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Abstract Thermoelastic martensitic transformations in
shape memory alloys can be modeled on the basis of non-
linear elastic theory. Microstructures of fine phase mixtures
are local energy minimizers of the total energy. Using a
one-dimensional effective model, we have shown that such
microstructures are inhomogeneous solutions of the nonlin-
ear Euler–Lagrange equation and can appear upon loading or
unloading to certain critical conditions, the bifurcation con-
ditions.Ahybrid numericalmethod is utilized to calculate the
inhomogeneous solutions with a large number of interfaces.
The characteristics of the solutions are clarified by three
parameters: the number of interfaces, the interface thick-
ness, and the oscillating amplitude. Approximated analytical
expressions are obtained for the interface and inhomogeneity
energies through the numerical solutions.

Keywords Thermoelastic martensitic transformation ·
Microstructures · Nonlinear elasticity · Bifurcation · Energy
minimizer

1 Introduction

Thermoelastic martensitic transformation (TEMT) is a type
of solid–solid phase transition occurring inmany shapemem-
ory alloys (SMAs) [1,2]. It is responsible for the shape
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memory effect and pseudoelasticity, which are the two prop-
erties utilized in most applications of such alloys [3–8].
Microstructures of fine phase mixtures are often observed
during the transformation, and they have a very strong effect
on the macroscopic thermomechanical behavior of SMAs
[9,10]. Many studies have been conducted in recent decades
to determine when and which type of microstructures will
appear during a given thermomechanical process [5,9–18].

Because TEMT takes place between two phases with dif-
ferent crystallographic structures, the primary driving force
for the transformation is the bulk elastic strain energy dif-
ference of the two phases, the austenite, and the martensitic
phase. However, owing to the diffusionless and thermoelastic
nature of TEMT, both the interface energy and the inho-
mogeneous energy due to elastic constraints should play
important roles in determining the observed microstructures
of phase mixtures. It has been known for a long time [19]
that the interface energy due to mismatches on the surface
and interface boundaries has a strong effect on the nucle-
ation and growth in many phase transitions. However, the
constraint elastic energy accompanying the transformation
is a rather special phenomenon of TEMT in SMAs [3]. For
diffusion-controlled phase transitions, the constraint energy
could be largely relaxed through atomic diffusions [20]. If
the phase transition is diffusionless such as in TEMT, very
strong elastic energies can be built up because of internal and
external constraints due to dislocations, precipitates, grain
boundaries, sample surfaces, and so on [3,5,21]. Thus, the
microstructures of phasemixtures inTEMTmust be analyzed
by considering the interplay among the three contributions
for the total energy, i.e., the bulk, the interfaces, and the con-
straint energy.

As indicated further by the hysteresis during TEMT, the
microstructure is not unique under a given thermomechanical
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loading. Hence, they should be metastable states and local
energy minimizers (LEMs) of the total energy. Their charac-
teristics can be affected strongly by many factors, such as the
rate of loading [22–25], the lattice orientation relative to the
loading direction [26], the sample and grain sizes [27–29],
and so on.

Owing to the metastability of such LEMs, it is gener-
ally very difficult to determine all possible solutions by
analytical and numerical methods [14,15]. Various effective
one-dimensional nonlinear elastic models for slender SMA
strips under uniaxial loading have been studied to understand
the characteristics of the microstructures [30,31]. Among
them, the so-called foundation models have been studied
most intensively in recent years [32–36]. Although local
bifurcation analysis has shown that finemixtures with a large
number of interfaces could beLEMsof such foundationmod-
els [34,35], solutions of large interface numbers are very
difficult to obtain even numerically because of the high non-
linearity of the problem. Thus, still very little is known about
the characteristics of such solutions of fine phase mixtures.

Attempts have beenmade to obtain such solutions through
dynamic processes [36–38] by adding viscosity terms to the
equations. However, it is not possible to obtain all possible
LEMs through the dynamic process, and the role of viscosity
is not clear formetallicmaterials.Asymptotic series solutions
were proposed by the present authors in Ref. [39] using the
homotopy analysis method (HAM) [40,41]. It was shown
that asymptotic solutions with a large number of interfaces
could be obtained by HAM. However, the convergence of
such solutions is not guaranteed.

Thus, we shall propose a hybrid method to combine HAM
with the finite difference method (FDM) to obtain inhomo-
geneous solutions of the nonlinear Euler–Lagrange equation
of the one-dimensional foundation model. Then the charac-
teristics of such solutions will be studied in some detail. The
results can be helpful in understanding the governing mech-
anism of fine phase mixtures in thermoelastic martensitic
transformation.

The paper is organized as follows. In the next section, the
nonlinear elastic model of TEMT will be introduced briefly.
Then the approximated one-dimensional foundation model
is presented. The hybrid HAM–FDM method is proposed
to obtain the numerical solutions of fine phase mixtures. In
Sect. 3, the bifurcation condition for the existence of such
inhomogeneous solutions of fine phase mixtures is obtained.
The effect of loading and model parameters on bifurcation
behavior is discussed. Multiple bifurcations under load-
ing leads to the possibility of microstructure evolutions.
In Sect. 4, numerical solutions of fine phase mixtures are
obtained by the hybrid HAM–FDMmethod for various load-
ing conditions and different model parameters. Some typical
features of the solutions are taken as the characteristics for
the microstructures. That is, three quantities—the interface

number, the interface thickness, and the strain oscillating
amplitude—are considered as the determining character-
istics. Our numerical simulations confirmed that both the
interface energy and the constraint energy are determined
completely by these three quantities. The final conclusion is
given in the last section.

2 Nonlinear elastic models and the hybrid
numerical method

First, the nonlinear elastic model for TEMTwill be reviewed
briefly, and then the one-dimensional approximation of a
foundation model will be presented. Then the hybrid method
for numerical solutions will be introduced.

2.1 Nonlinear elastic model for martensitic
transformations

TEMT takes place diffusionlessly between two phases with
rather different crystallographic structures and is accompa-
nied by large shear strains. That is, the deformation gradients
of themartensite FM and the austenite FA are related by [2,5]

FM = FA + d ⊗ p, (1)

where the unit vector p is the normal of the interface between
the two phases, called the habit plane. The vector d is per-
pendicular to p and represents the shear. When the lattice
structures of the two phases are known, the shear strain
can be calculated according to theWechsler–Liberman–Read
method [42] or, equivalently, Bowles–Mackenzie method
[43]. Both experimental and theoretical studies have con-
firmed that the TEMTs in SMA can be well described by
macroscopic deformation gradients (1) without having to
introduce other order parameters of a microscopic nature
[2,5]. Moreover, the bulk Helmholtz free energy would be
just a function of the deformation gradient at a given temper-
ature, just like thermoelastic materials [44]. Thus, for a body
B the total enery would be

Et = Eb =
∫

B

W (∇u, T )dV, (2)

where ∇u = F − I is the displacement gradient and W
is the nonlinear elastic strain energy density. At relatively
high temperatures where only the parent phase can exist, the
elastic strain energy is convex in strain with the minimum at
F = FA, just like regular elastic materials. However,W will
become nonconvex and can have more than one minimum at
temperatures where both phases can coexist. Moreover, 24
different variants of martensite can often appear owing to the
lattice symmetries, even for single-crystal SMAs. Thus, W
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would have 24 equal-height martensitic minimums in addi-
tion to that of austenite.

Because of the nonconvexity of the strain energy W , the
total energy minimizer of Eq. (2) is generally not unique, and
microstructures of fine phase mixtures can appear as LEMs
[9,45]. Thus, during a TEMT under thermomechanical load-
ing, the austenite phase that was previously the unique global
energy minimizer becomes unstable, and the new phase,
the martensitic phase, will nucleate in the austenitic matrix.
Microstructures asmixtures of austenite andmartensitic vari-
ants will appear as metastable LEMs. Hence, this is a kind
of bifurcation from the unique stable solution of austenite to
nonunique metastable solutions of phase mixtures.

For a phase mixture, there exist large lattice distortions
near the interfaces between the two phases of very differ-
ent lattice structures. Thus, an interface energy of a strain
gradient type could be added to Eq. (2) as

Et = Ebulk + Eint =
∫

B

(
W (∇u, T ) + k(∇∇u, T )

)
dV.

(3)

However, very few useful results have been obtained for the
two- and three-dimensional models because of the math-
ematical and numerical difficulties of considering a large
number of different martensitic variants [9,11,14,15,46].
Thus, various one-dimensional approximated models have
been proposed and studied analytically and numerically. We
shall consider here the so-called foundation model.

2.2 One-dimensional foundation model

By considering slender strips of single-crystal SMAs in uni-
axial loading experiments, only one favorable martensitic
variant is usually picked out by the applied uniaxial stress.
Thus, the problem is reduced to considering only a two-well
nonconvex elastic strain energy function with interfaces of
the austenite and the favored martensitic variant [30]. It was
shown in Ref. [31] that the one-dimensional approximation
of Eq. (3) would lead a unique phase mixture with only one
interface. To model fine phase mixtures observed in many
experiments, various effective one-dimensional models have
been proposed to consider constraints imposed by the bound-
ary and surrounding matrix, such as the so-called foundation
models [32–36].

The one-dimensional foundation model proposed first by
Ref. [35] is based on the following total free energy for a
slender bar:

Et = Ebulk + Eint + Einh =
∫ L

0

[
W

(
ux (x)

) + αu2xx(x)

+β
(
u(x) − uH

(
x)

)2] dx,
(4)

where L is the length of the bar; and u(x), ux (x), and
uxx(x) are the displacement, the strain, and the strain gradi-
ent, respectively. The elastic strain energy densityW (ux ) is a
nonconvex double-well function with its two minimums rep-
resenting the austenite and martensite. The interface energy
Eint is proportional to the square of the strain gradient and
penalizes the phase boundaries. The coefficient of interfacial
energy (CIFE) α is a positive constant. The inhomogeneity
energy Einh was originally proposed as an artificial pseudo-
rigid foundation in Ref. [35] to mimic the elastic constraints
of the boundaries and the surrounding matrix in three dimen-
sions. uH (x) is taken as the homogenous displacement of an
elastic foundation bar under the same boundary conditions.
That is, if we consider the displacement controlled boundary
condition

u(0) = u0, u(L) = u0 + dL and uxx(0) = uxx(L) = 0, (5)

with u0 a constant and d = (u(L)−u(0))/L the engineering
strain, the homogeneous displacement is

uH (x) = (
u(L) − u(0)

)
x/L + u(0) = u0 + dx. (6)

As discussed in Refs. [35] and [47], this term penalizes inho-
mogeneous solutions with the positive constant β as the
coefficient of inhomogeneous energy (CIHE).

Compared to the more popular elastic foundation model
of which the last term in Eq. (4) is taken as being proportional
to u2, the energy functional (4) is translation-invariant. That
is, the translation u0 in the boundary condition (5) does not
affect Et of Eq. (4) but would have a large effect if Einh is
assumed to be proportional to u2 as in the elastic foundation
model. In the model proposed by Dai and Cai in Ref. [48],
the effect of the constraints is considered by including an
additional equation for the vertical displacement. However,
they considered only polycrystalline SMAs with just two
interfaces during the TEMT.

The Euler–Lagrange equation for the minimization of the
total free energy (4) under the boundary condition is the fol-
lowing fourth-order nonlinear ordinary differential equation
(ODE):

Geff(ux )uxx − 2αuxxxx − 2β(u − uH ) = 0, (7)

with the effective modulus Geff defined as the curvature of
the potential energy W (ux ),

Geff(ux ) = Wεε(ux ). (8)

It is strictly positive for elastic materials with convex elastic
strain energy W . Thus, Eq. (7) with the boundary condition
(5) has a unique trivial solution, u = uH , even for α =
β = 0, which is a homogeneous deformation by Eq. (6).
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Fig. 1 Nonconvex elastic potential function. a The two well potentialW (ε). b The nonmonotonic stress–strain relation σ = W ′(ε). c The effective
modulus with negative part Geff = W ′′(ε)

However, the uniqueness will be lost if the effective modulus
Geff can become zero and even negative in the case where
W (ε) is nonconvex for materials under phase transitions. For
example, consider the following potential function and its
effective modulus:

W (ε) = E(ε2 − 1)2/4, (9)

Geff(ε) = 3E(ε2 − 1/3). (10)

As shown in Fig. 1, W is nonconvex with two minimums
at ε±

m = ±1 (Fig. 1a), with a nonmonotonic stress–strain
diagram (Fig. 1b), andGeff is zero at the two inflection points
±ε0 = ±1/

√
3and is negative in between (−ε0,−ε0),where

W is concave (Fig. 1c). Then it is possible to obtain nontrivial
inhomogeneous solutions of Eq. (7) in addition to the trivial
one u = uH .

By Eq. (4), the free energy of the trivial homogeneous
solution is simply Et = W (d)L . According to Eq. (9), it
is the energy minimizer when d = ±εm = ±1. As the
strain d moves away from the two minimums, the energy
increases, and eventually the homogeneous solution could

become unstable in the concave region d ∈ (−ε0, ε0). Then
inhomogeneous solutions of Eq. (7) would appear as the
LEMs of the total free energy (4), a kind of bifurcation
[35,39,47].

As shown in Fig. 2, the LEMs are nonmonotonic solu-
tions u(x), with the strain ux (x) oscillating between the two
energy wells. Thus, they can be characterized by the total
number of points {xi , i = 1, 2, ..., k} satisfying ux (xi ) = d,
for example, k = 5 for Fig. 2b. This corresponds to the num-
ber of oscillations and should be identified as the number of
interfaces between the two phases. The solutions can be fur-
ther characterized by the oscillating amplitude 2A > 0 and
the thickness of the interfaces t > 0, as shown in Fig. 2b.
For the trivial homogeneous solution u(x) = uH (x), we set
k = A = t = 0. Therefore, bifurcation is from a solution
with k = A = t = 0 to solutions with k, A, t > 0. The con-
dition for the existence of nontrivial solutions will be given
in the next section. Here we shall first rewrite our equations
in dimensionless forms and introduce the hybrid numerical
method to calculate such solutions.
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Fig. 2 Inhomogeneous solution of the Euler-Lagrange equation. a The displacement u(x). b The strain ux (x). c The scaled displacement v(x/L).
d Relative residual error against iteration orders

2.3 The hybrid HAM–FDM method

The dimensionless versions of Eqs. (4)–(10) read as follows

ξ = x/L , v(ξ) = (
u(x) − uH (x)

)
/L , α̂ = α/(EL2),

β̂ = βL2/E, (11)

Ŵ (ε) = (ε2 − 1)2/4 and Ĝeff(ε) = 3(ε2 − 1/3), (12)

et = Et

EL
=

∫ 1

0

[
Ŵ

(
vξ (ξ) + d

) + α̂v2ξξ (ξ) + β̂v2(ξ)
]
dξ,

(13)

Ĝeff(vξ + d)vξξ − 2α̂vξξξξ − 2β̂v = 0, (14)

v(0) = v(1) = 0, and vxx (0) = vxx (1) = 0. (15)

It is generally not possible to find analytical solutions of the
highly nonlinear fourth-order ODE (14) with the boundary
conditions (15). The finite difference method (FDM) is often
applied together with the Newton iteration method (NIM)
[37,38,49] to obtain the numerical solutions. The numerical
scheme is

v(n+1) = v(n) − [∂ g(v)

∂v(n)

]−1 · g(v(n)), (16)

for the (n + 1)th-order solution v(n+1), with

gi (u) = 1

�x

[
W ′

(
ui+1 − ui

�x

)
− W ′

(
ui − ui−1

�x

)]

−2
α

�x4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)

−2β(ui − uH ). (17)

For the Newton iteration be effective, it is very important to
have an initial guess v(0) not very far from the final solution.
This can be rather difficult for inhomogeneous solutions with
a very large interface number k. Very often, solutions with
k no more than 5 are studied. For higher k′s, we need more
effective methods.

As proposed in Ref. [39], HAM can be applied to obtain
the asymptotic series solutions of Eq. (14) with boundary
conditions (15). The asymptotic solutions with a given inter-
face number k read

vN (ξ) =
N∑
i=0

b(i, N )h̄i sin(2i + 1)kπξ, (18)

where h̄ is an auxiliary parameter used in HAM to control
the convergence of the solution for large N . The coefficients
b(i, N ), i = 1, 2, 3. . ., N must be calculated iteratively.Note
that Eq. (18) is not a Fourier series expansion because b(i, N )

does not denote the Fourier coefficients and must be recal-
culated for every cutoff N .

As shown in Ref. [39], it is possible to obtain the bifur-
cation condition and the nontrivial asymptotic solutions for
a large number of k by this method. Moreover, the solutions
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(18) converge numerically to some functions,with their strain
oscillating between the two energy wells like those shown in
Fig. 2.

However, there is no mathematical proof of convergence
for HAM. Thus, it would be extremely useful to check the
solutions using different methods. We propose the following
hybrid procedure to obtain the numerical solutions with a
given interface number k:

(1) HAM solution (18) is calculated to a sufficiently large
order N to ensure good approximation.

(2) The HAM solution is inserted into Eq. (16) as the initial
guess v(0) to start the iteration by NIM with the FDM
of Eq. (17).

The solution shown in Fig. 2 is obtained by thismethodwith a
HAMsolution (18) of N = 30.Usually, rather good accuracy
is obtained after just a very small number of iterations. The
relative residual errors of Eq. (14) as a function of the FDM
iteration orders are shown in Fig. 2d. One can see that the
iteration in which a high-order HAM solution is used as the
initial solution for the FDM converges rather quickly.

It is obvious from Fig. 2 that the inhomogeneous solu-
tions of Eq. (7) all have their strains ux oscillating between
the two wells of the potential energy (9). However, many
solutions can exist for a given engineering strain d, and they
can have very different interface numbers k, amplitudes A,
and interface thicknesses t . It is clear that not all of them
can be the absolute minimizers of the total free energy (4).
They are simply the LEMs, i.e., the solutions of the Euler–
Lagrange equation (4)with the boundary condition (5). These
LEMs are metastable and are very useful for understanding
the martensitic transformations, in particular the hysteresis.
Thus, their characteristics will be studied in some detail in
what follows. First, the condition for the existence of such
inhomogeneous solutions must be established.

3 Bifurcation conditions for local energy
minimizers

The bifurcation condition for the existence of LEMs can be
obtained either by local bifurcation analysis [35] or through
HAM [39]. The result is summarized here first. Then the
bifurcations during the loading–unloading process are dis-
cussed in detail.

3.1 Bifurcation conditions and region of local energy
minimizers

First, the necessary condition for the existence of LEMs,
i.e., inhomogeneous solutions of Eqs. (14) and (15), with
the interface number k > 0 at a given strain d, are obtained
[35,39] as

k_(d) < k < k+(d), (19)

where k±(d) are two functions defined as

k±(d) = κ√
δε0

[
ε20 − d2 ± (

(ε2δ − d2)(ε2δ − d2 + 2δε20)
)1/2]1/2

,

(20)

with the constants

εδ = ε0
√
1 − δ, δ = 4

√
α̂β̂, κ =

(
β̂/α̂

)1/4
/π . (21)

As shown in Fig. 3a, condition (19) is satisfied by (d, k) in the
following region with its upper and lower boundaries given
by (20)

ΩLEMs = {(d, k)| − εδ < d < εδ, k_(d) < k < k+(d)} .

(22)

Thus, we may call ΩLEMs the region of LEMs. As shown in
Fig. 3, ΩLEMs is convex in the (d, k) plane and symmetric in
strain because we used a symmetric potential function (9).
At d = 0, we have a maximal k+(0) and minimal k_(0) as

k±(0) = κ√
δ

√
1 ±

√
1 − δ2. (23)

It is obvious from Eq. (20) that the region ΩLEMs will be
simply shifted up for larger κ , as shown in Fig. 3a. Hence,
LEMs would generally have larger numbers of interfaces for
larger κ . The constant δ must satisfy 0 < δ < 1 to ensure the
existence of such a region by Eq. (21). ΩLEMs is bigger for
smaller δ as shown clearly in Fig. 3b.

The exact bifurcation condition for the appearance of
LEMs is more involved because the interface number k must
be a positive integer. Moreover, multiple bifurcations to vari-
ous LEMs can occur upon loading–unloading processes. We
shall first consider the primary bifurcation to LEMs by load-
ing the sample from the left minimum of the strain energy
function W given by Eq. (9), i.e., d0 = −εm = −1. The sit-
uation is symmetric for unloading from the right minimum
owing to the symmetry of W .

3.2 Primary bifurcation to LEMs

The homogeneous trivial solution, v = 0(u = uH ), is and
will remain the unique solution of Eqs. (14) and (15) until
d increases to d = −εδ , with k±(−εδ) = κ . This is the
leftmost boundary point of the solution region ΩLEMs and
is slightly larger than the inflection strain −ε0 by Eq. (21).
The situation will be very different for different values of the
constant κ of Eq. (21).
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Fig. 3 Region of local energy minimizers ΩLEMs for a different κ’s and b different δ’s.

If κ is a positive integer, κ = n, an inhomogeneous
solution of Eqs. (14) and (15) with the interface number
kc = k±(−εδ) = n would be possible upon further load-
ing. Thus, a bifurcation from one trivial solution with k = 0
to two solutions with k = 0 and k = n would have occurred
at d = −ε0c = −εδ , as shown in Fig. 4a.

However, if κ > 0 is not an integer, then the bifurcation
must wait until the loading has reached a critical strain d =
−ε0c as

ε0c = ε0
√
1 − δ/δc(κ), (24)

where the function δc(κ) is positive and defined as

δc(κ) =
{

φ (�κ� /κ) , κ ≤ κm,

φ (
κ� /κ) , κ > κm,
(25)

where 
κ� and �κ� are the ceiling and floor functions, i.e.,
the smallest integer no less than κ and the largest integer no
larger than κ , respectively. That is, we would always have
�κ� ≤ κ ≤ 
κ�. The function φ(x) ≥ 0 and the geometric
mean value κm ≥ 0 are defined as

φ(x) = 2x2/(1 + x4) and κm = √�κ� 
κ�. (26)

As shown in Fig. 5a, δc(κ) is a piecewise monotonic func-
tion with maximum δc(n) = 1 at the positive integer n.
It increases in the intervals (0,1] and (

√
n(n − 1), n] and

decreases in (n,
√
n(n + 1)]. For large κ , it approaches 1.

Thus, by Eq. (24), the first bifurcation to inhomogeneous
LEMs would occur at d = −ε0c when the two positive con-
stants δ and κ of Eq. (21) satisfy the condition

δ < δc(κ). (27)

As depicted in Fig. 5b, the critical strain ε0c of Eq. (24) is also
a piecewise monotonic function of κ , rather similar to δc(κ).
However, larger δ will result in smaller ε0c .

The number of interfaces of theLEMs at the primary bifur-
cation is given as

k = kc(κ) =
⎧⎨
⎩

�κ� , κ < κm,


κ� , κ > κm,

�κ� and 
κ� , κ = κm,

(28)

Thus, when the positive constant κ is not an integer, three
different situations are possible at the primary bifurcation
d = −ε0c . That is, we can have one LEM with the interface
number kc = �κ� < κ < κm as shown in Fig 4b, one LEM
with kc = 
κ� > κ > κm as in Fig 4c, and two LEMs with
k1c = �κ� and k2c = 
κ� for κ = κm as in Fig 4d. As shown in
Fig. 5d, the interface number kc of Eq. (28) is a step function
of κ , with jumps from n to n+ 1 at nm = √

n(n + 1) for any
positive integer n.

3.3 Subsequent bifurcations upon further loading

Following the primary bifurcation at d = −ε0c , further load-
ing could result in more inhomogeneous LEMs with an
interface number k other than kc because the function k_(d)

is decreasing and k+(d) is increasing for d < 0 according to
Eq. (20) and Fig. 3. The critical strain d = −εc(k) for such
a solution with interface number k can be obtained by the
condition k = k_(d) or k = k+(d). By Eq. (20), we have

εc(k) = ε0
√
1 − δ/φ(k/κ). (29)

Obviously, it recovers Eq. (24) for k = kc of Eq. (28). The
admissible number of interfaces is given by the condition
δ < φ(k/κ), which is essentially

k_(0) < k < k+(0), (30)

with k±(0) given by Eq. (23) themost upper and lower points
of the regionΩLEMs. As shown in Fig. 6a, with δ from 0 to 1,
k_(0) is increasing from 0 to κ , but k+(0) is decreasing from
infinity to κ . Both are shifted up by increasing κ . Given the
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Fig. 4 Primary bifurcation for different values of the parameter κ . a κ = n. b κ < κm . c κ > κm . d κ = κm

two constants, all positive integers between the twocurves are
possible interface numbers of some inhomogeneous LEMs
for loadings −εc(k) < d < εc(k). Figure 6b depicts an
examplewith k = 1, 2, 3, 4 all admissible interface numbers,
as indicated by the horizontal lines. The critical kc = 2 is
achieved first and followed by further bifurcations to k =
1, 3, and 4 at the corresponding strains d = ±εc(k), indicated
by circles and dashed vertical lines in Fig. 6b.

Before we study the characteristics of LEMs in the
next sections, we would like to make two remarks regard-
ing the difference between the primary and the subsequent
bifurcations. First, the subsequent bifurcations are from inho-
mogeneous LEMs to solutions of the same type, while the
primary bifurcation is from the homogeneous solution to
inhomogeneous LEMs. Second, the homogeneous solution
has lost its stability at the primary bifurcation, but the LEMs
remain locally stable when more such solutions appear.

4 Characteristics of local energy minimizers

Inhomogeneous solutions of Eqs. (14) and (15) can be
obtained using the hybrid method proposed in Sect. 2. That
is, for given positive integer k and strain d satisfying the
bifurcation condition (19), the HAM solution (18) is calcu-
lated to N = 30. Then it is inserted into Eq. (16) as v(0) to
start NIM with the FDM (17).

Figure 7 depicts some examples of such solutions. The
relevant parameters (11) are chosen as α̂ = 1.5 × 10−4 and
β̂ = 15. By Eq. (21), we have δ = 0.19 and κ = 5.66,
satisfying condition (27). By Eqs. (24) and (28), the critical
strain of the primary bifurcation is ε0c = 0.519 and the critical
interface number is kc = 6. By Eq. (23), we find that the
maximal admissible interface number is kM = 18 and the
minimal one is km=2.

The solution with k = kc is shown in Fig. 7a with
three different loading strains. Because d just entered the
bifurcation region, d = −0.517, close to the critical strain
−ε0c = −0.519, the solution has a very small amplitude A
and very large interface thickness t . As the loading proceeds,
A increases and t decreases with d. The solution has a max-
imal A and minimal t at d = 0. Figure 7b–d depicts similar
behavior for solutions with k = 5, 2, and 18. As shown more
clearly by Fig. 8, the amplitude A is small near ±εc(k) of
Eq. (29) and has its maximum at d = 0. The thickness t is
the reverse.

At d = 0, both the amplitude A and the total interface
thickness t can be rather different for solutions with different
interface numbers, as depicted in Fig. 8. It seems that the
solutions with k = km and k = kM , as in Fig. 7c, d, have
much smaller A and larger t than others, as in Fig. 7a, b.

From the viewpoint of the microstructures of marten-
sitic transformations, the inhomogeneous LEMs with large
A and small t , for example, Fig. 7a, b at d = 0, would
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Fig. 5 Critical condtions at primary bifurcation. a Admissible condition δ < δc(κ). b Critical interface number. c Critical strain

Fig. 6 Subsequent bifurcations. aMaximal and minimal number of interfaces. b Example of four further bifurcations

represent samples with alternative phases composed of fully
developed phase bands with narrow interfacial boundaries
in between. Other cases with smaller A and larger t would
indicate distorted phase regions with indistinct interfaces. It
is the competition of the different energy contributions for
the total energy (4) that will decide which microstructures
of LEMs are to be selected in a real situation. We calculate
the energies, in particular the interface and inhomogeneity
energies, in Eq. (4) or Eq. (13).

ByEq. (13), the dimensionless interface energy eint should
be proportional to the constant α̂ and the energy-penalizing
inhomogeneity einh should be proportional to the constant β̂.

Figure 9 depicts the results from our simulations obtained
with various admissible strains d and interface numbers k
for a number of pairs of parameters α̂ and β̂. They seem to
confirm such linear relations as

eint = C1kt

(
A

t

)2

α̂, (31)

einh = C2

π2

[
1 +

(π

2
− 1

)
cos

πkt

2

]2 (
A

k

)2

β̂, (32)

with the constants C1 = 2.9 and C2 = 0.287. Note that the
amplitude–interface thickness ratio, A/t , characterizes the
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Fig. 7 Inhomogeneous solutions with various interface numbers. a k = 6. b k = 5. c k = 2. d k = 18

Fig. 8 Characteristics of inhomogeneous solutions with different interface numbers and at various loadings. aAmplitudes. b Interface thicknesses

strain gradient at the interface boundaries. The amplitude–
interface number ratio A/k characterizes the amplitude of
the displacement v(ξ), as clearly indicated by the HAM solu-
tion (19).

The interface energy (31) seems to be proportional to
the interface number k with the proportional coefficient
e0int = C1t (A/t)2α̂ as the interface energy of one inter-
face. Such a linear relation of the interface energy has been
used in many models of TEMTs and was previously derived
through minimizations [32,36,47]. However, our numerical
results in Figs. 7 and 8 show clearly that the coefficient
e0int = C1t (A/t)2α̂ is generally not a constant but varies with
the loading, the parameters, and even the interface number
itself.

Comparing Eq. (32) with Eq. (31), the inhomogeneity
energy einh has a very different relation to the interface
number k because it depends on the displacement v(ξ)

instead of the strain, according to Eq. (13). The proportion-
ality to 1/k2 was previously established by minimization
considerations [32,36,47]. There seems to be a total inter-
face thickness kt-dependent coefficient from our simulations,
namely, 1 + (π/2 − 1) cos(πkt/2)2, a decreasing function
of the interface number k as well for kt between 0 and 1.
Hence, from Eq. (32), the inhomogeneity energy einh favors
microstructures with large interface numbers, in contrast to
the interface energy of Eq. (31). Therefore, a proper number
of interfaces would be selected by the combination of both
interface and inhomogeneity energies.
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Fig. 9 Energies of inhomogeneous solutions with different interface numbers, at various loadings and for several parameters. a Interface energy.
b Inhomogeneity energy

Fig. 10 Stress–strain curve

The stress field is also worth paying attention to. The
stress field should satisfy the divergence-free condition in
mechanical equilibrium. Therefore, in our one-dimensional
model, the stress should be a constant along the specimen.
Although the strain field fluctuates between the two phases as
a function of positions along the specimen, the contributions
of the interface and constraint energy upon the stress bal-
ance the fluctuation of the elastic energy along the specimen,
thereby keeping the stress constant. The stress–strain relation
is nonmonotonic (Fig. 10) and is, moreover, nonunique for
LEMs. A unique stress–strain curve can be obtained if global
energyminimization is considered.Under global energymin-
imization, each set of material parameters gives its unique
stress–strain curve (Fig. 10). The hysteresis is influenced by
the two material parameters α and β. When α or β is small,
the stress jumps down at strain −ε0 then increases with the
strain, and finally jumps down again at ε0; when α or β is
large, the stress jumps down at strain −ε0 and ε0 but does
not see any rise against the strain (though only changing
β is shown in Fig. 10). The dynamic effects would need

to be considered if this were being compared with experi-
ments.

5 Conclusions

Microstructures of fine mixtures are obtained as the local
energy minimizers of a one-dimensional nonlinear elastic
model with a foundation energy that mimics the constraint
energy imposed on boundaries and surrounding matrix. The
minimizers are inhomogeneous solutions of the nonlinear
Euler–Lagrange equation of the total energy functional. Both
the conditions for the appearance of such solutions and the
numerical solutions are obtained and analyzed.

The bifurcation condition for the appearance of inho-
mogeneous solutions can be obtained through either local
bifurcation analysis or homotopy analysis. The condition
defines a region in the loading–interface number plane, in
which inhomogeneous solutions may appear as metastable
states and a trivial homogeneous solution becomes unstable.
Multiple bifurcations to solutions with varying numbers of
interfaces can occur during the loading–unloading process.
Both the geometrical and material properties strongly influ-
ence the bifurcation condition.

Numerical solutions with large numbers of interfaces can
be obtained using the proposed hybrid method, which com-
bines homotopy analysis with the FDM. In addition to the
interface number, the solutions of phase mixtures must be
characterized by the interface thickness and the strain ampli-
tudes. Approximated analytical expressions are obtained for
the interface and inhomogeneity energies. They indicate
clearly that both energies are completely determined by three
parameters: the interface number, the interface thickness, and
the strain amplitude. Thus, we may call them the character-
istic parameters of the LEMs.
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