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Abstract A high-order full-discretization method (FDM)
using Hermite interpolation (HFDM) is proposed and imple-
mented for periodic systems with time delay. Both Lagrange
interpolation and Hermite interpolation are used to approx-
imate state values and delayed state values in each dis-
cretization step. The transition matrix over a single period
is determined and used for stability analysis. The proposed
method increases the approximation order of the semidis-
cretization method and the FDM without increasing the
computational time. The convergence, precision, and effi-
ciency of the proposed method are investigated using several
Mathieu equations and a complex turning model as exam-
ples. Comparison shows that the proposed HFDM converges
faster and uses less computational time than existing meth-
ods.

Keywords Full-discretization method · Time delay ·
Stability · Chatter

1 Introduction

Time-periodic delay differential equations (PDDEs) are
widely reported in the literature. Their stability properties
are important in many recent studies. Many applications
of PDDEs are found in mathematics and engineering. For
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example, Mathieu equations [1], which combine the effect
of parametric excitation on a delayed and damped oscilla-
tor, are a special second-order linear PDDEs. Their stability
and resonance behavior were investigated in many recent
studies [2–4]. In engineering, one of the most impor-
tant applications is the cutting dynamics in connection
with regenerative chatter [5–8]. Other cases of PDDEs
can also be found in remote force reflective manipula-
tions or human–machine systems [9–12], to name just a
few.

Three categories of methods exist for analyzing the sta-
bility of these equations: frequency-dependent methods,
semidiscretization methods (SDMs) or full-discretization
methods (FDMs), and time domain simulations. In this
paper, we focus on making further improvements to the
discretization methods, which are well suited for analyzing
periodic systems with delays while maintaining a reasonable
computational time. In this category, the semidiscretiza-
tion method (SDM) was first introduced by Insperger and
Stépán [13]. With the SDM, only the delayed terms are dis-
cretized, while the actual time domain terms are unchanged,
in contrast to the FDM. An updated SDM was subsequently
proposed [14], where the delayed term is approximated as
a weighted sum of two neighboring discrete delayed state
values. The updated SDM can be used efficiently, for exam-
ple, to construct stability charts of Mathieu equations or
1-degree-of-freedom (DOF) and 2-DOF turning or milling
processes.

To further improve the efficiency of the method, a higher-
order SDM was proposed [15]. Using several Mathieu
equations as examples, it was proven that a first-order SDM
performs better than the updated SDM. A FDM [16] was
developed that was shown to converge faster. This method
can also be seen as a modified SDM. It was applied to
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analyze milling processes. Later on, other methods were
introduced [17]. However, these methods are focused only
on solving DDEs related to the milling process. The origi-
nal SDM is a classic method. Though not the most efficient
in some cases, it is a relatively robust and widely used
algorithm.

The construction of stability charts using the existing
methods still requires considerable CPU time. Thus new
developments in the field of stability analysis of delay sys-
tems are still important. In this paper, we propose an efficient
FDM based on higher-order approximations using Hermite
and Lagrangian interpolation (HFDM). This HFDM is subse-
quently used to investigate the damped and delayed Mathieu
equation. Three different cases, where the time delay is larger
than, the same as, and smaller than the time period, are
investigated. Furthermore, a more complex model of the
turning of thin-walled cylinders is taken into consideration
[18,19]. The higher system dimension and comparatively
long delays of this problem pose a challenging task. To
compare the computational efficiency and precision, sev-
eral other existing methods are compared with the proposed
method.

2 Stability analysis using the full-discretization
method

Stability analysis of a system of delay differential equations
(DDEs) has attracted and still attracts considerable interest
in the scientific community. In this work, we consider time-
periodic DDEs of the form

ẋ(t) = A0x(t) + A1(t)x(t) − B(t)x(t − τ). (1)

The matrix A(t) of the system is hereby separated into a
constant term A0 and a time-dependent part A1(t). The input
matrix B(t) projects the influence of the system past on the
state vector x at the current timepoint. Both A1(t) and B(t)
are time periodic with periodicity T , i.e,

A1(t + T ) = A1(t), B(t + T ) = B(t). (2)

Although Floquet theory [20] can be applied to systems
with time delays, practical application is not straightfor-
ward. The introduction of the time delay in a time-periodic
dynamical system causes the phase space to grow from
finite-dimensional to infinite-dimensional, which leads to an
infinite-dimensional monodromy matrix.

To solve the problem, a discrete map of the infinite-
dimensional, continuous space must be found. This is done
through an approximating discrete system whose state vector
Ξ contains the current and a finite number of past states of the
system. What is determined is, thus, the transition between
two successive periods of the approximated discrete system,

Fig. 1 Approximation as a time-discrete system

Ξ j+kT = ΦΞ j , (3)

with

Ξ j =

⎡
⎢⎢⎣

x j

x j−1

· · ·
x j−kτ

⎤
⎥⎥⎦ and Ξ j+kT =

⎡
⎢⎢⎢⎣

x j+kT
x j+kT −1

...

x j+kT −kτ

⎤
⎥⎥⎥⎦ , (4)

as shown in Fig. 1.
The stability of the approximated system can be deter-

mined by means of the eigenvalues of the transition matrix
Φ. For a stable system, they must be located inside the unit
circle of the complex plane:

|λ(Φ)|max =
⎧⎨
⎩

> 1, unstable,
= 1, boundary of stability,

< 1, stable.
(5)

A number of different discretization techniques exists
that seek to find a suitable discrete approximation of a
continuous time-varying system and the corresponding tran-
sition matrix. They all follow a similar approach. First, an
approximated solution is found on each of the subintervals.
These local solutions are then combined to obtain a solu-
tion for the transition (3) between two successive states
of the discrete system. The FDM proposed in this work
uses a finite number of past system states in conjunction
with Hermite and Lagrangian interpolation to approximate
the infinite-dimensional state of the system with delay. In
what follows, the system is discretized into kT time steps
of length �t . The period resolution kT is chosen such that
T = kT�t .

The time delay τ equals the period of the system, and it is
T = τ in the case of turning. In the milling case, T is usually
a multiple of τ , i.e., T = ntτ , where nt is the number of
teeth. For more general DDEs, the time period T and the time
delay τ are not always equal or integer multiples. Therefore,
we introduce another approximation parameter, kτ , related
to the time delay. The relationships between kT and kτ are
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kT =
{

int
(
kτ

T
τ

)
,

kτ ,

for T > τ,

for T = τ,

kτ =int
(
kT

τ

T

)
, for T < τ.

(6)

Subsequently, an approximation on the interval [t j , t j+1] is
derived and the transition from x j to x j+1 determined.

The time-dependent matrices A1(t) and B(t) are approx-
imated by a constant value on each interval. We found that
the approximation of the time-varying matrices had only a
slight effect on the overall quality of the results compared
to the approximation of the state term. The matrices A1(t)
and B(t) are therefore approximated by their value at the
beginning of the corresponding interval:

A1(t) ≈ A1
(
t j

) := A1, j and B(t) ≈ B
(
t j

) := B j .

(7)

The evolution of the system state x(t) on the interval
[t j , t j+1] is approximated using a Hermite polynomial of the
form

x(t) ≈ x̃(t) = h00(t)x(t j ) + h10(t)x(t j+1)

+ h01(t)ẋ(t j ) + h11(t)ẋ(t j+1), (8)

with the coefficients

h00(t) =
(

1 + 2
t − t j

t j+1 − t j

) (
t − t j+1

t j − t j+1

)2

,

h10(t) =
(

1 + 2
t − t j+1

t j − t j+1

) (
t − t j

t j+1 − t j

)2

,

h01(t) = (
t − t j

) (
t − t j+1

t j − t j+1

)2

,

h11(t) = (
t − t j+1

) (
t − t j

t j+1 − t j

)2

.

(9)

The derivatives ẋ(t j ) and ẋ(t j+1) in Eq. (8) are obtained
from the state equation (1):

ẋ(t j ) = A0x(t j ) + A1, j x(t j ) − B j x(t j − τ),

ẋ(t j+1) = A0x(t j+1) + A1(t j+1)x(t j+1)

− B(t j+1)x(t j+1 − τ),

≈ A0x(t j+1) + A1, j x(t j+1) − B j x(t j+1 − τ).

(10)

The evolution of past states x(t−τ) is approximated using
a quadratic interpolation and the discrete values x(t j − τ),
x(t j+1 − τ), and x(t j+2 − τ):

x(t − τ) ≈ x̃τ (t) = l1(t)x(t j − τ) + l2(t)x(t j+1 − τ)

+ l3(t)x(t j+2 − τ), (11)

where the coefficients of the polynomial are given by

l1(t) = t − t j+1

t j − t j+1

t − t j+2

t j − t j+2
,

l2(t) = t − t j
t j+1 − t j

t − t j+2

t j+1 − t j+2
,

l3(t) = t − t j
t j+2 − t j

t − t j+1

t j+2 − t j+1
.

(12)

Using Eqs. (7), (8) and (11), an approximating ordinary
differential equation (ODE) of the time-varying delay differ-
ential equation (1) can be found:

ẋ(t) = A0x(t) + A1, j x̃(t) − B j x̃τ (t), t ∈ [t j , t j+1].
(13)

Using this equation in a time integration gives the state x j+1

at the end of the subinterval. The solution takes the form

Q j x j+1 = H j x j + H j−kτ x j−kτ

+H j+1−kτ x j+1−kτ + H j+2−kτ x j+2−kτ , (14)

where

Q j = I −
(

−Ψ 2

�t
+ Ψ 3

�t2

)
A1, j A1, j

−
(

Ψ 3A0

�t2
+3

Ψ 2

�t2
− Ψ 2A0

�t
− 2

Ψ 3

�t3

)
A1, j , (15)

H j = +
(

Ψ 1 + Ψ 3

�t2
− 2

Ψ 2

�t

)
A1, j A1, j + eA0�t (16)

+
(

Ψ 1A0 + 2
Ψ 3

�t3
− 2

Ψ 2A0

�t
(17)

+Ψ 3A0

�t2
− 3

Ψ 2

�t2
+ Ψ 0

)
A1, j ,

H j−kτ
=

[(
2
Ψ 2

�t
− Ψ 3

�t2
− Ψ 1

)
A1, j (18)

+3

2

Ψ 1

�t
− Ψ 0 − 1

2

Ψ 2

�t2

]
B j , (19)

H j+1−kτ
=

[(
− Ψ 3

�t2
+ Ψ 2

�t

)
A1, j + Ψ 2

�t2
− 2

Ψ 1

�t

]
B j ,

(20)

H j+2−kτ
= 1

2

(
Ψ 1

�t
− Ψ 2

�t2

)
B j . (21)

The coefficients Ψ i are defined as

Ψ 0 =
�t∫

0

eA0(�t−ξ)ξ0dξ = A−1
0 (eA0�t − �t0 I), (22)

Ψ 1 =
�t∫

0

eA0(�t−ξ)ξ1dξ = A−1
0 (Ψ 0 − �t1 I), (23)
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Ψ 2 =
�t∫

0

eA0(�t−ξ)ξ2dξ = A−1
0 (2Ψ 1 − �t2 I), (24)

Ψ 3 =
�t∫

0

eA0(�t−ξ)ξ3dξ = A−1
0 (3Ψ 2 − �t3 I). (25)

Equation (14) can finally be written as a map:

Ξ j+1 = D jΞ j . (26)

The matrix D j describes the transition from the beginning
to the end of the subinterval. If Q j is orthogonal, then D j
reads as follows:

D j

=

⎛
⎜⎜⎜⎜⎜⎝

Q−1
j H j 0 · · · Q−1

j H j−kτ +2 Q−1
j H j−kτ +1 Q−1

j H j−kτ

I 0 · · · 0 0 0
0 I 0 0 0
.
.
.

.

.

.

0 0 · · · 0 I 0

⎞
⎟⎟⎟⎟⎟⎠

.

(27)

The transition matrix Φ is then obtained by successive mul-
tiplication of all the D j of one system period:

Φ = DkT −1DkT −2 · · · D0. (28)

The stability of the system can thus be determined by evalu-
ating criterion (5).

Expressions (15)–(20) can be simplified in certain cases,
and this makes it possible to reduce the number of compu-
tations. For example, for most cases that arise in machining,
the time variation and the time delay are typically introduced
by the process force law and the corresponding input and out-
put behavior. Typical process force laws depend only on the
current and past displacements of the workpiece-machine-
tool system. In this case, a reordering of the states makes it
possible to bring the system matrices into the form

A1(t) =
[

0 0
a(t) 0

]
and B(t) =

[
0 0

b(t) 0

]
, (29)

where a(t) and b(t) are submatrices of appropriate dimen-
sion. Therefore, the products A1, j A1, j and A1, j B j in
(15)–(20) vanish. This is also true of the Mathieu equations
investigated subsequently in this work. The coefficients of
(14) can then be simplified to

Q j = I−
(

Ψ 3A0

�t2 + 3
Ψ 2

�t2 − Ψ 2A0

�t
− 2

Ψ 3

�t3

)
A1, j ,

H j =
(

Ψ 1A0 + 2
Ψ 3

�t3 − 2
Ψ 2A0

�t

+ Ψ 3A0

�t2 − 3
Ψ 2

�t2 + Ψ 0

)
A1, j + eA0�t ,

H j−kτ =
(

3

2

Ψ 1

�t
− Ψ 0 − 1

2

Ψ 2

�t2

)
B j ,

H j−kτ +1 =
(

Ψ 2

�t2 − 2
Ψ 1

�t

)
B j ,

H j−kτ +2 = 1

2

(
Ψ 1

�t
− Ψ 2

�t2

)
B j .

Although the method is presented for a system with a
single discrete delay, analysis of systems with multiple or
continuous delays is possible using approaches similar to
those for other discretization techniques, for example, those
described for the SDM in Ref. [21].

3 Numerical results and discussion

The presented analysis procedure is now implemented and
tested using two example problems. The results are compared
to those obtained by existing methods.

3.1 Damped delayed Mathieu equations

Damped delayed Mathieu equations are among the most
widely investigated problems that involve delay. The stabil-
ity properties are therefore well known, which makes them
an excellent benchmark for stability analysis methods.

The damped delayed Mathieu equation has the form [14]

ẍ(t) + κ ẋ(t) + (δ + ε cos(2 π t/T ))x(t) = bx(t − τ).

(30)

By Cauchy transformation, it can be expressed in state-space
form with the state vector u = [x ẋ]T. Separating the time-
dependent and delayed parts of the equation gives

u̇(t) = (A0 + A1(t))u(t) − Bu(t − τ), (31)

where

A0 =
(

0 1
−δ −κ

)
, A1(t) =

(
0 0

−ε cos(2 π t/T ) 0

)
,

B =
(

0 0
−b 0

)
. (32)

The stability properties of Mathieu equations depend quite
strongly on the parameters [2,3]. Consequently, we consider
three example cases, where τ < T , τ = T , and τ > T to
show that the proposed method can be successfully applied
to a wide variety of Mathieu equations. With τ = 2 π, the
cases are
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Fig. 2 Stability charts for Mathieu equation (case 1 T = 4 π, ε = 1, κ = 0.2)
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Fig. 3 Stability charts for Mathieu equation (case 2 T = 2 π, ε = 2, κ = 0.1)

case 1: T = 4 π, ε = 1, κ = 0.2,

case 2: T = 2 π, ε = 2, κ = 0.1,

case 3: T = 1 π, ε = 1, κ = 0.2.

(33)

The corresponding stability charts are shown in Figs. 2, 3,
and 4. For comparison, stability charts constructed using the
first-order SDM [15] and the FDM [16] are shown together.

Note that the number of discretization steps kT and kτ relate
directly to the discretization timestep �t .

Both approximation parameters kT and kτ are important
for the final results obtained via the SDM. The relations
between kT and kτ in the SDM are

kτ = int

(
τ + �t/2

�t

)
= int

(
kT

τ

T
+ 1

2

)
. (34)
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Fig. 4 Stability charts for Mathieu equation (case 3 T = π, ε = 1, κ = 0.2)

For example, if τ = 2 π and T = 4 π, then kτ = 10 for
both kT = 19 and kT = 20. Thus two different charts can be
constructed for every kτ . Contrary to the SDM, there is a one-
to-one correspondence between kT and kτ in the proposed
HFDM.

Figure 2 shows the stability charts for case 1, Fig. 3 for
case 2, and Fig. 4 for case 3. The charts were obtained
using the proposed HFDM as well as the established SDM
and FDM. The green curves are the exact curves, obtained
using the first-order SDM and a very large number of 100
discretization steps. Because there is not a one-to-one corre-
spondence between kτ and kT , two charts for the SMD are
drawn in case 1. There is a visible difference between the
two charts constructed for the same kτ but different kT . The
chart with the higher kT is closer to the correct result than the
other and will be used for comparison with other methods.

Summing up the results, the proposed method yields
results that are much closer to the exact solution for the same
level of discretization than those obtained using the other
methods. The SDM converges faster than the FDM but takes
the most computational time.

Table 1 shows the number of discretization steps and the
relative computational time needed to obtain a curve that
is visually indistinguishable from the precise results. The
precise results were computed using the SDM and a large
number of discretization steps. The charts were drawn using
an equally spaced 200×100 grid of calculated eigenvalues in
the shown parameter range. The baseline of 100 % is defined
by the time needed by the proposed method. Using a standard
desktop PC (DualCore 2.5 GHz, 4 GB RAM), it took 66 s for

Table 1 Steps and computational time needed for different methods to
get obtain stability charts

Method Case 1 Case 2 Case 3

kT kτ Time kT kτ Time kT kτ Time

First FDM 24 12 156 % 18 18 139 % 12 24 193 %

First SDM 21 11 318 % 14 14 388 % 9 18 296 %

HFDM 20 10 100 % 12 12 100 % 7 14 100 %

case 1, 38 s for case 2, and 27 s for case 3. The time advantage
of the proposed method is quite impressive – only a third to a
quarter of the computational time of the SDM. It economizes
approximately an additional one-third of the computational
time used by the first-order FDM. It is important to note
that the computational time and the number of discretization
steps are lower. This is in contrast to the FDM proposed in
Ref. [16], which to a certain extent sacrifices convergence
for a lower computational time in this case.

To obtain a clearer view of the efficiency of the three
methods, convergence rates are investigated for the preceding
examples. In Figs. 2, 3, and 4, the largest errors exist around
points (b = −1.1, δ = 3.4), (b = −0.8, δ = 3.5), and
(b = −0.5, δ = 4.9). Those points lie in regions where larger
numbers of discretization steps are necessary to obtain good
results. Consequently, the critical eigenvalues corresponding
to these points are computed using the three methods.

The results for different discretization levels are shown in
Fig. 5. The oscillating behavior of the eigenvalues computed
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Fig. 5 Convergence of critical eigenvalues

using the SDM for the case τ < T is interesting to note.
The two different possibilities for choosing kT for each kτ

lead here to two distinct curves with different convergences.
Again, the figure illustrates the faster convergence of the pro-
posed method.

3.2 Elastic multibody model of an inside turning
operation

In addition to the Mathieu equations presented earlier, we
consider now the turning process sketched in Fig. 6. The sys-
tem was presented and its stability was analyzed in Ref. [26],
together with an adaptronic tool holder and different feed-
back control laws. In Ref. [18], the dynamic stability of
different thin-walled and cylindrical workpieces with a rigid
tool were analyzed.

The workpiece is cylindrical and hollow with a wall thick-
ness of w = 1 mm, a length of l = 0.2 m, and a diameter of
d = 0.12 m. It rotates at a given rotational velocity ω around
its symmetry axis. A three-jaw chuck clamps the cylinder
and connects to the main spindle of the machine. The mate-
rial of the workpiece is steel with a Young’s modulus of
210 × 109 N/mm2 and Poisson ratio of 0.3. The process
force F acts on both workpiece and tool.

F F

Fig. 6 Schematic view of considered inside turning process

The tool is rather long and slender, which enables it to
reach inside the workpiece. Both tool and workpiece must
therefore be modeled as flexible bodies. The deformations
due to chucking remain in the linear elastic range. Although
cutting causes nonlinear effects in the cutting region, the
deformations of the overall workpiece remain elastic. There-
fore, flexible multibody system theory using a floating frame
of reference formulation [22] seems to be well suited to
account for the elastic deformations as well as the large non-
linear describable motions of workpiece and tool at the same
time.

If the deformations remain linear and elastic, then the
equations of motion of an elastic multibody system can be
written in the following form [23]:

[
Mrr (q) Mr f (q)

M f r (q) M f f

] [
r̈
q̈

]
=

[
hr (ṙ, q, q̇)

h f (ṙ, q, q̇)

]

+
[

0
−K f q − D f q̇

]
+

[
Br

Be

]
F.

(35)

The rigid body motion is given by the displacements and
rotations of a body-fixed reference frame grouped in vector r .

Using the finite-element method, the deformations of the
elastic bodies are described by a number ne of nodal dis-
placements q given with respect to the body-fixed frame. A
nodal displacement is the displacement of a discrete point
in the volume of the body. The submatrices M f f ∈ R

ne×ne

and K f ∈ R
ne×ne are respectively the mass and stiffness

matrices of the flexible part obtained from finite-element
analysis (FEA), D f ∈ R

ne×ne is the damping matrix cal-
culated under the assumption of Rayleigh damping, i.e.,
D = αM + βK . The matrix Mrr ∈ R

6×6 corresponds to
the mass matrix known from rigid multibody dynamics, and
the rotational inertia depends on potential elastic deforma-
tions. The matrix M f r = MT

r f ∈ R
ne×6 couples the elastic

deformations and the rigid body movement. The vectors hr
and h f collect generalized inertia forces. The external force
F is distributed onto the rigid and elastic DOF by the input
matrices Br and Be. The quantities in Eq. (35) are calculated
from FEA results and expanded into a Taylor series expan-
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Fig. 7 Stability charts of turning example with different methods

sion. Typically, only constant and linear terms are considered
[24]. The terms of order two and higher play only a minor
role.

The dimension of the nodal displacement vector q is usu-
ally high due to the fine mesh used in FEA. The number of
degrees of freedom in Eq. (35) is then in general too high
to allow for an efficient numerical implementation. Model
order reduction techniques [25] overcome this problem and
make it possible to reduce the number of generalized coordi-
nates while maintaining a reasonable accuracy of the results.
In this work, modal reduction using the first few eigenmodes
of the system is used. This makes it possible to capture the
chatter vibrations with sufficient accuracy.

In the case of turning, we consider only one external force,
the three-dimensional process force F. As the relative posi-
tion of workpiece and tool changes, the application point
of the process force on the inside of the workpiece also
changes. Thus the matrices Be and Br in Eq. (35) must
also change. The inside turning of the thin-walled cylin-
ders indeed exhibits a time-varying input–output behavior
[26,27]. We refer the reader to the indicated works for details
on how to realize the varying input and output in the consid-
ered case.

The workpiece and tool elasticities are dominant in the
depth of the cut direction, i.e., perpendicular to the cylinder
surface. We therefore neglect the chip thickness variation
when modeling the cutting force. The actual depth of a cut
depends on the present state of the system and the system
past:

ap = N(t)(q(t) − μq(t − τ)). (36)

Table 2 Steps and time needed to obtain precise stability charts using
different methods

kT kτ Time(s)

Second FDM 70 70 197 270 %

First SDM 70 70 309 423 %

HFDM 55 55 73 100 %

The output matrix N projects the nodal displacements toward
the depth of the cut. The factor μ describes the overlapping
of successive cuts. We chose it to be one, which represents a
worst-case scenario.

What makes this problem interesting, compared to previ-
ously analyzed Mathieu equations, is the increased system
dimension and the relatively long delay of the system. Both
result in a much higher dimension of the transition matrix of
the approximated discrete system.

The stability charts of the system for kT = kτ = 40
and kT = kτ = 50 are shown in Fig. 7. The charts were
obtained using the proposed HFDM, the first-order SDM,
and a second-order FDM. The charts were drawn using an
equally spaced 400 × 200 grid of calculated eigenvalues in
the shown parameter range. The precise curve in green was
determined using a first-order SDM and a large number –
200 – of discretization steps.

Since the second-order FDM can be used for the turning
process here, and it converges faster, we use it instead of the
first-order FDM for comparison with the HFDM. Moreover,
due to the complexity of the turning model, it requires many
more discretization steps, and as a result, the time needed for
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Fig. 8 Convergence of critical eigenvalues for turning model

the matrix multiplication (28) is very high. Therefore, the
efficient matrix multiplication method in Ref. [28] is used
here for all three methods.

The computational time and discretization steps needed
to calculate a stability chart that is visually indistinguishable
from an exact one are given in Table 2. The table confirms
the previously obtained results. For the considered turning
problems with increased system dimension and much larger
delay times, the efficiency gains of the approach are much
more pronounced than for the Mathieu equation.

Finally, the convergence rates are investigated for the turn-
ing example around a valley (a : τ = T = 0.0288, kcf =
1.347 × 105) and a peak value(b : τ = T = 0.0296, kcf =
2.357 × 105) in Fig. 8, which also shows that the proposed
method converges faster than the other methods.

4 Conclusion

In this paper, an efficient high-order FDM was proposed
to analyze the stability of time-periodic delay differential
equations. The method discretizes the system using Hermite
interpolation for past states and second-order Lagrangian
polynomials for the present state of a system. The approach
was successfully implemented using two example problems.
The delayed Mathieu equation is widely used as a benchmark
and makes it possible to compare the performance of the pro-
posed method to a variety of existing solutions. The model of
an inside turning operation, on the other hand, is challenging
because of comparably long delays and the increased num-
ber of states needed to describe the elastic deformation of the
thin-walled workpiece.

Using the examples, it could be shown that the proposed
HFDM converges against the precise values with an increas-
ing number of discretization steps. Furthermore, it converges
faster than the well-established methods and requires less
computational time. Even compared to the very efficient
second-order FDM, up to half of the computational time can

be saved. This is a quite significant gain when large systems
and many different configurations are being investigated.
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