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Abstract Flexible wings of insects and bio-inspired micro
air vehicles generally deform remarkably during flapping
flight owing to aerodynamic and inertial forces, which is of
highly nonlinear fluid-structure interaction (FSI) problems.
To elucidate the novel mechanisms associated with flexible
wing aerodynamics in the low Reynolds number regime, we
have built up a FSI model of a hawkmoth wing undergoing
revolving and made an investigation on the effects of flex-
ible wing deformation on aerodynamic performance of the
revolving wing model. To take into account the character-
istics of flapping wing kinematics we designed a kinematic
model for the revolving wing in two-fold: acceleration and
steady rotation, which are based on hovering wing kinemat-
ics of hawkmoth, Manduca sexta. Our results show that
both aerodynamic and inertial forces demonstrate a pro-
nounced increase during acceleration phase, which results
in a significant wing deformation. While the aerodynamic
force turns to reduce after the wing acceleration terminates
due to the burst and detachment of leading-edge vortices
(LEVs), the dynamic wing deformation seem to delay the
burst of LEVs and hence to augment the aerodynamic force
during and even after the acceleration. During the phase of
steady rotation, the flexible wing model generates more ver-
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tical force at higher angles of attack (40◦–60◦) but less hori-
zontal force than those of a rigid wing model. This is because
the wing twist in spanwise owing to aerodynamic forces re-
sults in a reduction in the effective angle of attack at wing
tip, which leads to enhancing the aerodynamics performance
by increasing the vertical force while reducing the horizon-
tal force. Moreover, our results point out the importance
of the fluid-structure interaction in evaluating flexible wing
aerodynamics: the wing deformation does play a significant
role in enhancing the aerodynamic performances but works
differently during acceleration and steady rotation, which is
mainly induced by inertial force in acceleration but by aero-
dynamic forces in steady rotation.

Keywords Insect flight · Flexible wing · Revolving wing ·
Fluid-structure interaction

1 Introduction

Flexible wings of insects and flapping-winged micro air ve-
hicles (MAV) are generally shaped thin and flat with light
structures. Both bioflyers and bio-inspired flapping MAVs
flap their wings with high flapping frequencies to stay air-
borne, and within each beat cycle flapping wings repeates ac-
celeration and deceleration and normally are deformed sig-
nificantly due to inertial and aerodynamic forces. This is of
highly nonlinear fluid-structure interaction (FSI) problems.
While many studies have been undertaken [1, 2, 4–6] till now
relating flexible wing aerodynamics but mostly focused on
flapping wing aeordynamics with prescribed wing deforma-
tions, the FSI-induced wing deformation and its effect on
flapping flexible wing aerodynamics and energetics are still
a main subject with very limited studies done because of the
complexity of nonlinear interactions between flapping wing
aerodynamics and structural dynamics [3].

As a simplified model for flapping wings, aerodynam-
ics of revolving wing models have also been a subject re-
cently, which are conducted either by means of dynami-
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cally scaled mechanical robots [7–10] or by computational
fluid dynamic models [11–13] in the low Reynolds number
regime. These models present the general aerodynamic per-
formance of a flapping wing by force coefficients that can
be estimated with blade element models, and the effects of
wing planform shape, twist and camber on the revolving
wing aerodynamics can be further investigated in a separated
way [7, 11–13]. Such revolving wing models with a simpli-
fied kinematics may be an essential model for an integrated
understanding of the essence of flapping wing aerodynamics
in a manner of separating some novel mechanisms such as
the LEV and other force enhancement mechanisms from the
complexity of flapping wing systems.

In this study, we aim at establishing a FSI model of a
revolving insect wing to tackle the nonlinear FSI problem
associated with flexible wing aerodynamics at low Reynolds
numbers. Follow our previous computational FSI analy-
sis [3] of flexible flapping wing aerodynamics that utilized
a realistic morphological and structural model of hawkmoth
wing, we constructed our revolving wing kinematics on the
basis of the realistic wing kinematics of a hovering hawk-
moth with a Reynolds number and the characteristics of ac-
celeration identical to those of the hovering hawkmoth [3].
The kinematic model for the revolving wing is designed in

two-fold: acceleration and steady rotation, in which the wing
is accelerated around a pivot at wing base from rest and con-
tinues steady rotation after reaching the mean angular veloc-
ity of a hovering hawkmoth. The wing deformation, and the
vertical and horizontal forces of the flexible revolving wing
are simulated and compared with those of a rigid revolving
wing. We further give an extended discussion on wing aero-
dynamics and energetics during the phases of acceleration
and steady rotation and its correlations with wing deforma-
tions as well as its discrepancy compared with the rigid flap-
ping wing.

2 Method

2.1 Morphological wing model and revolving wing kinemat-
ics

In this study, we use a hawkmoth wing model that was orig-
inally developed by Aono and Liu [14] on the basis of the
two-dimensional digitized image of hawkmoth, Agrius von-
volvuli. The wing length R and mean chord length cm are
5.05 and 1.83 cm, respectively. Figure 1 shows the hawk-
moth wing model and the coordinate system used in this
study.

Fig. 1 a A hawkmoth wing model with a global coordinate system (X, Y , Z) and a wing-fixed coordinate system (x′, y′, z′); b Definition of
angle of attack (AoA) at wing base

The inertial force as well as aerodynamic force can
have significant effects on wing deformations [15]. There-
fore, the kinematic model of a revolving wing is constructed
by simplifying the realistic wing kinematic of a hovering
hawkmoth so that the Reynolds number and acceleration of
the wing can be same with that of the hawkmoth’s wing in
hovering. The angular velocity of revolving wing ω is de-
fined as follows

ω(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω cos
[1
2

(

1 +
t

Taccel

)

π
]

, t < Taccel,

Ω, Taccel � t,
(1)

where Ω is rotational angular velocity, t is dimensionless
time and Taccel is the time when the wing terminates its accel-
eration and starts steady rotation. In this study, Taccel is de-
fined by using the wing kinematics of a hovering hawkmoth,

Manduca sexta [14, 16]. As shown in Fig. 2, the wing tip
velocity reaches its maxima when the flapping-wing tip ac-
celeration of the hovering hawkmoth becomes zero at about
0.15 flapping period, which is identical to a dimensionless
time of approximately 1.64 after stroke reversal. We utilize
this value as Taccel in Eq. (1). The rotational velocity Ω in
Eq. (1) is calculated to be 104.41 rad/s. The time-history of
the angular velocity ω during the acceleration phase is also
plotted in Fig. 2. The wing model keeps rotation up to three
revolving cycles after Taccel during the phase of steady rota-
tion. The Reynolds number Re is defined as Re = Urefcm/ν,
where Uref is reference velocity and ν is the kinematic vis-
cosity of air (1.5× 10−5 m2/s). The mean chord length cm is
used as the reference length, and the Uref is defined as ΩR,
the wing tip velocity of the rigid wing in steady rotation.
Hence, Re is calculated to be approximately 6 400.
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Fig. 2 Time courses of angular velocities and accelerations

2.2 Fluid-structure interaction (FSI) model

Analysis of the flexible revolving wing aerodynamics was
conducted with an in-house fluid-structure interaction (FSI)
solver developed by Nakata and Liu [17]. This FSI solver
consists of a computational fluid dynamics (CFD) solver
based on a fortified Navier–Stokes solver [18, 19] and a com-
putational structural dynamic (CSD) solver [17] based on the
finite element method specialized for thin structure such as
insect wing. The CFD and CSD solvers are coupled in a
manner of loose coupling. Note that the hawkmoth body
model, which was used as a global grid in previous stud-
ies, is replaced with a sufficient small cylinder, which has
been confirmed having negligible influence on the revolving
wing aerodynamics. Both CFD grids and CSD meshes used
in this study are illustrated in Fig. 3. More details including
about the CFD and CSD models can be found in Nakata and
Liu [17].

Fig. 3 Grid systems. a Local grid for CFD analysis; b A FEM mesh model of a hawkmoth wing; c Global grids for CFD analysis. Note
that a local tiny cylinder grid is set merely for generating global grids and its influence is negligible

2.3 Computational fluid dynamic solver

A general formulation of the multi-blocked, overset grid, for-
tified solutions to the Navier–Stokes equations is performed
in the global system (X, Y, Z) as depicted in Figs. 3a and 3b.
The algorithm employed here is based on a single Navier–
Stokes solver as in Liu and Kawachi [18] but is extended to
a multi-blocked, overset-grid system by means of the forti-
fied solution algorithm [19]. The governing equations are the
three-dimensional, incompressible, unsteady Navier–Stokes
equations written in strong conservation form for mass and
momentum. The artificial compressibility method is used by
adding a pseudo time derivative of pressure to the equation
of continuity. For an arbitrary deformable control volume
V(t), the non-dimensionalized governing equations are
∫

V(t)

(
∂QQQ
∂t
+
∂qqq
∂τ

)

dV

+
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HHH =
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In the preceding equations, λ is the pseudo-
compressibility coefficient; p is pressure; u, v, and w are ve-
locity components in Cartesian coordinate system X, Y, and
Z; t denotes physical time while τ is pseudo time; and Re is
the Reynolds number. Note that the term qqq associated with
the pseudo time is designed for an inner-iteration at each
physical time step, and will vanish when the divergence of
velocity is driven to zero so as to satisfy the equation of con-
tinuity. The pseudo-compressibility coefficient λ is set to be
1.0 for all the cases.

The fortified Navier–Stokes solution algorithm is
achieved by adding forcing terms to the Navier–Stokes equa-
tions; by introducing the generalized Reynolds transport the-
orem and by employing the Gauss integration theorem, an
integrated form of Eq. (4) in general curvilinear coordinate
system is obtained as
∫

V(t)

∂qqq
∂τ

dV +
∂

∂t

∫

V(t)
QQQdV +

∮

S (t)
( fff −QQQuuug) · nnndS

= σ(qqqf − qqq), (3)

where fff = (FFF + FFFv, GGG +GGGv, HHH + HHHv); S (t) denotes the sur-
face of the control volume; nnn = (nx, ny, nz) are components
of the unit outward normal vector corresponding to all the
faces of the polyhedron cell; UUUg is the local velocity of the
moving cell surface. The switching parameter σ is set to
be sufficiently large, compared to all the other terms in the
region, and where the solution qqqf is available by the sub-
set equations, and zero outside the region. For σ � 1, the
added source term simply forces qqq = qqqf ; otherwise it blends
qqq with qqqf . When σ = 0, the equations go back to the ordinary
Navier–Stokes equations.

The solutions to the multi-blocked, overset grid
Navier–Stokes equations require specific boundary condi-
tions at the overlapping zone stencils among grids, at the
solid walls of a revolving wing and a cylinder as well as
at the far field outside boundary as shown in Fig. 3a. For
two single grid blocks, we solve the fortified Navier–Stokes
equations two times at each time step [19]. For the holes
inside the grid and the outermost two grid points, the qqqf are
specified there by qqq of overlapping zones with other single
grid at previous time step. Inside the computational domain
except the holes and the single grid boundary qqq are equal to
qqqf by setting σ = 0.

When the Navier–Stokes equations are solved for each
block, the aerodynamic forces FFFaero = (Fax, Fay, Faz) exerted
on the wing is evaluated by a sum of aerodynamic forces in
the global coordinate system. In this study, the vertical and
horizontal forces coefficients Cv and Ch on a revolving wing
are defined in the same way as in Ref. [7] such as

Cv =
Faz

ρS 2Ω2
, (4)

Ch =
Taz

ρS 3Ω2
, (5)

where Faz is the aerodynamic vertical force on a single wing,
Taz is the torque about the rotational axis, S 2 and S 3 are the
second and third moments of area for a single wing [20], re-
spectively.

2.4 Computational structural dynamic solver

In order to simulate dynamics and large deformations of in-
sect wings due to inertial and aerodynamic forces under re-
volving motion, a finite element method (FEM)-based struc-
tural dynamic solver is employed [17]. To model a thin
structure like insect wing, we employ a triangular shell el-
ement termed AT/DKT with a very thin and anisotropic
structure, which combines an Allman membrane triangular
(AT) element with a discrete Kirchhoff triangular (DKT) el-
ement [21]. The element is hereby further utilized to study
nonlinear dynamic response by introducing an updated La-
grangian (UL) formulation [22, 23]. The virtual work prin-
ciple for a single element at time t + Δt can be expressed
as
∫

δεεεTsssdV +
∫

ρsδRRR
TR̈RRdV = δWe, (6)

where ρs is the density of a wing; RRR is the position in ref-
erence to the origin of the global coordinate system at time
t+Δt; sss and εεε are the vectors of second Piola–Kirchhoff stress
and incremental Green–Lagrange strain form the configura-
tion at time t to the configuration at time t +Δt, respectively;
δWe is the virtual work done by external forces FFF such as
fluid force. By using the nodal displacement due to elastic
deformation in reference to the wing base-fixed frame uuus and
shape functions of AT/DKT elements [21], the integrals of
Eq. (6), representing the virtual work due to internal and in-
ertial forces in an element, can be given by
∫

ρsδRRR
TR̈RRdV = δuT(MMMüuus + hhh), (7)

∫

δεεεTsssdV = δuT(KKKuuus + fff i), (8)

where KKK is the tangent stiffness matrix; MMM is the consis-
tent mass matrix; fff i is the internal force vector; hhh represents
the inertial forces by prescribed flapping motion. The equi-
librium equation given by substituting Eqs. (7) and (8) into
Eq. (6) is assembled to form the global incremental equilib-
rium equation. The nonlinear equation of motion is solved
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by using the Newton–Raphson method combining with Wil-
son θ integration scheme, which may be expressed as

KKK(i−1)Δuuu(i)
s = FFF − fff (i−1)

i −MMMüuu(i−1)
s − hhhe, (9)

where uuu(i)
s = uuu(i−1)

s + Δuuu(i)
s . The superscripts of KKK(i−1) and

fff (i−1)
i denote the previous time of i − 1 when uuu(i−1)

s [22].

3 Results and discussion

3.1 Force generation in rigid and flexible revolving wings

Figures 4a and 4b show time courses of vertical and hori-
zontal force coefficients plotted against angles of wing rev-
olution. Non-dimensional time is depicted on the horizontal
axis for reference. It is seen that the aerodynamic forces of

Fig. 4 Time courses of a vertical and b horizontal force coefficients
generated by revolving flexible and rigid wings, and c twist, d span-
wise bending of a flexible revolving wing. Shaded area corresponds
to unsteady (0◦–180◦) and steady (720◦–1 080◦) phases

both rigid and flexible wings show a rapid increase immedi-
ately after the onset of wing revolution, which is more ob-
vious at higher angles of attack (40◦–60◦) due to the added
mass. Note that the aerodynamic forces are apparently en-
larged in the flexible wing during the acceleration phase (An
extensive discussion on discrepancy between rigid and flexi-
ble wing will be given in Sect. 3.3). The aerodynamic forces
are relatively stable after the unsteady (acceleration) phase
(0◦–180◦) but turn to decrease gradually after 360◦ when the
wing encounters and passes through the downwash gener-
ated during the first cycle. A bigger drop in both vertical and
horizontal forces is then observed at higher angles of attack
(40◦–60◦). As postulated by Usherwood and Ellington [7] a
full development of the vortex-structured wake with its as-
sociated radial inflow over the wing can shift the position
of vortex breakdown inwards under steady rotational condi-
tions at higher angles of attack and hence lead to a reduc-
tion in vertical force. At lower angles of attack (10◦–20◦),
both vertical and horizontal forces converge comparatively
faster and then keep almost constant without fluctuations till
1 080◦. Such decreasing in aerodynamic forces are continu-
ously observed from 360◦ to 720◦, but then the aerodynamic
forces turn out to be unstable fluctuating largely at larger an-
gles of arrack even though the wake is fully developed after
the second cycle. Such time-varying feature of aerodynamic
forces against angles of attack is also observed in experi-
mental studies [7, 10]. For the sake of discussion, we have
defined the interval from 0◦ to 180◦ as unsteady (accelera-
tion) phase, and the interval from 720◦ to 1 080◦ as steady
(rotation) phase, and the averaged forces during each inter-
val will be used for the following discussions.

3.2 Wing deformations in flexible revolving wing

Twist and spanwise bending at 0.8R are further plotted
against angle of wing revolution as illustrated in Figs. 4c and
4d. Note that the twist angle θtw and the spanwise bending
angle θb are defined in a wing base-fixed coordinate system
as depicted in Fig. 5. Both the twist and spanwise bend-
ing are observed increasing with increasing angle of attack
throughout most of the period of the simulation. During the
acceleration phase, the wing changes its shape rapidly and
the wing deformation is maximized around a phase of 20◦,
where the largest twist and spanwise bending are approxi-
mately 7.2◦ and 8.6◦, respectively. Such large wing defor-
mation is thought due to the large inertial forces [15] as well

Fig. 5 Definition of a spanwise bending angle θb and b twist angle θtw in a flexible wing. Computed wing deformations are described in a
wing base-fixed coordinate system
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as the large aerodynamic forces as described in the preced-
ing section. Then the wing rapidly returns to its original
flat shape until a phase of 50◦ and eventually converges to
some level around 180◦ after experiencing some slight fluc-
tuations. Corresponding to the time courses of aerodynamic
forces in Figs. 4a and 4b the twist and spanwise bending also
demonstrates a pronounced decrease during the interval from
360◦ to 720◦. Note that at higher angles of attack slight fluc-
tuations in twist and spanwise bending are observed after
540◦, which are induced by the unstable vertical and hori-
zontal forces as shown in Figs. 4a and 4b.

3.3 Aerodynamic performance during unsteady phase

Figure 6 shows the time-averaged vertical force coefficients
Cv, horizontal force coefficients Ch, and their ratios Cv/Ch

versus angles of attack. Note that these time-averaged value
were calculated by using each time-varying value in the two-
interval (unsteady and steady phases) as shown the shaded

Fig. 6 Effects of angle of attack on a vertical and b horizontal force
coefficients, and c vertical to horizontal force coefficient ratio in
revolving flexible and rigid wings. Experimental results by Usher-
wood and Ellington [7] are also plotted for comparison

areas in Fig. 4. Table 1 further gives those values at four an-
gles of attack. During the unsteady phase when the wing
rotates from 0◦ up to 180◦, the vertical force coefficient in-
creases with increasing angle of attack till the AoA of 40◦
but then shows a drop at the AoA of 60◦. The horizontal
force coefficient, however, shows a monotonic increase at
four angles of attack. Such correlation between the time-
averaged force and angle of attack is also observed by Ush-
erwood and Ellington [7] and by Dickinson et al. [10]. Note
that this tendency is also seen here in the case of the flexi-
ble wing. We further compare the discrepancy between rigid
and flexible wings. Interestingly, we see that the FSI-based
wing deformations lead to a reduction of horizontal force co-
efficients at all four angles of attack as shown in Fig. 6a and
in Table 1. The vertical force coefficients (Fig. 6b), however,
show a divergent result: the flexible wing underperforms the
rigid wing at lower angles of attack of 10◦–20◦, but outper-
forms the rigid wing at higher angles of attack of 40◦–60◦
Furthermore, the vertical-to-horizontal force ratio Cv/Ch of
the flexible wing outperforms the rigid wing at all four an-
gles of attack (Fig. 6c). Our results demonstrate that the flex-
ible wing undergoing revolving is capable to achieve better
aerodynamic performance during the unsteady (acceleration)
phase. Moreover, it is interesting to find that the vertical-
to-horizontal force ratio shows a pronounced increase with
increasing the angle of attack with a net increase of 9.3%,
12.7%, 14.0%, 15.0% compared with that of the rigid wing
at the angle of attack of 10◦, 20◦, 40◦, 60◦, respectively.

Table 1 Force coefficients during unsteady phase at four angles of
attack

Angle of Cv Ch Cv/Ch

attack/(◦) Flexible Rigid Flexible Rigid Flexible Rigid

10 0.46 0.50 0.10 0.12 4.46 4.08

20 0.95 0.98 0.32 0.38 2.93 2.60

40 1.62 1.56 1.12 1.22 1.47 1.29

60 1.59 1.44 2.10 2.15 0.77 0.67

Here we further take one case at angle of attack of 40◦
for instance to give an extensive discussion on aerodynamic
performance during unsteady (acceleration) phase. Note that
this angle of attack corresponds to the cycle-averaged feath-
ering angle of a flapping wing in hawkmoth hovering, and
the corresponding aerodynamic performance of the flexible
revolving wing obtained here can be used to predict and ana-
lyze that of the flexible flapping hawkmoth wing. As shown
in Figs. 7a and 7b the maximum vertical and horizontal force
coefficients produced by the flexible wing are at least 25%
larger than those of the rigid wing and the timing is obviously
largely delayed. Such delayed timing of the maximum aero-
dynamic forces in the flexible revolving wing actually corre-
sponds with a delayed LEV very similar with that observed
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in a flapping flexible wing by Nakata and Liu [3]. As illus-
trated in Figs. 8 and 9 the visualized pressures and spanwise
vorticity on upper wing surface completely support such de-
layed LEV mechanism of the flexible revolving wing model.
The pressure contours on upper surfaces of flexible and rigid
wings show significant discrepancy as well as the spanwise
vorticity does at 0.5R and 0.8R. Note that the flow visualiza-
tions are done at three points of A, B, and C (Fig. 7) corre-
sponding to three phase angles of wing revolution of 23.74◦,
31.06◦, and 38.27◦, respectively. In addition, as can be seen
in Figs. 7c and 7d and Figs. 9a–9c, the twist and spanwise
bending in the flexible wing result in some pitch-up rotation
at wing tip, which is likely capable to stabilize the LEVs and
hence to enhance the generation of both vertical and horizon-
tal forces.

3.4 Aerodynamic performance during steady phase

During the steady phase when the wing rotates from 720◦ up
to 1 080◦ as shown in Fig. 6 and Table 2 the plots of force co-
efficient against angle of attack show similar tendency with
that of the unsteady phase; the flexible wing outperforms the
rigid wing at higher angles of attack of 40◦–60◦ and is ca-
pable to achieve better aerodynamic performance. Here the
vertical-to-horizontal force ratio also shows a pronounced in-
crease with increasing the angle of attack with a net increase

Fig. 7 Time courses of a vertical and b horizontal force coefficients
of revolving flexible and rigid wings, and c twist, d spanwise bend-
ing of a flexible revolving wing during unsteady phase

Fig. 8 Pressure contours on upper surfaces of flexible and rigid
wings at instants A–C in Fig. 7

Fig. 9 Spanwise vorticity around rigid and flexible wings at in-
stants A–C (Fig. 7) with AoA of 40◦. Cross-section of a rigid wing
is superimposed in the results of flexible wing by dotted line for
comparison. White solid lines represent contours of constant Q cri-
terion

Table 2 Force coefficients during steady phase at four angles of
attack

Angle of Cv Ch Cv/Ch

attack/(◦) Flexible Rigid Flexible Rigid Flexible Rigid

10 0.26 0.28 0.075 0.08 3.38 3.28

20 0.71 0.71 0.25 0.29 2.80 2.45

40 1.27 1.24 0.88 0.96 1.45 1.30

60 1.11 1.01 1.48 1.51 0.75 0.68
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of 3.0%, 14.3%, 11.5%, 10.3% compared with that of the
rigid wing at the angle of attack of 10◦, 20◦, 40◦, 60◦, re-
spectively.

Note that the time-varying force coefficients and wing
deformations, at higher angles of attack of 40◦–60◦, show
comparatively large fluctuations in both flexible and rigid
wings (Figs. 4a and 4b). Such fluctuating feature observed in
the aerodynamic forces is probably caused by the breakdown
and shedding of LEVs and tip vortices, which may result in
some unstable vortex structures at wing tip. Liu et al. [24]
pointed out that the tip vortex generates some reverse pres-
sure gradient on the wing surface and hence creates a reverse
axial flow in the half of the down-stroke; Harbig et al. [11]
reported that as Reynolds number increases, the LEV tends
to evaluate to two co-rotating vortex structures with a smaller
counter-rotating vortex created as well as some adverse pres-
sure gradient through the core of the vortex.

Again with consideration of the case at angle of attack
of 40◦ in order to give an extensive discussion on aerody-
namic performance during the steady phase, we find that
the vertical force coefficient of the flexible wing is slightly
higher than that of the rigid wing but the horizontal force co-
efficient is approximately 10% lower. Furthermore, it is seen
that the slight fluctuations in twist and spanwise bending are
less than 1.0◦, which should have less influence on the flow
structures. These are supported as shown in Figs. 10 and 11
by the visualized pressure contours and spanwise vorticity of
flexible and rigid wings at three angles of wing revolution of
802◦, 904◦, and 997◦, in which the discrepancy between flex-
ible and rigid wings is margin. Figure 12 shows time courses
of local angle of attack of the flexible wing from wing base
to wing tip at AoA of 40◦. At positions of 0.2R and 0.4R,
the local angle of attack is reduced merely less than 1.0◦,
but when the position is greater than 0.4R the angle of attack
shows a reduction by 2.0◦ to 5.0◦.

Fig. 10 Pressure contours on upper surfaces of flexible and rigid
wings at angle of wing revolution of a 802◦; b 904◦, and c 997◦

Fig. 11 Spanwise vorticity around rigid and flexible wings at angle
of wing revolution of a 802◦; b 904◦, and c 997◦ with AoA of 40◦.
Cross-section of a rigid wing is superimposed in the results of flexi-
ble wing by dotted line for comparison. White solid lines represent
contours of constant Q criterion

Fig. 12 Time courses of local angles of attack of a flexible wing
from wing base to tip during steady phase at AoA of 40◦

4 Conclusions

In this study, the effects of wing deformation on aerodynamic
performance of a revolving insect wing model are investi-
gated by using a hawkmoth wing model and FSI-based sim-
ulations. It is confirmed that the wing flexibility can enhance
the aerodynamic performance of the flexible revolving wing
both during acceleration (an unsteady phase) that replicates
the flapping wing kinematics of a hovering hawkmoth and
during steady rotation (a steady phase) particularly when the
angle of attack is large sufficient to match the mean feather-
ing angle of a hovering hawkmoth. The flexible wing model
can generate much greater aerodynamic forces than the rigid
wing does during the acceleration phase because the dy-
namic wing deformations owing to the wing acceleration that
results in large inertial and aerodynamic forces can reduce
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the angle of attack at wing tip. During the phase of steady
rotation, the wing deformation is comparatively smaller but
the wing twist can still reduce the angle of attack at wing
tip and hence increases the vertical force at higher angles of
attack (40◦–60◦) while reducing the horizontal force. Both
of these (acceleration-based) unsteady and steady (rotation)
mechanisms for the flexible revolving wing model presum-
ably hold more or less for flexible flapping wings as well.
Moreover, our results demonstrate that the fluid-structure in-
teraction is important and essential in evaluating the aero-
dynamic performance of flexible flapping wings and even in
the simplified case of the revolving wing model, the wing
deformation due to inertial force/aerodynamic force can en-
hance the aerodynamic performances but in different manner
during acceleration/steady rotation.
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