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Abstract In this work, thermodynamic models for the
energetics and kinetics of inhomogeneous gradient materials
with microstructure are formulated in the context of con-
tinuum thermodynamics and material theory. For simplicity,
attention is restricted to isothermal conditions. The materials
of interest here are characterized by (1) first- and second-
order gradients of the deformation field and (2) a kinematic
microstructure field and its gradient (e.g., in the sense of
director, micromorphic or Cosserat microstructure). Mate-
rial inhomogeneity takes the form of multiple phases and
chemical constituents, modeled here with the help of corre-
sponding phase fields. Invariance requirements together with
the dissipation principle result in the reduced model field and
constitutive relations. Special cases of these include the well-
knownCahn–Hilliard andGinzburg–Landau relations. In the
last part of the work, initial boundary value problems for this
class of materials are formulated with the help of rate varia-
tional methods.

Keywords Continuum thermodynamics · Material
inhomogeneity · Conservative · Non-conservative phase
fields

1 Introduction

Among the most basic assumptions of standard macroscopic
phenomenological material theory are those of “simple”
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material behavior and homogeneity of material properties
(e.g., [1–3]). As witnessed by the vast literature that has
accumulated on the subject in the last decades (e.g., [4–
9]), both of these assumptions are questionable for an
ever increasing variety of engineering materials and sys-
tems whose material properties and behavior are strongly
influenced by a material microstructure, resulting material
length- and timescale dependence, and material hetero-
geneity. This state of affairs is certainly one reason for
the concomitant development and increasingly wide-spread
application of modeling methods such as statistical and
homogenization methods (e.g., [6–10]), Eshelby or configu-
rational mechanics (e.g., [9,11,12]), or phase field methods
[4,13–18].

In the theoretical continuum mechanics community, gen-
eralizations of the lengthscale-less concept of simplematerial
behavior were of interest quite early on. The simplest of
these is the notion of (non-simple) elastic higher-order con-
tinua (e.g., [19–22]) in which the material behavior depends
on second- and/or higher-order gradients of the continuum
deformation field. The idea here is that the region of influ-
ence of neighboring material points on the behavior of a
givenmaterial point increases with increasing intrinsic mate-
rial heterogeneity, leading to a loss of local action [1],
something which happens as the system size approaches
that of the microstructure. Another class of such gener-
alizations involves the introduction of one or more fields
besides the continuum deformation field, which represent
in a strongly idealized “mean-field” fashion the effect of
microstructure which evolves relative to the continuum.
Prominent examples include Cosserat [23] and microp-
olar (e.g., [24,25]) continua, general oriented continua,
micromorphic continua (e.g., [26,27]), director models for
anisotropic fluids and liquid crystals (e.g., [28–30]), or mod-
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els for porous materials (e.g., [31]). All of these may be
categorized under the rubric of elastic continua with elastic
microstructure (e.g., [32–34]). The literature on extended or
generalized continua in this sense spans more than 100years;
for reviews on this work, see Ref. [1] (before 1965) or
more recently [35], celebrating 100years of Cosserat the-
ory.

Both of these generalizations, i.e., the generalization to
gradient continua, and that to continua with microstructure,
are of interest in the currentwork aswell. In particular, homo-
geneous second-order continua in the sense of Refs. [22,36]
and homogeneous continua with (kinematic) microstruc-
ture in the sense of Refs. [32,36], are generalized here to
large deformation and heterogeneous material properties.
In contrast, for example, to Refs. [22,36], however, this is
not done by working with variational principles and spe-
cial variations from the start. Rather, in the spirit of, for
example, Refs. [2,3,19,20,32,37,38], this is carried out
here in the framework of continuum thermodynamics, the
energy balance, the dissipation principle, and invariance
arguments. In this framework, the basic physical assumption
is that both higher-order “Mindlin” stresses and microstruc-
ture evolution result in an additional flux and supply of
energy in the material. On this basis, evolution-field rela-
tions for the microstructure fields may be formulated with
the help of (Euclidean) frame-indifference requirements,
e.g., on the total rate of work [32], or more generally,
on the total energy balance (e.g., [38]). Following this
latter approach, reduced balance, field and constitutive rela-
tions for homogeneous gradient continua with microstruc-
ture satisfying energy balance, the dissipation principle,
and indifference requirements were obtained recently by
Ref. [39].

In continuummechanics andmaterial theory, the separate,
but related issue of heterogeneous material properties is one
focus of the development of Eshelby mechanics and the con-
cept of material or configurational forces (e.g., [9,11,12]),
and at a more abstract level, the concept of material uni-
formity [2,40]. Perhaps the most well-known example of
such a uniformity in material science and mechanics is the
notion of a phase field [4,13–15,17,18]. In the current work,
models for the energetics and kinetics of homogeneous gra-
dient continuawithmicrostructure are generalized to the case
that the material in question contains multiple chemical con-
stituents and structural (solid) phases. These are modeled by
corresponding phase fields, i.e., partial mass densities and
structural order parameters.

As demonstrated in a number of previous works [39,41,
42], given reduced balance, field and constitutive relations
based on models for the free energy (energetics) and dissipa-
tion potential (kinetics), one is in a position to formulate the
corresponding initial boundary value problem (IBVP) in rate
variational form.As shown, for example, inRefs. [43,44], via

numerical time integration, the general rate variational form
of the IBVP can be recast into a numerical time incremental
form. This latter form is directly applicable to the algorithmic
formulation of models for generalized and inelastic con-
tinua (e.g., multifield models, phase-field models, gradient
plasticity).

The current work begins (Sect. 2) with a brief summary of
the basic balance and thermodynamic relations for (chemi-
cally and structurally) heterogeneous gradient continua with
microstructure. In particular, these includemass balance rela-
tions for the chemical constituents, the total energy balance,
and the dissipation-rate density, for the currentmaterial class.
This is followed (Sect. 3) by exploitation of the Euclidean
frame-indifference of the total energy balance and dissipation
rate to obtained reduced frame-indifferent (coupled) bal-
ance relations for continuum andmicrostructure momentum.
Given basic and reduced balance relations, the current treat-
ment turns next to energetics (Sect. 4) and kinetics (Sect. 5),
the latter in the context of the dissipation principle. Assum-
ing in particular that the kinetic relations can be derived from
a dissipation potential, the reduced balance and constitutive
relations may be cast in rate variational form (Sect. 6). These
in turn represent the basis for the rate variational formulation
of the corresponding IBVP (Sect. 7). The work ends with a
discussion (Sect. 8).

The current work employs the following notation. Euclid-
ean vectors and second-order tensors, or corresponding
fields, are denoted by lower-case a, b, . . . and upper-case
A, B, . . . bold italic letters. In particular, I represents the
second-order identity tensor. As usual, let a ·b and a⊗b rep-
resent the scalar and tensor product, respectively, of any two
vectors a, b, with (a⊗b) c := (b·c) a. Also, ATa·b := a·Ab
defines the transpose AT, and skw A := 1

2 (A − AT) the
skew-symmetric part, of any A. Third-order tensors and ten-
sor fields are denoted by upper case sans-serif characters
A,B, and so on. Note that the second-order gradient ∇∇v

of any vector field v, or the gradient ∇T of any second-
order tensor field T , are third-order tensor fields. The scalar
product of two tensorsA,B of equal, but otherwise arbitrary
order is denoted by the order-independent notation A · B in
this work. Given this, the direct tensor product A ⊗ B is
defined by (A ⊗ B) C := (B · C)A. Additional such con-
cepts and definitions will be introduced as needed along the
way.

2 Basic relations

For simplicity, attention is restricted in the current work to
the case of isothermal elasticity; for treatment of inelas-
tic homogeneous gradient materials with microstructure, the
reader is referred to Refs. [39,42]. The model formulation
to follow is for finite deformation, and all fields are referen-
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tial or “Lagrangian”. The class of continua with kinematic
microstructure under consideration here is characterized in
particular by a pair (χ , ς) of continuum fields. Here, χ

is the macroscopic (mean) deformation field, and ς is a
kinematic microstructural field whose evolution influences
the macroscopic behavior. For example, ς could represent
a vector field (e.g., director field), or a tensor field (e.g.,
Cosserat or micropolar local rotation, micromorphic local
deformation). As stated in the introduction, material inho-
mogeneity in the current work is due to presence of m + 1
chemical (mass) constituents or components, and p spatially
distinct (solid) phases, in the material. In the phase field
approach (e.g., [4,17,45]), the latter are modeled by cor-
responding (non-conservative) structural order parameters
φ1, . . . , φp, and the former by (conservative) “partial” mass
densities �1, . . . , �m+1 (i.e., constituent mass per unit refer-
ence volume). Let �a represent the “partial” mass density of
constituent a = 1, . . . ,m+1, and � the referential mass den-
sity of the material as a whole (mixture). Constituent mass
balance then takes the form

�̇a + div ja = σa (1)

in terms of the constituent mass flux density ja and corre-
sponding supply rate density σa in the reference configura-
tion. Since mass is additive,

� =
m+1∑

a=1

�a (2)

holds, and so

�̇ + div
m+1∑

a=1

ja =
m+1∑

a=1

σa . (3)

In this work, we assume that the continuum under consider-
ation is a closed system with respect to mass, i.e.,

m+1∑

a=1

ja = 0 ,

m+1∑

a=1

σa = 0 . (4)

Then �̇ vanishes, and � is constant in time. In this case,

�m+1 = � −
m∑

a=1

�a (5)

is determined by � and � = (�1, . . . , �m), and only m of the
�a are independent.

As mentioned above, for simplicity, the following treat-
ment is restricted to isothermal processes. Also, all processes
are assumed for simplicity to be continuous and continuously
differentiable in space and time, which excludes, for exam-
ple, singular surfaces. On this basis, the general form

E =
˙∫

B
f +

∫

B
δ −

∫

B
s −

∫

∂B
f · n = 0 (6)

holds for the total energy balance with respect to an arbitrary
reference configuration B and its boundary ∂B of (outer)
orientation n (surface da and volume dv elements are left
out of the notation for simplicity). Here,

f := ψ + k (7)

is the sum of the free energy density ψ and kinetic energy
density k, f represents the total energy flux density, s is the
total supply rate density, and δ � 0 is the dissipation rate
density. For the current class of second-order continua with
deformation microstructure, the basic constitutive forms

f = PTχ̇ + PT∇χ̇ + ΦTς̇ −
m∑

a=1

μa ja ,

s = b · χ̇ + β · ς̇ +
m∑

a=1

μa σa ,

k̇ = ṁ · χ̇ + μ̇ · ς̇ ,

(8)

hold for the energy flux, energy supply rate, and kinetic
energy rate, densities, respectively.Here, P is the (first-order)
first Piola-Kirchhoff stress, P is the corresponding second-
order stress, Φ represents the flux density associated with
the evolution of ς , and μ1, . . . , μm represent the chemical
potentials associated with �1, . . . , �m . The transpose P

T of
P is defined by PTA · a := A · Pa. Note the symmetry
P · a ⊗ c ⊗ d = P · a ⊗ d ⊗ c. Further, m is the standard
momentum density, b represents the corresponding supply
rate density, μ is the microstructure momentum density, and
β its supply rate density counterpart. In what follows, the
notation μ := (μ1, . . . , μm) is also used for the array of
chemical potentials; the context will make clear which is
intended. In the context of Eqs. (7) and (8), localization of
the energy balance equation (6) yields the form

δ = (P + divP) · ∇χ̇ + P · ∇∇χ̇ + Φ · ∇ς̇

+
m∑

a=1

μa �̇a − p · χ̇ − π · ς̇ − ψ̇ −
m∑

a=1

ja · ∇μa
(9)

for the dissipation rate density via Eq. (1), with

p := ṁ − b − div P ,

π := μ̇ − β − divΦ ,
(10)

the production rate densities of standard and microstructural
momentum, respectively. Given the above relations, we are
now in a position to investigate the consequences of the
Euclidean frame-indifference of the energy balance for the
formulation, to which we now turn.
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3 Euclidean frame-indifference of the energy
balance

As usual, Euclidean frame-indifference of the energy bal-
ance is based on the transformation properties of the fields
appearing in E from Eq. (6) with respect to change of Euclid-
ean observer. These include f from Eq. (7), f and s from
Eq. (8), and δ from Eq. (9). In fact, since δ as given by Eq. (9)
follows directly from the localization of Eq. (6), the Euclid-
ean frame-indifference of Eq. (6) is equivalent to that of δ

as given by Eq. (9). As such, we examine the transformation
properties of this latter field in what follows.

As usual (e.g., [1, §17], or [3, Chapter 6]), a change
of Euclidean observer is represented via the corresponding
time-dependent, spatially constant translation c and time-
dependent, spatially constant orthogonal transformation Q,
such that

χ ′(t, x) = c(t) + Q(t)χ(t, x) (11)

follows for the transformation of the time-dependent defor-
mation field χ between an unprimed and primed observer.
Since the results to follow must hold for any observer trans-
formation, assume for simplicity that Q(0) = I at the time
origin t = 0. Then Ω := Q̇(0) is skew-symmetric. Further,
define ω := ċ(0), ϕ0 := ϕ|t=0, and the deviation

[[ϕ]] := (ϕ′ − Q∗ϕ)|t=0 (12)

of some physical quantity ϕ from being Euclidean frame-
indifferent (EFI). This latter is based on the action Q∗ϕ of
Q on ϕ. For example, Q∗v ≡ Qv in the case that ϕ ≡ v

is spatially (i.e., as opposed to materially) vector-valued. In
this context, the usual transformation relations

[[χ]] = c0 ,

[[∇χ]] = 0 , [[∇∇χ ]] = 0 ,

[[χ̇]] = ω + Ω χ0 , [[∇χ̇]] = Ω ∇χ0 ,

[[∇∇χ̇ ]] = Ω ∇∇χ0 , (13)

hold for χ and its derivatives. Likewise, ς is spatial and EFI.
For this class of models, it suffices to restrict attention here
to the case that ς transforms as a spatial vector. This does
not imply that ς itself is vector-valued. For example, the
deformation gradient F = ∇χ transforms as a such a vector;
this is also the case for theCosserat ormicropolar rotation and
themicromorphic local deformation. Thenς ′ = Q∗ς ≡ Qς

holds, implying

[[ς]] = 0, [[∇ς]] = 0, [[ς̇]] = Ω ς0, [[∇ς̇]] = Ω ∇ς0.

(14)

Note that all these are independent of ω.
Extending the result [3, Proposition 6.2.5] for the trans-

formation between ṁ and b by analogy to μ̇ and β, we have

[[ṁ]] = [[b]] �⇒ [[μ̇]] = [[β]] . (15)

Further, the constitutive quantities ψ̇ , P , P, Φ, μa and ja
are required to be EFI, in which case the restrictions

[[ψ̇]] = 0 , [[P]] = 0 , [[Φ]] = 0 ,

[[P]] = 0 , [[μa]] = 0 , [[ ja]] = 0 , (16)

hold. On this basis,

[[δ]] = − p0 · ω

+{(P + divP) (∇χ)T+P (∇∇χ)T− p ⊗ χ}0 · Ω

+{Φ (∇ς)T − π ⊗ ς}0 · Ω

(17)

follows for the transformation of δ from Eq. (9). Note that
Eqs. (15) and (16)2 imply [[ p]] = 0 from Eq. (10)1. The com-

bination P (∇χ)T is simply the usual (first-order) Kirchhoff
stress. Analogously, we could interpret P (∇∇χ)T as a kind
of second-order Kirchhoff stress. In any case, Eq. (17) must
vanish as usual for arbitrary observer transformation for the
energy balance to be EFI. As above, then, we are free to
choose the simplest cases of (i) pure translation (Ω = 0),
and (ii) pure orthogonal transformation (ω = 0). In particu-
lar, for a pure translation, Eq. (17) imply that [[δ]] vanishes
identically for arbitrary ω iff p vanishes identically, i.e.,

p = 0 �⇒ ṁ = div P + b (18)

from Eq. (10)1. In other words, [[δ]] vanishes identically iff
there is no momentum production, or alternatively, iff the
standard momentum balance holds (e.g., [1,3,32]). Analo-
gously, in case (ii), [[δ]] vanishes identically iff

skw{(P + divP) (∇χ)T + P (∇∇χ)T}
= skw{π ⊗ ς − Φ (∇ς)T} (19)

holds. These represent direct generalizations of well-known
results for first-order continua [1,19,20,32,38,68] to the cur-
rent second-order case [1,21,22,36]. If we restrict attention
to the classical forms

m = � χ̇ , μ = ν ς̇ (20)

for the respective momentum densities based on constant
referential mass density � and microinertia ν, note that these
results induce the better-known angular-momentum-based
form

123



166 S. Gladkov, B. Svendsen

Σ̇ = divM + skw{(∇χ) (P + divP)T + (∇∇χ)PT} + B

(21)

of the microstructure balance equation (10)2 via Eq. (19).
Here,

Σ :=skw ς ⊗ μ, M :=skw ς ⊗ Φ, B :=skw ς ⊗ β,

(22)

represent the spin momentum density, corresponding flux
density, and corresponding supply rate density, respectively.
In these relations, the notation (skw ς⊗Φ) a := skw ς⊗Φa
has been used.

4 Free energy model

Again restricting attention to the case of elastic behavior with
mass transfer, the constitutive form

ψ(χ ,∇χ ,∇∇χ , ς ,∇ς , �,∇�,φ,∇φ) (23)

for the (equilibrium) free energy density of the current con-
stitutive class for second-order continua withmicrostructure.
In particular, the dependence on gradients of themass density
and of the phase-field is the basic model expression of mater-
ial heterogeneity in this context going back to Refs. [46] and
[47] (see also Ref. [45]). From the more abstract viewpoint
of material theory, the dependence ψ on �, φ and their gra-
dients represents a model of material uniformity for ψ (e.g.,
[2,40]).

Being constitutive in nature, the form Eq. (23) of ψ for
the current constitutive class is required to bematerial frame-
indifferent [1], or equivalently, EFI and form-invariant [48,
49]. In this case, the restriction

ψ(χ ,∇χ ,∇∇χ , ς ,∇ς , �,∇�,φ,∇φ)

= ψ(c+ Qχ , Q∇χ , Q∇∇χ , Qς , Q∇ς , �,∇�,φ,∇φ)

(24)

on the formofψ holds for all translations c and all orthogonal
transformations Q. Forfixed argumentsχ ,ς ,∇χ ,∇ς ,∇∇χ ,
�,∇�,φ,∇φ, the left-hand side of Eq. (24) is constant. As
such, the time-derivative of Eq. (24)1 at t = 0 yields the
result

0 = {∂χψ}0 · ω

+{∂χψ ⊗ χ + ∂∇χψ (∇χ)T + ∂∇∇χψ (∇∇χ)T}0 · Ω

+{∂ςψ ⊗ ς + ∂∇ςψ (∇ς)T}0 · Ω (25)

for the case that ς is spatial. Then [[ψ̇]] = 0 follows, as
assumed in Eq. (16)1. Since Eq. (25) holds for arbitrary

observer transformations, we are free to choose the simplest
cases of (i) pure translation (Ω = 0), and (ii) pure orthog-
onal transformation (ω = 0). In case (i), ∂χψ = 0 holds
identically since c and the time origin t = 0 are arbitrary.
This reduces Eq. (23) to

ψ = ψ(∇χ ,∇∇χ , ς ,∇ς , �,∇�,φ,∇φ) (26)

independent of χ as expected. Analogously, in case
(ii), Eq. (25) holds identically, i.e., for arbitrary Ω and time
origin t = 0, iff

skw{∂∇χψ (∇χ)T + ∂∇∇χψ (∇∇χ)T}
= −skw{∂ςψ ⊗ ς + ∂∇ςψ (∇ς)T} (27)

holds. As in case (i), these represent restrictions on the func-
tional form Eq. (26) ofψ . Note the formal similarity of these
restrictions to those of Eq. (19) based on theEuclidean frame-
indifference of δ and the energy balance. As discussed below,
they in fact converge in the current case of gradient hypere-
lasticity.

5 Dissipation principle

With the basic results and restrictions Eqs. (18), (19), and
(26) in hand, we now return to the thermodynamic formu-
lation. Substitution of these into the expression (9) for the
dissipation rate density and integration over B yields

∫

B
δ =

∫

B
(P+divP−∂∇χψ) · ∇χ̇+(P−∂∇∇χψ) · ∇∇χ̇

+
∫

B
(Φ − ∂∇ςψ) · ∇ς̇ − (π + ∂ςψ) · ς̇

+
m∑

a=1

∫

B
(μa−δ�a

ψ) �̇a− ja · ∇μa−
p∑

α=1

∫

B
δφα

ψ φ̇α

−
m∑

a=1

∫

∂B
∂∇�a

ψ · n �̇a −
p∑

α=1

∫

∂B
∂∇φα

ψ · n φ̇α

(28)

for the dissipation rate with respect to B via integration by
parts and the divergence theorem. The variational derivative

δxψ = ∂xψ − div ∂∇xψ (29)

appears here because the system is materially inhomoge-
neous. Modeling P, Φ, π , μa and P as purely energetic,
Eq. (28) implies

P = ∂∇∇χψ , π = −∂ςψ , Φ = ∂∇ςψ , μa = δ�a
ψ ,

(30)
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and

P = ∂∇χψ − divP = ∂∇χψ − div ∂∇∇χψ = δ∇χψ . (31)

On the basis of Eqs. (30) and (31), note in particular that
the EFI-based result (19) for moment of momentum bal-
ance reduces to the restriction (27) on ψ from material
frame-indifference. This presents a generalization to gradient
continua and continua withmicrostructure of the old result of
Noll [50] that the material frame-indifference of the “strain
energy” is necessary and sufficient for the symmetry of the
Cauchy stress and so for moment of momentum balance.

Given Eqs. (30) and (31), Eq. (28) reduces to

∫

B
δ = −

m∑

a=1

∫

B
ja · ∇μa −

p∑

α=1

∫

B
δφα

ψ φ̇α

−
m∑

a=1

∫

∂B
∂∇�a

ψ · n �̇a −
p∑

α=1

∫

∂B
∂∇φα

ψ · n φ̇α

(32)

for the dissipation rate with respect to B. As evident, the
boundary terms appearing in Eq. (32) represent boundary-
based contributions to the dissipation rate in the material.
Clearly, these terms vanish identically in the case of no-flux
boundary conditions

∂∇�a
ψ · n = 0 , ∂∇φα

ψ · n = 0 , (33)

on (the flux part of) ∂B. This is also the case for time-
independent Dirichlet boundary conditions

�̇a = 0 , φ̇α = 0 , (34)

on (the rate part of) ∂B. Both of these possibilities can be
expressed in the combined form

∂∇�a
ψ · n �̇a = 0 , ∂∇φα

ψ · n φ̇α = 0 , (35)

on ∂B for each constituent a and each phase α. These include
in particular no-flux boundary conditions with respect to the
mass density and phase fields. In any case, boundary con-
ditions are part of the physical model formulation. From a
material theoretic point of view, boundary conditions have
the same character as constitutive relations in the case of
materially heterogeneous systems. In any case, these result
in the reduced or “residual” form

δ = −
m∑

a=1

ja · ∇μa −
p∑

α=1

φ̇α δφα
ψ (36)

for the dissipation-rate density δ from Eq. (32).

As is well-known, in the context of non-equilibrium ther-
modynamics and transport theory (e.g., [3,51,52]), the form
Eq. (36) of the residual dissipation-rate density δ forms
the basis of dissipative-kinetic thermodynamic “flux-force”
relations. As usual, from a physical point of view, spatial gra-
dients like−∇μa are interpreted as “forces” in the sense that
each drives a corresponding (spatial) flux like ja resulting
in non-negative dissipation. Analogously, −δφα

ψ drives the

(temporal) “flux” φ̇α resulting in non-negative dissipation.
Let

j := ( j1, . . . , jm, φ̇1, . . . , φ̇p) ,

f := −(∇μ1, . . . ,∇μm, δφ1
ψ, . . . , δφp

ψ) .
(37)

In general, the fluxes j are assumed to depend constitutively
on driving forces f , i.e., j( f ). In particular, j(0) = 0.
Assuming that j( f ) is smooth (analytic), note that its Taylor-
series expansion

j( f ) = ∂ f j(0) f + 1

2
(∂ f ∂ f j(0) f ) f + · · · (38)

about f = 0 assuming j(0) = 0 can be expressed in quasi-
linear form11

j( f ) =
{
∂ f j(0) + 1

2
∂ f ∂ f j(0) f + · · ·

}
f =: L( f ) f ,

(39)

depending on the (generalized) “matrix” L of transport
“coefficients”. In these terms, the (in)famous bilinear form

δ = j · f = f · j = f · L f (40)

follows for the residual dissipation rate density δ from
Eq. (36). This last result implies that only the symmetric
part of L contributes to δ (c.f. [53]). As usual, modeling L
as non-negative definite is sufficient to satisfy δ � 0, i.e.,
f · L f � 0 for all f .
A special case of the quasi-linear form Eq. (39) is a poten-

tial form for j( f ); in the context of Eq. (39), the conditions
for the existence of a potential representation for j( f ) are
contingent on L( f ) satisfying additional constraints (e.g.,
related to integrability). These have been examined in detail
for in Ref. [53]. For the purpose of the current model formu-
lation and in particular that of the corresponding IBVP, it will
be assumed for simplicity that these are satisfied identically.
In this case, the potential forms

ja = −∂∇μa
χ , φ̇α = −∂δφα

ψ χ , (41)

of Eq. (39) hold in terms of a dissipation potential

χ(. . . ,∇μ1, . . . ,∇μm, δφ1
ψ, . . . , δφp

ψ) . (42)
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In this case,

δ =
m∑

a=1

∇μa · ∂∇μa
χ +

p∑

α=1

δφα
ψ ∂δφα

ψ χ (43)

follows for δ fromEq. (36). Sufficient to fulfill the dissipation
principle δ � 0 is the modeling of χ as non-negative χ � 0
and convex

m∑

a=1

∇μa · ∂∇μa
χ +

p∑

α=1

δφα
ψ ∂δφα

ψ χ � χ , (44)

in the forces. In this case, δ � χ � 0 fromEq. (43), sufficient
for fulfillment of the dissipationprinciple (e.g., [3,Chapter9])
or non-negative entropy production.

6 Rate variational form of reduced field relations

Combining Eqs. (1), (30)4 and (41)1 results in the coupled
system

δ�a
ψ = μa , �̇a = div ∂∇μa

χ + σa , (45)

of field relations for the pair (�a, μa). In the simplest case,
σa = 0 and χ from Eq. (42) is quadratic in∇μa . In this case,
these last two relations combine to yield the Cahn–Hilliard
equation

�̇a = divma∇δ�a
ψ (46)

for �a in terms of the chemical mobility ma . Again, in the
simplest case, χ is also quadratic in δφα

ψ , in which case
Eq. (41)2 reduces to

φ̇α = −mα δφα
ψ , (47)

representing the time-dependent Ginzburg–Landau equation
for φα in terms of the corresponding relaxational mobility
mα . To these we add the standard linear

ṁ = div δ∇χψ + b = −δ2χψ + b (48)

and microstructure

μ̇ = −∂ςψ + div ∂∇ςψ + β = −δςψ + β (49)

momentum balances from Eqs. (10), (18), (30) and (31) in
terms of the first-order Eq. (29) and second-order

δ2xψ := ∂xψ − div ∂∇xψ + div div ∂∇∇xψ (50)

variational derivatives.

A unified variational formulation of the reduced field rela-
tions and boundary conditions can be obtained as follows
[39,41]. To this end, note that Eqs. (30), (31) and (41)1 imply

�̇a + div ja = δμa
ri ,

ṁ − p − div P = δ2χ̇ri ,
μ̇ − π − divΦ = δς̇ri ,

(51)

in terms of the (internal) rate potential density

ri := ḟ −
m∑

a=1

μa �̇a + d = ψ̇ − μ · �̇ + k̇ + d (52)

based on the dynamic energy storage rate density

ḟ = ṁ · χ̇ + ∂∇χψ · ∇χ̇ + ∂∇∇χψ · ∇∇χ̇

+(μ̇ + ∂ςψ) · ς̇ + ∂∇ςψ · ∇ς̇

+∂�ψ · �̇ + ∂∇�ψ · ∇�̇ + ∂φψ · φ̇ + ∂∇φψ · ∇φ̇

(53)

from Eqs. (7), (8)3 and (26) as well as the dual form

d(. . . ,∇μ, φ̇) (54)

of the dissipation potential χ from Eq. (54) concave in ∇μ

and convex in φ̇. Given Eq. (51), the compact forms

δμri = −σ , δ2χ̇ri = b , δς̇ri = β , (55)

for Eqs. (1), (18) and (10)2 follow in terms of the correspond-
ing variational derivatives of ri. The analogous relations

δ�̇ri = 0 , δφ̇ri = 0 , (56)

are obtained from Eqs. (30)4 and (41)2, respectively. Given
the variational form Eqs. (55) and (56) of the basic balance
and field relations of the current formulation, we are in a
position to formulate the corresponding IBVP in variational
form, our next task.

7 Rate variational formulation of the IBVP

As has been recognized and exploited in earlier work
[39,41,42], and as attested to by the current results Eqs. (55)
and (56), the physical modeling of energetic and kinetic
effects as based on corresponding potentials Eqs. (26) and
(54), respectively, facilitates a rate variational formulation
of the corresponding IBVP. In the current case, the “rates”
involved are �̇,μ, χ̇ , ς̇ , φ̇.

To be consistent with the formulation up to this point, the
no-flux boundary conditions equation (33) are assumed. To
these we add the no mass flux condition

123



Thermodynamic and rate variational formulation of models for inhomogeneous gradient materials... 169

ja · n = ∂∇μa
ri · n = 0 , a = 1, . . . ,m , (57)

on ∂B. Turning next to the kinematic fields, for simplicity,
attention is restricted to loading environments of the rate-
flux (e.g., generalized displacement-traction) type (e.g., [3])
here; other such conditions (e.g., unilateral or bilateral gen-
eralized contact) are possible. By analogy with the case of
the deformation or displacement gradient in the context of
elasticity [22,36], χ̇ and ∇χ̇ , as well as their variations, are
not necessarily independent on ∂B. Indeed, by analogy with
the flux itself, only the normal part ∇n δχ̇ = (∇χ̇) n can be
considered so. Consequently, consider the split

∇χ̇ = ∇n χ̇ ⊗ n + ∇s χ̇ (58)

of ∇χ̇ on ∂B into normal ∇n χ̇ = (∇χ̇) n and tangential or
in-surface ∇s χ̇ parts, respectively. On this basis, the inde-
pendent kinematic fields on ∂B are χ̇ , ∇n χ̇ , and ς̇ . The
thermodynamically conjugate boundary normal flux densi-
ties are t , s, and ϕ, respectively. These determine the total
boundary normal energy flux density on the flux part of ∂B
via

f · n = t · χ̇ + s · ∇n χ̇ + ϕ · ς̇ (59)

from Eq. (8)1 on (the flux part of) ∂B.
The variational formulation of the energy supply rate den-

sity Eq. (8)2, supply rate densities in Eq. (55), and boundary
energy flux density (59) consistent with the above bound-
ary conditions, is based on rate potential densities rs and rf ,
respectively, analogous to ri. In terms of these, we have

f · n = −∂χ̇rf · χ̇ − ∂∇n χ̇rf · ∇n χ̇ − ∂ς̇rf · ς̇ ,

s = −∂χ̇rs · χ̇ − ∂ς̇rs · ς̇ + ∂μrs · μ ,
(60)

via

t = −∂χ̇rf , s = −∂∇n χ̇rf , ϕ = −∂ς̇rf , (61)

and

b = −∂χ̇rs , β = −∂ς̇rs , σ = ∂μrs . (62)

Introducing then the combined rate potential density

rv := ri + rs , (63)

Eq. (55) reduce to

δμrv = 0 , δ2χ̇rv = 0 , δς̇rv = 0 . (64)

Together with Eq. (56), these form the basis of the variational
formulation of the IBVP for the current case of second-order

continua with microstructure (e.g. [39,41]). To this end, one
works with the rate functional

R = RB + R∂B =
∫

B
rv +

∫

∂B
rf . (65)

To see this, consider the first variations

δRB =
∫

B
∂χ̇rv · δχ̇ + ∂∇χ̇rv · δ∇χ̇ + ∂∇∇χ̇rv · δ∇∇χ̇

+
∫

B
∂ς̇rv · δς̇ + ∂∇ς̇rv · δ∇ς̇

+
∫

B
∂xrv · δx + ∂∇xrv · δ∇x

(66)

with x := (�̇,μ, φ̇) and

δR∂B =
∫

∂B
∂χ̇rf · δχ̇ + ∂∇nχ̇rf · δ∇n χ̇ + ∂ς̇rf · δς̇ (67)

in the rates, with

δ∇nχ̇
r := (δ∇χ̇r) n , ∂∇n∇nχ̇

r := (∂∇∇χ̇r) n ⊗ n , (68)

and analogously for ∂∇nς̇
r . Via repeated application of inte-

gration by parts and the divergence theorem, combination of
δRB and δR∂B then yield

δR =
∫

B
δ2χ̇rv · δχ̇ + δς̇rv · δς̇ + δxrv · δx

+
∫

∂B
{∂χ̇rf+δ∇nχ̇

rv+κs ∂∇n∇n χ̇rv

−divs ∂∇n∇χ̇rv} · δχ̇

+
∫

∂B
{∂∇n χ̇rf + ∂∇n∇n χ̇rv} · δ∇n χ̇

+
∫

∂B
{∂ς̇rf + ∂∇nς̇

rv} · δς̇

+
∫

∂B
∂∇nx

rv · δx

(69)

for the first variation δR of R, with κs := divs n. On this
basis, the corresponding stationarity conditions are then

δ2χ̇rv = 0 , δς̇rv = 0 , δxrv = 0 , (70)

in B corresponding to Eqs. (56) and (64), as well as

0 = ∂χ̇rf + δ∇n χ̇rv + κs ∂∇n∇n χ̇rv − divs ∂∇n∇χ̇rv ,

0 = ∂∇n χ̇rf + ∂∇n∇n χ̇rv ,

0 = ∂ς̇rf + ∂∇nς̇
rv ,

0 = ∂∇nx
rv ,

(71)

on ∂B in agreement with Eqs. (33), (57) and (61).
As discussed in more detail in Refs. [39,41], this results

in bounds on the energy balance as well. Along with the
variational formulation itself, such bounds provide the basis
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for stability and other considerations which are the focus of
current research on such continua.

8 Discussion

As witnessed by the vast literature on the subject, the contin-
uum thermodynamic and rate variational approach utilized in
thiswork is but one amongmanywhich has been employed to
formulate phenomenological “mean-field” models for gen-
eralized continua with microstructure. As hinted at in the
introduction, there are at least two approaches in this regard
in the literature. From a conceptual point of view, at least,
each of these approaches is quite different in character.

In a nutshell, the first approach postulates a variational
or variational-like principle from the start. A classic exam-
ple of this is a space-time action principle (e.g., [23,36]).
More recent are formulations based on variational-like prin-
ciples of pure mechanics such as virtual work or virtual
power. The formerwas applied, for example, byRefs. [21,22]
to the case of second- and higher-order hyperelastic con-
tinua without microstructure, and more recently in many
other works involving generalized continua such as rate-
independent strain-gradient plasticity (e.g., [54,55]). More
generally, the principle of virtual power has been applied in
this vein in many works in mechanics and thermomechanics
(e.g., [12,25,56–62]). Such principles are among the most
recent examples in the history of mechanics of the quest
to “rationalize” it (e.g., [63]), i.e., to cast mechanics (and
thermodynamics) in “axiomatic”, universally valid, purely
mathematical form independent of (any particular) physics.

As attested to, for example, by the current work, rather
than postulating such a variational or variational-like rela-
tion or “principle” from the start, the second approach
derives such relations for particular (classes of) models
based on physics, thermodynamics, andmaterial theory (e.g.,
[3,19,20,32,39,41,42,64]). This view on variational “prin-
ciples” was expressed for example by Truesdell and Toupin
[65, §231], who noted that these represent derived enti-
ties. If possible, mathematical reformulation of any physical
model in variational form obviously provides a number
of advantages for the formulation and solution of IBVPs.
Such advantages have long been recognized and exploited in
material science, chemical thermodynamics, and condensed
matter physics (e.g., [17,45–47,51,52]).

Following many previous works [3, Chapters 13–14], a
distinction is made in the current work between thermo-
dynamic equilibrium, i.e., states of zero velocity, uniform
temperature, and no dissipation, and the more general (non-
equilibrium) steady states, which are dissipative due to, e.g.,
gradients in temperature andvelocity.Both equilibriumstates
and steady states are generally dependent on the environment
in which the system finds itself. This issue, the consequences

of second-order, and the formulation of configurational field
and balance relations based on the Eshelby stress, for the
case of extended or generalized crystal plasticity, all repre-
sent work in progress to be reported on in the future. This also
holds for much more sophisticated approaches that the cur-
rent “mean-field” one for extended or generalized continua
such as those based on distribution functions (e.g., [66–68])
or even statistical mechanics itself (e.g., [69–73]). Among
other things, the latter promises significant further insight
into the structure of such models and the interpretation of
their fields.
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