

where σ 0
i j is uniform external stress; σi j is an average stress

disturbance in the matrix due to the existence of the inclu-
sions; σi j + σ r

i j is an average stress disturbance in the
inclusions; the superscript r = 1 and 2 represent inclusion
I and inclusion II, respectively. Applying Hooke’s law, the
average stress σ r

i j of the inclusions is

σ r
i j = σ 0

i j + σi j + σ r
i j = Cr

i jkl

(
ε0kl + εkl + εrkl − εtkl

)
, (2)

whereCr
i jkl is the elastic stiffness tensor of the inclusions; εi j

is average strain disturbance in thematrix due to the existence
of the inclusions; εi j +εri j is the average strain disturbance in
the inclusions. According to Eshelby’s equivalent inclusion
theory, the right item of Eq. (2) can be written as

Cr
i jkl

(
ε0kl + εkl + εrkl − εtkl

)

= Ci jkl

(
ε0kl + εkl + εrkl − εtkl − ε∗r

kl

)
, (3)

where Ci jkl is the elastic stiffness tensor of the matrix; ε∗r
i j

is the fictitious eigenstrain. For the entire composite domain,
the following relation always holds

σ 0
i j = Ci jklε

0
kl . (4)

To facilitate Eshelby’s formula, we introduce ε∗∗r
i j defined by

ε∗∗r
i j = εti j + ε∗r

i j . (5)

Thus, according to Eqs. (2)–(5), we have

σ r
i j = Ci jkl

(
εrkl − ε∗∗r

kl

)
. (6)

The strain disturbance εri j is related to ε∗∗r
i j through an

average Eshelby tensor Sri jkl ,

εri j = Sri jklε
∗∗r
kl , (7)

where the average Eshelby tensor of the inclusions Sri jkl is
shown in Sect. 2.3.

Substitution of Eqs. (4)–(7) into Eq. (3) yields the equiv-
alent eigenstrain ε∗∗r

i j

ε∗∗r
i j =

(
�Cr

i jkl S
r
klmn + Ci jmn

)−1

×
[
−�Cr

mnpq

(
ε0pq + εpq

)
+ Cr

mnpqε
t
pq

]
, (8)

where �Cr
i jkl = Cr

i jkl − Ci jkl and C1
i jkl = C2

i jkl . Due to the
vanishing of the average stress disturbance over the entire
composite domain, εi j is determined by

εi j +
2∑

r=1

fr
(
εri j − ε∗∗r

i j

)
= 0. (9)

Substituting Eq. (7) into Eq. (9), we have

εi j = −
2∑

r=1

fr
(
Sri jkl − Ii jkl

)
ε∗∗r
kl , (10)

where Ii jkl is a fourth order unity tensor. Substitution of Eq.
(8) into Eq. (10) gives

εi j = −
2∑

r=1

fr
(
Sri jkl − Ii jkl

) (
�Cr

klmnS
r
mnpq + Cklpq

)−1

×
[
−�Cr

pqgh

(
ε0gh + εgh

)
+ Cr

pqghε
t
gh

]
. (11)

It can be simplified to

εi j = (
Ii jkl −Ui jkl

)−1
(
Uklmnε

0
mn − Vklmnε

t
mn

)
, (12)

where

Ui jkl =
2∑

r=1

fr
(
Sri jmn − Ii jmn

)

×
(
�Cr

mnpq S
r
pqgh + Cmngh

)−1
�Cr

ghkl , (13)

Vi jkl =
2∑

r=1

fr
(
Sri jmn − Ii jmn

)

×
(
�Cr

mnpq S
r
pqgh + Cmngh

)−1
Cr
ghkl . (14)
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According to Eqs. (2)–(5), and (7), the average stresses σ r
i j

inside the inclusions can be obtained as

σ r
i j = σ 0

i j + Ci jklεkl + Ci jkl

(
Srklmn − Iklmn

)
ε∗∗r
mn . (15)

According to Eq. (4) and Eqs. (12)–(14), if the elastic
constants of material, thermal mismatch strains εti j , external

stress σ 0
i j , and the average Eshelby tensor S

r
i jkl are given, we

can obtain εi j . Then substitution of Eq. (12) into Eq. (8)
gives the new fictitious eigenstrain ε∗∗r

i j . Finally, according
to Eq. (15), we can obtain the average stresses σ r

i j inside the
inclusions.

After the application of the Eshelby–Mori-Tanaka’s the-
ory, the von Mises stress σ r

e is obtained by

σ r
e =

√
3

2

(
sri j s

r
i j

)
, sri j = σ r

i j − 1

3
σ r
kkδi j , (16)

where sri j is the stress deviator and δi j is Kronecker delta.
The elastic strain energy density Gr is given by

Gr = 1

2
σ r
i jε

r
i j . (17)

The hydrostatic pressure σ r
h is given by

σ r
h = 1

3
σ r
kk . (18)

Generally, for an anisotropic material, an equivalent stress
based on Hill’s yield criterion is more suitable to estimate
whether the yielding occurs. However, in the present paper,
the rafting direction of Ni-based single crystal superalloys is
analyzed and predicted only in the elastic range. Therefore,
the vonMises stress, elastic strain energy density, and hydro-
static pressure are calculated to predict the rafting direction
as proposed in Zhou et al. [13].

According to these threemechanical variables, it should be
noted that the initiation of rafting and its direction inNi-based
single crystal superalloys can be analyzed and conclusions
made.

2.3 Average Eshelby tensor

When an inclusionΩ with uniform eigenstrain ε∗∗
i j is embed-

ded in a two-dimensional infinitely extended homogeneous
material, which has an elastic constant tensor of Ci jkl , the
displacement uk (X) at the position X in thematerial is given
by the elastic Green functions ukj (x; X) as in Mura [23]

uk (X) = Ci jlmε∗∗
lm

∫

∂Ω

ukj (x; X) ni (x) dS (x), (19)

where ∂Ω is the surface of Ω and ni (x) is the unit outward
normal vector at x on the boundary ∂Ω .

Substituting Eq. (19) into the formula of strain εi j =
1
2

(
ui, j + u j,i

)
, we have

εkp (X) = 1

2
Ci jlmε∗∗

lm

∫

∂Ω

×
[
ukj,X p

(x; X) + u p
j,Xk

(x; X)
]
ni (x) dS (x).

(20)

If the region of Ω is non-elliptic, the strain εi j in Ω due to
the uniform eigenstrain ε∗∗

i j is not uniform as in Onaka et al.
[24]. The average strain εi j in Ω is expressed as

εi j = 1

A

∫

Ω

εi j (X) dA (X), (21)

where A is the area of region Ω .
The average Eshelby tensor Si jkl can be defined from εi j

and ε∗∗
i j as

εi j = Si jklε
∗∗
kl . (22)

According to Eqs. (19)–(22), if the expressions of Green’s
functions ukj (x; X) are given, we can obtain the average

Eshelby tensor Si jkl .
As in Pan [25], the two-dimensional Green functions

ukj (x; X) are expressed as

ukj (x; X) = 1
π
Im

{
3∑

r=1

A jr Akr ln (zr − sr )

}
, (23)

where Im stands for the imaginary part of a complex number;
the complex zr and sr are defined, respectively, by zr =
x + pr y and sr = X + prY ; A = [a1, a2, a3], pr and
ar denote the Stroh eigenvalues and eigenvectors with their
expressions given in Appendix 1.

According to Pan [25], for the integral of Eq. (20), if the
inclusion is rectangular, the contribution of each straight-line
segment along the boundary of the inclusion can be obtained.
The expressions are given in Appendix 2.

3 Model calculated results

3.1 Rafting direction at different signs of mismatch
(positive or negative)

Figure 2 shows the variation of the von Mises stress, elastic
strain energy density and hydrostatic pressure in the inclu-
sions with external tensile stress along the [001] direction.
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Fig. 2 The variation of the von Mises stress a, elastic strain energy
density b and hydrostatic pressure c in the inclusions with the external
tensile stress along the [001] direction

In the calculation, two kinds of mismatch δ = −0.38% and
δ = 0.56% are selected. When the external stress is zero,
we can find clearly in Fig. 2 that all these three values in
the inclusion I equals the inclusion II for both the negative
and positive mismatch cases. But the values of the vonMises

stress and elastic strain energy density with a positive mis-
match (δ = 0.56%) are larger than those with a negative
mismatch (δ = −0.38%). The hydrostatic pressure is ten-
sile stress within the inclusions for an alloy with a positive
mismatch (δ = 0.56%), while the hydrostatic pressure is
compressive stress within the inclusions with a negative mis-
match (δ = −0.38%).

When a tensile stress is applied to a negative mismatch
alloy (δ = −0.38%) along the [001] direction, as seen in
Fig. 2a and b the von Mises stress, elastic strain energy den-
sity in the inclusion II are larger than those in the inclusion I,
and the values of the vonMises stress and elastic strain energy
density in the inclusions I and II increases with an external
tensile stress increase. In Fig. 2c, the hydrostatic pressure
increases with an external tensile stress increase, but the val-
ues of the hydrostatic pressure in the inclusion I and inclusion
II are basically the same. On the other hand, when a tensile
stress is applied to a positive mismatch alloy (δ = 0.56%)

along the [001] direction, the situation is reversed.
Due to the higher vonMises stress and elastic strain energy

density in the inclusion II for a negative mismatch alloy
(δ = −0.38%), the inclusion II will preferentially occur as
a plastic deformation, which induces the mixed dislocations
generation and distribution predominantly in that region. The
rafting direction is vertical to the [001] stress axes (horizontal
matrix channel). In contrast, when a tensile stress is applied
to an alloy with a positive mismatch (δ = 0.56%), the inclu-
sion I will preferentially occur as a plastic deformation. The
rafting direction is parallel to the [001] stress axes (vertical
matrix channel). Furthermore, it seems difficult to determine
the rafting direction using the hydrostatic pressure because
their values in the inclusions I and II are basically the same.
Therefore, comparing it to the calculation of hydrostatic pres-
sure, it is easier to predict the rafting direction by calculating
the von Mises stress and elastic strain energy density in dif-
ferent inclusions (matrix channels) of this model.

In addition, it is also noticeable that the von Mises stress
in the inclusion II of the alloy with a positive mismatch
decreases firstly with the increase of external stress, and
then it increases. This is because the deformation, which is
caused by the positive mismatch, is opposite to the deforma-
tion under the tensile stress along the [001] direction in the
inclusion II.

3.2 Rafting direction at different external stress (tensile
or compressive)

Figure 3 shows the variations of the von Mises stress, elas-
tic strain energy density and hydrostatic pressure when an
external tensile or compressive stress is applied to a negative
mismatch alloy (δ = −0.38%) along the [001] direction.
In Fig. 3a, b, we can find that the application of an external
stress (tensile or compressive) leads to different values of the
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Fig. 3 The variation of the von Mises stress a, elastic strain energy
densityb and hydrostatic pressure c in the inclusionswith external stress
(tensile and compressive) for negative mismatch alloy (δ = −0.38%)

von Mises stress and elastic strain energy density both in the
inclusion I and inclusion II. In Sect. 3.1, we have discussed
the case that a tensile stress is applied to a negative mismatch
alloy along the [001] direction. However, when a compres-
sive stress is applied, the situation is reversed. The vonMises

stress and elastic strain energy density in the inclusion I are
larger than those in the inclusion IIwhen a compressive stress
is applied. As shown in Fig. 3c, the hydrostatic pressures of
the inclusion I and inclusion II both decrease with the exter-
nal compressive stress increasing, but there is still very little
difference in the values of the hydrostatic pressure of the
inclusions I and II.

Based on the above results, we can conclude that when
an external tensile stress is applied to a negative mismatch
superalloy along the [001] direction, due to the higher von
Mises stress and elastic strain energy density in the inclu-
sion II, plastic deformation will predominantly occur in the
inclusion II. The rafting direction is vertical to the [001] stress
axes (horizontal matrix channel). However, when a compres-
sive stress is applied, plastic deformation will predominantly
occur in the inclusion I, and the rafting direction is parallel
to [001] stress axes (vertical matrix channel). These results
are in good agreement with the previous experimental obser-
vations [2,4–6] and theoretical studies [7,8,14].

4 Discussion

4.1 The effect of mismatch degree on von Mises stress

For a negative mismatch alloy, the elastic constants (in
Table 1) are fixed and the mismatch degree is changed from
−0.8 % to 0.8 %. The variations of the von Mises stress in
the inclusion I and inclusion II are shown in Fig. 4.

We can see from Fig. 4 that the von Mises stresses in the
inclusions are closely related to mismatch degree. In Fig. 4a,
when a tensile stress is applied to a negative mismatch alloy
along the [001] direction, the vonMises stress in the inclusion
II is larger than in the inclusion I, thus the rafting direction is
vertical to the [001] stress axes (horizontal matrix channel)
based on the analysis of Sect. 3. The von Mises stresses both
in the inclusion I and inclusion II decreasewith the increasing
mismatch degree. While the mismatch degree is about 0,
the von Mises stresses are the same in the inclusion I and
inclusion II. However, when themismatch is positive, the von
Mises stress in the inclusion I is larger than in the inclusion
II, and the rafting direction is parallel to the [001] stress
axes (vertical matrix channel). Therefore, for a tensile stress
applied along the [001] direction, the rafting direction also
changed from a horizontal to a vertical matrix channel when
the mismatch degree changed from negative to positive. By
contrast, when a compressive stress is applied along the [001]
direction, the results are reversed as shown in Fig. 4b.

4.2 The effect of elastic constant differences on von
Mises stress

Figure 5 shows the effect of elastic constant differences on the
vonMises stress. For a positivemismatch alloy (δ = 0.56%),
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Fig. 4 The variation of the von Mises stress in the inclusions with
different mismatch degrees under 500 MPa external tensile stress a or
compressive stress b

we change the three elastic constants of the γ ′ precipitates
respectively (including C11, C12, C44), and apply 500MPa
external stress along the [001] direction.According toSect. 3,
when an external stress is tensile along the [001] direction,
the von Mises stress of inclusion I is larger than inclusion
II. Therefore, we only consider the effect of elastic constant
differences between γ ′ phase and γ phase on the von Mises
stress of inclusion I. The results are shown in Fig. 5a. When
the first component (C11−Cr

11) of the elastic constant differ-
ences between γ ′ phase and γ phase increases, the vonMises
stress of inclusion I decreases; when the second component
(C12 −Cr

12) of elastic constant differences between γ ′ phase
and γ phase increases, the von Mises stress of inclusion I
increases; however, while the third component (C44 − Cr

44)

of elastic constant differences between γ ′ phase and γ phase
increases, the vonMises stress of inclusion I does not display
obvious variation. Thus, it indicates that the elastic constant
difference C44 − Cr

44 has no significant effect on the von
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Fig. 5 The variations of the von Mises stress with different elastic
constant differences in the inclusion I under 500 MPa external tensile
stress a and in the inclusion II under 500 MPa external compressive
stress

Mises stress, namely, it has no effect on the rafting direction
of alloys.

Similarly, when the external stress is compressive along
the [001] direction, according to Sect. 3, the vonMises stress
of inclusion II is larger than inclusion I. Therefore, we only
consider the effect of elastic constant differences between the
γ ′ phase and γ phase on the von Mises stress of inclusion II.
As shown in Fig. 5b, the results are the same as the case of
the external tensile stress.

From the above discussion, the mismatch degree and elas-
tic constant differences (C11 − Cr

11 and C12 − Cr
12) have a

strong effect on the vonMises stress, the variant ofC44−Cr
44

has no effect on the vonMises stress. Due to the change of the
elastic constant differences and mismatch degree leading to
different values of the von Mises stress in the inclusion I and
inclusion II, they cause the directional coarsening (rafting)
in Ni-based single crystal superalloys.
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5 Conclusions

A new anisotropic micromechanics model based on the
equivalent inclusion method has been developed to predict
the rafting direction in Ni-based single crystal superalloys.
The anisotropic cubical γ ′ precipitate with a volume frac-
tion of 70 % embedded in the γ matrix is taken into account
in this model, which equates to the actual structure in the
Ni-based single crystal superalloys. The von Mises stress,
elastic strain energy density, and hydrostatic pressure of the
inclusions (matrix of original material) are calculated when
the external stresses are applied along the [001] direction.
The main conclusions are as follows:

(1) The proposed anisotropic micromechanics model effec-
tively predicts a rafting direction of Ni-based single
crystal superalloys. The rafting direction depends on the
sign of the mismatch (positive or negative) and the type
of external stress (tensile or compressive).When a tensile
stress is applied to an alloy with a positive mismatch or
a compressive stress is applied to an alloy with a nega-
tivemismatch, the rafting direction is parallel to the [001]
stress axes (verticalmatrix channel).When a compressive
stress is applied to an alloy with a positive mismatch or
a tensile stress is applied to an alloy with a negative mis-
match, the rafting direction is vertical to the [001] stress
axes (horizontalmatrix channel). These results agreewell
with previous theoretical predictions and experimental
observations.

(2) The variations of mismatch degree and elastic constant
differences play an important role on the vonMises stress
of the γ matrix, which strongly affect the γ ′ rafting direc-
tion. When mismatch degree changes from a negative
value to a positive value, the von Mises stress decreases
first and then increases no matter how external stress is
applied (tensile or compressive).

(3) The three different elastic constant differences have
different influences on the vonMises stress (rafting direc-
tion). The elastic constant differences (C11 − Cr

11 and
C12 − Cr

12) have a strong effect on the von Mises stress
(rafting direction), but the variant ofC44−Cr

44 has almost
no effect on the von Mises stress (rafting direction).

From the current results, it is clear to see the influence
of some micromechanical parameters (including mismatch
degree and elastic constant differences) on the von Mises
stress in different inclusions. In comparison with finite ele-
ment method used by Zhou et al. [13], this micromechanical
model is more beneficial for achieving the transformation
between macroscopic and mesoscopic physical quantities
and reveals the relation among different physical quantities
by considering mesoscopic structure and properties of mate-
rials.
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Appendix 1

For anisotropicmaterials, the elastic constants matrix is sym-
metric and can be expressed as

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

Sym. C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

. (24)

According to Ting [26], the Stroh eigenvalues pr and the
eigenvectors ar satisfy the following eigenrelation

[
Q + p

(
R + RT

)
+ p2T

]
a = 0, (25)

where the superscript T denote the transpose of matrix, and
Q, R, T are given by

Q =
⎡
⎣
C11 C16 C15

C16 C66 C56

C15 C56 C55

⎤
⎦, R =

⎡
⎣
C16 C12 C14

C66 C26 C46

C56 C25 C45

⎤
⎦,

T =
⎡
⎣
C66 C26 C46

C26 C22 C24

C46 C24 C44

⎤
⎦.

.(26)

Due to a �= 0, p satisfies the sextic equation

∣∣∣Q + p
(
R + RT

)
+ p2T

∣∣∣ = 0. (27)

According to Eq. (27), the solutions to the sextic equation
are three pairs of complex conjugate roots for p. We take
Impr > 0, r = 1, 2, 3.

Introduce the matrix N and vector b, and the expression
of N is

N =
[ −T−1RT T−1

−Q + RT−1RT −RT−1

]
. (28)

Meanwhile, p, a, b, and N satisfy the following relation

N
[
ar
br

]
= pr

[
ar
br

]
r = 1, 2, 3, (29)

bTαaβ + aTαbβ = δαβ, (30)

where δαβ is Kronecker delta.
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Appendix 2

For the integral of Eq. (20), if the inclusion is rectangular, the
contributionof each straight-line segment along the boundary
of the inclusion can be obtained.We suppose the start point of
certain straight-line segments is (x1, y1), and the end point is
(x2, y2). As in Pan [25], the contribution of this straight-line
segment along the boundary of the inclusion is

εβα = 0.5niCi jlmε∗∗
lm

l

π
Im

{
3∑

r=1

A jr Aβr hr,α

}

+ 0.5niCi jlmε∗∗
lm

l

π
Im

{
3∑

r=1

A jr Aαr hr,β

}
,

εα3 = 0.5niCi jlmε∗∗
lm

l

π
Im

{
3∑

r=1

A jr A3r hr,α

}
, (31)

whereα,β = 1, 2; r = 1, 2, 3;ni is the outward normal com-
ponent along the line segment: n1 = y2−y1

l , n2 = − x2−x1
l ;

l =
√

(x2 − x1)2 + (y2 − y1)2 is the length of the line seg-
ment; and hr,1 , hr,2 are expressed as follows

hr,1 = −1

(x2 − x1) + pr (y2 − y1)
ln

(
x2 + pr y2 − sr
x1 + pr y1 − sr

)
,

hr,2 = −pr
(x2 − x1) + pr (y2 − y1)

ln

(
x2 + pr y2 − sr
x1 + pr y1 − sr

)
.

(32)
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