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Abstract Flexible joints are usually used to transfer ve-
locities in robot systems and may lead to delays in motion
transformation due to joint flexibility. In this paper, a link-
rotor structure connected by a flexible joint or shaft is firstly
modeled to be a slow-fast delayed system when moment of
inertia of the lightweight link is far less than that of the heavy
rotor. To analyze the stability and oscillations of the slow-
fast system, the geometric singular perturbation method is
extended, with both slow and fast manifolds expressed ana-
lytically. The stability of the slow manifold is investigated
and critical boundaries are obtained to divide the stable and
the unstable regions. To study effects of the transformation
delay on the stability and oscillations of the link, two quan-
titatively different driving forces derived from the negative
feedback of the link are considered. The results show that
one of these two typical driving forces may drive the link
to exhibit a stable state and the other kind of driving force
may induce a relaxation oscillation for a very small delay.
However, the link loses stability and undergoes regular peri-
odic and bursting oscillation when the transformation delay
is large. Basically, a very small delay does not affect the
stability of the slow manifold but a large delay affects sub-
stantially.

Keywords Flexible joint · Slow-fast system · Transforma-
tion delay · Geometric singular perturbation

1 Introduction

Systems composed of two or more coupled subsystems of
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different time scales are usually named as slow-fast sys-
tems [1], due to the coexistence of fast state variables and
slow state variables in one system. In fact, some com-
mon coupled systems could be typical slow-fast systems
under certain conditions, such as semiconductor lasers [2],
predator-prey models [3], reaction-diffusion systems [4], etc.
Generally, the difference of time scales comes from not only
the slow-fast effects in real time, but also the scale effects in
geometric size [5]. The rigid-link flexible-joint robot manip-
ulator concerned in this paper is precisely such a slow-fast
system when moment of inertia of the lightweight link (or
arm) is far less than that of the heavy rotor, owing to the
requirements of miniaturization and lightweight design.

In an early stage, robot manipulators were usually
treated as rigid links connected by rigid actuated joints,
though industrial applications had revealed the limitations of
the rigid assumptions in modeling complicated dynamics. To
gain a more accurate model, Spong [6] took the joint elastic-
ity into consideration and proposed a mathematical model
with flexible joints in 1980s. In his model, the reciprocal
of the joint stiffness was introduced as a small parameter to
separate different time scales. Moreover, as the limit of the
joint stiffness tended to infinity, the flexible joint model de-
generated into a rigid model, which verified the reasonable-
ness of its modeling assumption. Extensive literatures on
Spong’s model mostly exist in the field of robot automation
and control, dealing with position and control problems such
as designs of different controllers, robust stability analyses
and experimental investigations, etc. [7–12]. A detailed sur-
vey on the dynamic analyses of flexible robot manipulators
was presented in Ref. [13].

The present study is motivated by the fact that there
exists a so-called “transformation delay” in the motions of
a flexible-joint. It is well known that the delay may in-
duce instability. Starting from such views, many scholars
reconsidered new control stage. Chen et al. [14, 15] intro-
duced the time delay to improve Spong’s model and consid-
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ered the effects of flexible joints. The main interests were
on the problem of controlling robot manipulators for trajec-
tory tracking. Other works discussing the time delay influ-
ence were mainly based on Spong’s original model and paid
close attention to the time delays in feedback control. For
example, in Ref. [16], the stability problem of a flexible-joint
robot with time delays in the feedback loop was investigated.
Meanwhile, an estimate of the system rate of convergence
and a procedure for evaluating the region of attraction were
presented. However, although there have been quite a num-
ber of contributions dealing with the delay effects, the trans-
formation delay of motions was not taken into account. As
a matter of fact, the flexibility of a joint or shaft may lead
to a phase difference between two connected parts [17]. A
key issue for our study is to treat the effect of this phase dif-
ference as a transformation delay in transferring the angular
displacement from one side of the shaft to the other. Now
that many studies have revealed that this delay may have a
substantial effect on a dynamical system, it is desirable to
make clear the influence of the transformation delay on the
dynamics of slow-fast systems. Motivated by such issues,
we remodel the rigid-link flexible-joint system and make a
detailed discussion on the effects of transformation delay in
the present paper.

According to the theory of nonlinear dynamics, sys-
tems with multiple time scales can exhibit complicated be-
haviors, such as relaxation oscillation [18], bursting [19],
and spiking [20]. Nevertheless, regular perturbation meth-
ods [21] usually fail in analyzing these complex oscillations.
To address the problem, a geometric approach named ge-
ometric singular perturbation method was initially proposed
by Tikhonov [22] and Fenichel [23]. Furthermore, Jones [24]
proved Fenichel’s invariant manifold theorems and proposed
the exchange lemma. The essence of this approach is to
reformulate the singularly perturbed system into a fast sys-
tem and a slow system with a transformation of time scales.
Mathematically, limit of the fast system determines a set
where the flow is trivial while limit of the slow system in-
dicates a non-trivial flow on this set [24]. These two aspects
are realized simultaneously in the geometric singular pertur-
bation method. In the past several years, the idea of analyz-
ing a slow-fast system from the geometric view has widely
aroused interests in various fields. Rinaldi and Scheffer [25]
discussed the interaction of the fast and slow processes that
sometimes occurred in ecosystems. It was concluded that
the geometric approach was very efficient in analyzing dy-
namic systems with up to three state variables, one of which
was a slow variable. Meanwhile, this method vividly pre-
sented the mechanisms of sudden, surprising jumps of the
ecological variables. A comprehensive description of spik-
ing and bursting oscillations was accomplished by Izhike-
vich [26]. In his work, mechanisms of spiking and bursting
were reviewed and the existing classification of various types
of bursting was extended with application of the geometric
bifurcation theory. After that, a hyperchaotic Lorenz system

with two time scales was constructed by Han et al. [27]. Two
types of bursting, symmetric fold/fold bursting, and symmet-
ric sub-Hopf/sub-Hopf bursting were observed in their work.
It is noticed that although the geometric singular perturbation
method has been proven successful in analyzing a slow-fast
system, limited work has been done in the analysis of a slow-
fast system with time delay. One effort is made by Zheng and
Wang [19]. They adopted the geometric singular perturba-
tion method and revealed the time-delay effects on the burst-
ing of the synchronized state of coupled Hindmarsh–Rose
neurons. The stability analysis clarified the time-delay influ-
ence on the structure of the slow manifold, and then the tran-
sitions from bursting to relaxation oscillation and to chaotic
bursting were investigated as well. Nevertheless, they did not
mention the effect of the fast manifold, which is emphasized
in our paper and seems to be another interesting issue.

The rest of this paper is organized as follows. In Sect. 2,
a rigid-link flexible-joint robot arm is remodeled by taking
the transformation delay into account, and then the singu-
lar perturbation technique is extended to analyze the delayed
slow-fast system. Afterwards, Sect. 3 displays some interest-
ing delay-induced oscillations by referring to the analytical
results obtained in Sect. 2. The mechanisms of relaxation
and bursting behaviors are analyzed in Sect. 4, followed by
conclusions and extensions in Sect. 5.

2 Modeling and critical stability

Robot manipulators are usually designed as several rigid
bodies connected by actuated joints. Traditional joints are
treated as rigid connections, transferring the displacement as
well as the velocity from one rigid body to another. How-
ever, the rigid assumption of the joints usually conflicts with
industrial reality, where the joints are desired to be capable of
bearing some axial clearance. As a result, engineering expe-
rience and intuition imply that the joints are more reasonable
to be flexible. The mathematical model of a robot manipula-
tor with flexibility was proposed by Spong in 1980s [6].

As we have stated in the previous section, the flexibility
of a joint or a shaft may lead to a phase difference between
two connected parts [17]. An ingenious idea is to treat the
phase difference as a time delay, which is induced by trans-
ferring the angular displacement from one side of the shaft to
another side. This time delay is called transformation delay
and is actually the time of stress wave propagation along the
shaft. In the following discussion, based on the contribution
of Spong [6] and Chen and Shieh [14], we consider the ef-
fect of transformation delay originating from the couple of
two components in one system.

2.1 Rigid-link flexible-joint model

In the rigid-link flexible-joint system [28], the rotor and the
link are connected by a long elastic shaft, which is modeled
as a liner torsion spring with stiffness K. As shown in Fig. 1,
denote the moment of inertia of the link and the rotor as I
and J, the angular displacement of the link and the rotor as
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θ1(t) and θ2(t), respectively. Supposing that the angular dis-
placement of the rotor at t1 moment is transferred through
the elastic shaft and arrives at the link at moment t2 in the
form of stress wave, one regards the transformation delay τ
as time difference t2 − t1. Thus, the rigid-link flexible-joint
robot manipulator system is remodeled, with the transforma-
tion delay in propagation or reaction process of two angular
displacements taken into account, and the governing equa-
tion is given by

Iθ̈1(t) − c1(θ̇2(t) − θ̇1(t − τ)) − K(θ2(t) − θ1(t − τ))
+MgL sin θ1(t) = 0,

Jθ̈2(t) + c1(θ̇2(t) − θ̇1(t − τ)) + K(θ2(t) − θ1(t − τ))
+c2θ̇2(t) = u(t),

(1)

where (˙) = d/dt and (¨) = d2/dt2, M is the total mass
of the link, L is the distance from the axis of rotation to
the mass centre of the link, g is the acceleration constant
of gravity and u(t) the controlled torque to the shaft. c1

and c2 are the damping coefficients. With ignorance of
the damping effects and the time delay, Eq. (1) degenerates
into Spong’s model [6, 28], which verifies our improvements.
Detailed derivation of Spong’s original model can be found
in Ref. [6].

Fig. 1 The rigid-link flexible-joint robot manipulator, where the ro-
tor is connected with the rigid link via an elastic long shaft modeled
as a liner torsion spring with stiffness K

Normally, to move potentially heavy link, the rotor is
designed to be very heavy. However, the weight of the link is
variable, which can be very light in some situations. In these
cases, it is uneasy to control the system when I � J [29, 30].
We here consider a robot manipulator where an iron rotor
of radius 250 mm and thickness 60 mm is connected with
a lightweight cuboid link of length 250 mm, width 100 mm
and thickness 40 mm via an elastic shaft with a length of
1 000 mm and a diameter of 3.5 mm. Thus, the parameters in
Eq. (1) can be determined as

I = 0.055 kg ·m2, J = 2.897 kg ·m2,

M = 2.65 kg, g = 9.8 ms2,

K = 1.177 99 N ·m,
(2)

where K is the equivalent torsional stiffness of the shaft.
To distinguish different scales, we introduce the follow-

ing dimensionless parameters

η =
I
J
, α1 =

c1√
KJ
, α2 =

c2√
KJ
, β =

MgL
K
. (3)

Substituting Eq. (3) into Eq. (1) yields

ηθ̈1(t) − α1(θ̇2(t) − θ̇1(t − τ))
−(θ2(t) − θ1(t − τ)) + β sin θ1(t) = 0,

θ̈2(t) + α1(θ̇2(t) − θ̇1(t − τ))
+(θ2(t) − θ1(t − τ)) + α2θ̇2(t) = u(t).

(4)

Considering Eqs. (2) and (3), we have η ∼ 10−2, α1 ∼ 10−1,
β ∼ 100, α2 ∼ 101. Letting η = ε2, 0 < ε � 1 and α1 = εᾱ1

yields that Eq. (4) becomes a typical slow-fast system with
delay coupling, which is

εθ̇1(t) = p1(t),

εṗ1(t) = ᾱ1(εp2(t) − p1(t − τ))
+(θ2(t) − θ1(t − τ)) − β sin θ1(t),

θ̇2(t) = p2(t),

ṗ2(t) = −ᾱ1(εp2(t) − p1(t − τ))
−(θ2(t) − θ1(t − τ)) − α2 p2(t) + u(t).

(5)

It is obtained from Eq. (5) that a small parameter εmul-
tiplies the highest derivative of the state variables, which
leads to the singularity. Actually, the singularity comes from
the fact that the order of the system for ε = 0 becomes lower
than that for ε � 0. Such systems are also called singular
perturbation systems [31].

2.2 Geometric singular perturbation analysis

We now turn to the problem of geometric singular pertur-
bation analysis of the slow-fast system with delay coupling.
Our basic equations are of the form of as

εẋ(t) = f (x(t), y(t), x(t − τ), y(t − τ), ε),
ẏ(t) = g(x(t), y(t), x(t − τ), y(t − τ), ε), (6)

where x ∈ Rn, y ∈ Rl, τ is a real parameter and 0 < ε � 1.
Reformulating system (6) with a change of time-scale

t = εt̄ and denoting x(εt̄ ), y(εt̄ ) as x(t̄ ), y(t̄ ) yields

x′(t̄ ) = f (x(t̄ ), y(t̄ ), x(t̄ − τ̄ ), y(t̄ − τ̄ ), ε),

y′(t̄ ) = εg(x(t̄ ), y(t̄ ), x(t̄ − τ̄ ), y(t̄ − τ̄ ), ε),
(7)

where (′) = d/dt̄. It is obvious that these two systems are
equivalent as long as ε � 0. Moreover, system (7) is called
the fast system whereas system (6) the slow system, for the
fact that the time scale given by t̄ is faster than that for t
while t = εt̄ and 0 < ε � 1. As ε → 0, a reduced fast
subsystem

x′(t̄ ) = f (x(t̄ ), y(t̄ ), x(t̄ − τ̄ ), y(t̄ − τ̄ ), 0),

y′(t̄ ) = 0,
(8)

and a reduced slow subsystem
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f (x(t), y(t), x(t − τ), y(t − τ), 0) = 0,

ẏ(t) = g(x(t), y(t), x(t − τ), y(t − τ), 0),
(9)

are obtained. Defining the equilibrium condition of subsys-
tem (8) as the slow manifold M0 and that of subsystem (9)
as the fast manifold Mε, the geometric singular perturbation
theory [22–24] guarantees that the dynamics of the original
system (6) can be approximated by the behaviors of the re-
duced fast subsystem (8) on the slow manifold M0. On the
other hand, the invariant manifold Mε could be considered
as a small perturbation to M0. Therefore, a crucial step in
the process of geometric singular perturbation analysis is to
identify the structure as well as the stability of the slow man-
ifold M0. After that, taking the effect of the fast manifold Mε
into consideration helps to determine the flows of the full
system in the phase space.

Proceeding as in the previous paragraph, we rescale
system (5) by t = εt̄. Thus, as ε → 0, the reduced fast
subsystem is

θ′1(t̄ ) = p1(t̄ ),

p′1(t̄ ) = −ᾱ1 p1(t̄ − τ̄ ) + (θ2(t̄ ) − θ1(t̄ − τ̄ )) − β sin θ1(t̄ ),

θ′2(t̄ ) = 0,

p′2(t̄ ) = 0.

(10)

In the following discussion, t̄ and τ̄ are still denoted as t and
τ for convenience.

It follows from the geometric singular perturbation the-
ory that the dynamics of system (5) is determined by the
structure and the stability of the slow manifold. Specifically,
the slow manifold of Eq. (5) is the equilibrium of the fast sub-
system (10). Since the delay does not affect the equilibrium,
it follows from Eq. (10) that the slow manifold is represented
by

M0 = {(θ1, p1, θ2, p2) ∈ R4 : p1(t) = 0,

−ᾱ1 p1(t) + (θ2(t) − θ1(t)) − β sin θ1(t) = 0}. (11)

It is well known that the delay may have a substantial
effect on the stability of the equilibrium solutions [32, 33].
Therefore, it is necessary to display the relation between
the delay and the stability of the slow manifold obtained in
Eq. (11). To this end, we investigate the characteristic equa-
tion of the fast subsystem (10), which is

D(λ) = λ2 + e−λτᾱ1λ + e−λτ + β cos θ1 = 0. (12)

Based on the stability theory, a stable slow manifold
requires that all the eigenvalues should have negative real
parts. In other words, when any of the eigenvalues has a pos-
itive real part, the slow manifold loses its stability. It implies
that the critical situations for Eq. (12) is λ = 0 or λ = ±iω
(ω > 0). It is easy to see that for 1 + β cos θ1 = 0, λ = 0 is a
root of Eq. (12), while 1+β cos θ1 � 0 gives λ � 0. However,
in the case of 1 + β cos θ1 � 0, Eq. (12) can still propose a
pair of pure imaginary roots λ = ±iω (ω > 0). Substituting it
into Eq. (12) and separating the real and the imaginary parts,

one has

−ω2 + β cos θ1 + cos(ωτ) + ᾱ1ω sin(ωτ) = 0,

ᾱ1ω cos(ωτ) − sin(ωτ) = 0.
(13)

Rearranging Eq. (13) yields that

sin(ωτ) =
ᾱ1ω(ω2 − β cos θ1)

1 + ᾱ 2
1ω

2
,

cos(ωτ) =
ω2 − β cos θ1

1 + ᾱ 2
1ω

2
.

(14)

To solve Eq. (14), we can use trigonometric identity
sin2(ωτ) + cos2(ωτ) ≡ 1 to construct a function

F(Ω) = sin2(ωτ) + cos2(ωτ) − 1

=
1

1 + ᾱ 2
1Ω

[Ω2 − (ᾱ 2
1 + 2β cos θ1)Ω

+β2 cos2 θ1 − 1], (15)

where Ω = ω2. When Eq. (14) do have real solutions, the
equality F(Ω) = 0 holds. Otherwise, F(Ω) � 0. There-
fore, the critical eigenvalues (pure imaginary eigenvalues)
determining the stability of the slow manifold can be solved
by Eq. (15). For example, one may have ᾱ1 = 1, β = 3 if
the system is designed with the parameters given by Eq. (2).
Then it is easy to obtain the critical eigenvalues by solving
F(Ω) = 0, which are shown in Fig. 2.

Fig. 2 The roots of F(Ω) = 0 on the plane Ω–θ1 with θ1 ∈
[−2π, 2π], where the solid curves denote one root and the dashed
curves denote another one. Since Ω = ω2(ω > 0), only positive
roots Ω > 0 are meaningful

All the curves in Fig. 2 illustrate F(Ω) = 0. How-
ever, only the curves with positive Ω is meaningful since
Ω = ω2(ω > 0). Therefore, it is obtained from Fig. 2
that when θ1 ∈ [0, 1.230 96) and θ1 ∈ (5.052 23, 2π], there

are two solutions, ω1 =

√
1
2

(1 + 6 cos θ1 −
√

5 + 12 cos θ1)

and ω2 =

√
1
2

(1 + 6 cos θ1 +
√

5 + 12 cos θ1), meeting the

requirements. On the other hand, there is only one solu-

tion, ω2 =

√
1
2

(1 + 6 cos θ1 +
√

5 + 12 cos θ1) in the interval

of (1.230 96, 1.910 63) and (4.372 56, 5.052 23). In the case
of θ1 ∈ (1.910 63, 4.372 56), however, there is no solution.
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Without loss of generality, the following analysis is located
in θ1 ∈ [0, 2π] since Eq. (15) is periodic with respect to θ1.

After eigenvalues are obtained, the relationship be-
tween τ and θ1 is to be discussed. To begin with, when
Ω = 0, one has λ = 0, corresponding to the intersection.
points when θ1 = 1.910 63 and θ1 = 4.372 56 in Fig. 2. To
figure out the evaluation of the zero eigenvalue as θ1 cross-
ing the above critical values, the following expression is ob-
tained from Eq. (12)

d
dθ1
λ(θ1) =

β sin θ1
2λ − τe−λτᾱ1λ + e−λτᾱ1 − τe−λτ . (16)

Substituting λ = 0 into Eq. (16), one gains

	
( d
dθ1
λ(θ1)

∣∣∣∣∣
θ1=1.910 63

)

= 	
(
β sin θ1
ᾱ1 − τ

∣∣∣∣∣
θ1=1.910 63

) ⎧⎪⎪⎨⎪⎪⎩
> 0, τ < ᾱ1,

< 0, τ > ᾱ1,
(17)

and

	
( d
dθ1
λ(θ1)

∣∣∣∣∣
θ1=4.372 56

)

= 	
(
β sin θ1
ᾱ1 − τ

∣∣∣∣∣
θ1=4.372 56

) ⎧⎪⎪⎨⎪⎪⎩
> 0, τ < ᾱ1,

< 0, τ > ᾱ1,
(18)

where	(r) represents the real part of the expression.
According to Eqs. (17) and (18), we may summarize

that the real part of the eigenvalue λ = 0 increases with
θ1 crossing θ1 = 1.910 63 and decreases with θ1 crossing
θ1 = 4.372 56 when τ < ᾱ1. Thus, lines θ1 = 1.910 63 and
θ1 = 4.372 56 indicate two critical boundaries of fold bifur-
cation underneath the horizontal line τ = ᾱ1.

When Ω > 0, substituting ω1 and ω2 into Eq. (14)
yields

τ1 =
1
ω1

{
2mπ + π − arcsin

[ω1(ω2
1 − 3 cos θ1)

1 + ω2
1

]}
,

m = 0, 1, 2, · · · ,

τ2 =
1
ω2

{
2nπ + arcsin

[ω2(ω2
2 − 3 cos θ1)

1 + ω2
2

]}
,

n = 0, 1, 2, · · · .

(19)

Figure 3 shows the corresponding boundaries on plane τ−θ1,
where the dashed lines are critical boundaries formulated in
τ1 expression, the solid lines in τ2 expression and the dash-
dot lines are boundaries obtained when λ = 0.

Before proceeding further, let us take a look on the
magnitude of the transformation delay in engineering appli-
cations. As mentioned earlier, the transformation delay is
considered as the propagation time of stress wave along the
elastic shaft. Without loss of generality, two kinds of com-
mon materials, i.e., a steel shaft and a rubber shaft are taken
into consideration. Since the length of the shaft is 1 000 mm,
the propagation velocity of elastic torsion wave in steel is

Fig. 3 Critical boundaries on plane τ–θ1, where the dashed lines are
the critical boundaries formulated in τ1, the solid lines in τ2 and the
dash-dot boundaries are obtained when λ = 0

3.22 km/s [34], and that in rubber is 0.027 km/s [34], divid-
ing the length of the shaft by the propagation velocity yields
that the propagation time is 0.000 310 559 s in steel shaft and
0.037 037 s in rubber shaft. With the same method, the prop-
agation time in other common materials such as aluminum
and copper can be obtained. It turns out that a reasonable
value of the transformation delay would be limited in the
interval of (0.000 310 559 s, 0.037 037 s) in the considered
system. In fact, a large transformation delay has no physical
meaning since it does not exist in real engineering.

As mentioned above, the slow manifold determines
the dynamical behaviors of the system under consideration.
Therefore, it is necessary to discuss the effects of time delays
on the stability of the slow manifold. Meanwhile, consider-
ing the time scale transformation of t = εt̄ in Eq. (10), the
meaningful value of the time delay would be limited within
0 � τ � 10−1 when ε = 0.1. In the next section, to get a
full picture of the time-delay influence, we will discuss five
cases within 0 � τ � 5 at first, and then in Sect. 4, those
cases satisfying physical reality will be displayed.

3 Stability of slow manifold

In this section, we analyze the stability of the slow manifold
(11) in various regions shown in Fig. 4, which is actually a
zoom of Fig. 3. It follows from Fig. 4 that the critical bound-
aries separate the plane P = {(θ1, τ) : 0 � θ1 � 2π, 0 � τ �
5} into nine regions, denoted as I, II, III, IV, I′, II′, III′, IV′,

Fig. 4 Various regions divided by the critical boundaries, where the
dash-dot boundaries are labeled in S 1 and S 2, the solid in H1, H2,
H5, H6, and the dashed in H3 and H4 for ᾱ1 = 1, β = 3
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and V. The stability of the slow manifold may be distinct in
these regions. We only analyze that in Regions I, II, III, IV,
and V due to symmetry when 0 � θ1 � 2π.

To study the stability in each region, the Argand dia-
gram is used to observe evolution of the eigenvalues. To
illustrate, we let θ1 = 0.4 and τ changing from 0 to 5, as
the dashed line shown in Fig. 5a. It should be noted that
the delay induces infinite eigenvalues of Eq. (12). Only the
right-most two conjugate pairs of eigenvalues are presented
in Fig. 5b. It is seen that the conjugate pairs remain having
negative real parts until τ reaches the boundary labeled H1

(see Fig. 4). With τ crossing H1 or varying from Region I
to II, the real parts of the minimum-mode conjugate pair be-
come positive and the other pair still has negative real parts.
It is also seen from Fig. 5 that another conjugate pair passes
through the imaginary axis with τ varying from Region II to
III. In Region IV, however, the real parts of a pair of con-
jugate eigenvalues return negative after crossing the bound-
ary labeled H3. Referring to Refs. [32, 33], one may know
that the Hopf bifurcation occurs in the boundary labeled H1.
Thus, we can summarize the above analysis, that is, the slow
manifold is stable in Region I but loses its stability in Region

II, and it goes more unstable in Region III but less stable in
Region IV. It should be noted that the delay does not affect
the stability of the slow manifold when θ1 is located in Re-
gion V. Therefore, the stability in Region V for any delay is
the same as that for τ = 0. Similarly, the slow manifold is
stable in Region I′ and unstable in II′, III′, and IV′ due to
symmetry.

After the stability is clarified, Fig. 5 can be used to pre-
dict the potential joint motions in realistic applications. To
demonstrate, five typical cases are selected. Corresponding
to five fixed values of delay, we choose

(1) Case 1 for the delay when θ1 crosses through Re-
gions I, V, and I′,

(2) Case 2 for the delay θ1 crossing through Regions II,
I,V, I′, and II′,

(3) Case 3 for the delay θ1 varying among Regions II,
V, and II′,

(4) Case 4 for θ1 varying among Regions III, II, V, II′,
and III′,

(5) Case 5 for θ1 through Regions IV, III, II, V, II′, III′,
and IV′.

Fig. 5 Argand diagram of eigenvalues of Eq. (12) with τ varying from 0 to 5 for θ1 = 0.4, where a illustrates the critical boundaries and
b is the corresponding Argand diagram

For Case 1, the slow manifold is stable when θ1 is in
Regions I and I′ but is unstable for θ1 in Region V. For
Case 2, the slow manifold is unstable initially for a small
angular displacement of the arm or link θ1 but becomes sta-
ble when θ1 enters into Region I, and returns unstable af-
terwards. Clearly, no stable slow manifold is available for
Cases 3, 4 or 5. The stability of the slow manifold for the
above five cases are also shown in Fig. 6. In Fig. 6, the
solid curves denote the stable segments of the slow mani-
fold, while the dashed curves display the unstable segments,
with Hi, S i (i = 1, 2, · · · ) illustrating the boundaries shown
in Fig. 4.

Physically, it is hoped that the link or arm is stable when
it is driven to a desired angular position. It follows from
Fig. 6 that the link may lose stability for some angular posi-
tions, which is induced by the transformation delay. Besides
the delay, the driving force may also play a very important
role. Thus, it is necessary to design an appropriate driving
force for a stable link motion. This is to be discussed in the

next section.

4 Amplitude death and oscillations

To understand the relation between the system stability and
the driving force u(t) in Eq. (5), we employ the geometric
singular perturbation method again by referring to the five
cases shown in Fig. 6.

After the stability of fast subsystem is investigated in
Sect. 3, the slow subsystem must be studied as well. It is
easy to see that as ε → 0, the reduced slow subsystem de-
rived from Eq. (5) turns into

p1(t) = 0,

−ᾱ1 p1(t − τ) + (θ2(t) − θ1(t − τ))
−β sin θ1(t) = 0,

θ̇2(t) = p2(t),

ṗ2(t) = ᾱ1 p1(t − τ) − (θ2(t) − θ1(t − τ))
−α2 p2(t) + u(t).

(20)
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Fig. 6 Stability and structure of slow manifold (11) for a Case 1 , τ = 0.4; b Case 2, τ = 0.6; c Case 3, τ = 2; d Case 4, τ = 3.3; e Case 5,
τ = 3.8, where the solid curves denote the stable segments of the slow manifold, the dashed curves display the unstable segments and Hi,
S i correspond to the boundaries shown in Fig. 4

According to the definition of the fast manifold [24], one
gains

Mε = {(θ1, p1, θ2, p2) ∈ R4 : p2(t) = 0,

ᾱ1 p1(t−τ)− (θ2(t)− θ1(t−τ))−α2 p2(t)+u(t)} = 0, (21)

on which the driving force u(t) affects.
To observe the angular displacement of the rotor and

the arm, the fast manifold Mε is projected onto plane θ1–θ2,
leading to

θ2(t) = θ1(t − τ) + u(t). (22)

In practice, the arm is driven by the control force u(t)
to move to a desired position. To this end, a linear driving
force, which is the simplest controller, can be used as follows

u(t) = aθ1(t) + b, (23)

where a and b are constants, determining desired positions
of the arm. With this control, the relations among the driv-
ing force, the fast manifold and the slow manifold can be
observed. This is to be done by utilizing various geometric
diagrams on plane θ1–θ2.

4.1 Effect of slow manifold

To the end mentioned above, starting from the case of u(t) =
0, namely a = 0 and b = 0, we first extend the geometric
perturbation analysis to the slow-fast delayed system. Figure
7 shows the geometry of the fast and slow manifolds with-
out driving force, corresponding to those five stability switch
forms of the slow manifold that are displayed in Fig. 6, where
the fast manifold is displayed by the dotted line Mε.

It follows from Fig. 7a that there are three intersections
of the slow and the fast manifolds, denoted as E1, E2, and E3,
respectively. These intersections are actually three equilibri-
ums of the full system (5), according to the fact that the slow
and the fast manifolds are null lines of the two subsystems
of system (5). According to the theory of geometric pertur-
bation, one can conclude that E1 and E3 are stable but E2 is
unstable. Thus, E1 and E3 are two attractors on plane θ1–θ2.
Observing and analyzing the geometry in Fig. 7a, one can
easily obtain the attraction basin of E3 [35], as shown in the
shaded zone of Fig. 7a. It can be concluded that the rest re-
gion is the attraction basin of E1 due to symmetry. Such ana-
lytical conclusion leads to an implication that the link or arm
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always keeps stable when it is subjected to a small external
disturbing which is confirmed by the numerical simulation
results shown in Fig. 8. Moreover, it means that the designed
parameter is reasonable for Case 1 or a small transformation
delay.

For Case 2 shown in Fig. 7b, the fast manifold inter-
sects with the unstable branches of the slow manifold at three
points, where E2 is unstable and has the same behaviors as
that in Case 1. However, E1 and E3 lose their stability and
undergo a Hopf bifurcation [36, 37] into periodic motions or

limit cycles. They become new attractors on plane θ1–θ2. It
suggests that the flow starting from any given initial values
on the θ1–θ2 plane moves in the direction of the arrows dis-
played in Fig. 7b and gradually towards one of the limit cy-
cles, which is verified in Fig. 9. Namely, the attraction basin
in Fig. 7a becomes that in Fig. 7b, being the attraction of pe-
riodic motions rather than that of equilibriums. Physically,
the transformation delay begins to have a substantial effect
on the system under consideration, resulting in periodic vi-
bration with distinct phase for the link and the rotor.

Fig. 7 Geometry of slow and fast manifolds on plane θ1–θ2 for a Case 1, τ = 0.4; b Case 2, τ = 0.6; c Case 3, τ = 2; Case 4, τ = 3.3; Case
5, τ = 3.8 when u(t) = 0 and ᾱ1 = 1, β = 3, α2 = 10, ε = 0.1

Fig. 8 Time histories of the stable link or arm for the initial values given by a (θ1, θ2) = (2, 3) and b (θ1, θ2) = (4, 3), respectively

Fig. 9 Relation between the link θ1 and the rotor θ2 for Case 2, showing periodic vibration with distinct phase at the initial values given by
a (θ1, θ2) = (2, 3) and b (θ1, θ2) = (4, 3), respectively
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It follows from Fig. 7c that any convergent solutions of
Eq. (5) can not be obtained for Case 3 or for a larger de-
lay, which is also confirmed by the numerical simulation. It
means that Case 3 loses its physical meaning. Therefore, we
will not investigate this case any more in the following dis-
cussion.

4.2 Effect of fast manifold

Following the analysis in terms of geometric perturbation
technique, we now return to the system subjected to a driving
force given by Eq. (23) to study both Cases 1 and 2 displayed
in Figs. 7a and 7b in a similar way.

Substituting Eq. (23) into Eq. (22) yields

θ2(t) = aθ1(t) + θ1(t − τ) + b. (24)

From Eq. (24), one can see that slope of the projection
of the fast manifold on plane θ1–θ2 may be either positive or
negative, which is determined by the coefficient a in the driv-
ing force (23). Thus, two typical driving forces presented in
Eq. (23) will be discussed, i.e., a > −1 and a < −1, corre-
sponding to the positive slope and the negative slope of the
projection of the fast manifold (21). Figure 10 shows the ge-
ometry of the slow and the fast manifold on plane θ1–θ2 for
a > −1. Comparing Fig. 10 with Fig. 7, one can see that ge-
ometry of the slow and the fast manifolds on plane θ1–θ2 is
qualitatively identical. It implies that the dynamical features
are the same as that of the case for u(t) = 0.

Another typical driving force is modeled for a < −1,

and the intersection of the fast and the slow manifolds on
plane θ1–θ2 is unique, as shown in Fig. 11. In Fig. 11, the
unique intersection denoted as E2 represents also the equi-
librium of Eq. (5), and the double and the single arrows dis-
play the phase trajectories of the fast and the slow flows re-
spectively. Figure 11a shows that there is no stable equi-
librium on plane θ1–θ2 even for a small transformation de-
lay. It means that the flow starting from any points on plane
θ1–θ2 will be attracted by a stable slow manifold, either M1

or M2. For example, the flow starting from an initial point
(θ1, θ2) = (2, 3) is attracted by the stable manifold M1 in
a jogging way and then moves slowly along M1 by S 1 at
which a trivial eigenvalue appears. It yields that the flow is
repelled so that it jumps to another stable branch M3, shakes
towards M3 and moves slowly along M3 by S 2 at which it is
repelled. Then, such course is repeated again, resulting in a
parallelogram-like limit cycle, as shown in Fig. 12. To under-
stand the above analysis physically, we plot the time histories
of the angular displacements of both the link and the rotor in
Fig. 13. It follows from Figs. 11a, 12, and 13 that oscillations
of the link and the rotor exhibit periodic bursting-like be-
haviors [38] with shaking. Such motions undergo two slow
courses when the trajectory moves along the stable branches
of the slow manifold and two fast courses when the trajec-
tory jumps from one stable branch to another. Thus, it is
well known that this kind of bursting-like oscillation is the
so-called relaxation oscillation between the slow manifold
and the fast manifold.

Fig. 10 Geometry of slow and fast manifolds on plane θ1–θ2 for a Case 1, τ = 0.4; b Case 2, τ = 0.6, when u(t) = aθ1(t) + b, a = −0.5,
b = 1.5, and ᾱ1 = 1, β = 3, α2 = 10, ε = 0.1

Fig. 11 Geometry of slow and fast manifolds on plane θ1–θ2 for a Case 1, τ = 0.4; b Case 2, τ = 0.6, when u(t) = aθ1(t) + b, a = −5,
b = 15, and ᾱ1 = 1, β = 3, α2 = 10, ε = 0.1
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Fig. 12 Flow trajectory of Eq. (5) for Case 1 shown in Fig. 11a on
plane θ1–θ2

Fig. 13 Time histories of the angular displacements of both link
and rotor in Eq. (5) for Case 1 shown in Fig. 11a, where a θ1 − t and
b θ2 − t

For a large transformation delay, i.e., Case 2 shown in
Fig. 11b, when a = −5, b = 15, the fast manifold Mε inter-
sects with the unstable manifold M3 at the equilibrium E2,
and thus there is no attractor on plane θ1–θ2. Compared with
the structure of the slow manifold in Fig. 11a, the left and the
right stable branches are shortened into two stable branches
M2 and M4, losing stability at the Hopf points H1, H2 and
arousing limit cycles centering at the unstable branches M1

and M5. As an example shown in Fig. 14, starting from an
initial point (θ1, θ2) = (2, 3), the solution trajectory is firstly
attracted to the left limit cycle, as a fast process indicated
by the double arrow. Then, it moves slowly around the limit
cycle and shrinks to the Hopf point H1, continues to move
along the stable manifold M2 until the first fold point S 1 is
reached. Thereafter, it jumps horizontally to the right limit
cycle, being attracted and shrinks slowly to the second Hopf
point H2. It sticks to the stable manifold M4 until the second
fold point S 2 is reached, continued by a fast jump to the left

limit cycle, being attracted and forms a special limit cycle il-
lustrated in Fig. 14. It is also confirmed by the time histories
of the link and the rotor displayed in Fig. 15.

According to Fig. 14, the movement of the link exhibits
a switch between two shrinking periodic oscillations center-
ing at two different equilibrium positions. This kind of os-
cillation with periodic clusters is called bursting oscillation.
Moreover, according to the bifurcation mechanism of this
oscillation, it can be further classified as Hopf/Hopf burst-
ing [5].

Now we give a brief summary to close this section. For
two typical cases of transformation delay, we have consid-
ered two quantitatively different driving forces to investigate
the stability and oscillations of the system under considera-
tion. For the case of a small delay, both the link and the rotor
exhibit a stable state under the first kind of driving force,

Fig. 14 Flow trajectory of Eq. (5) for Case 2 shown in Fig. 11b on
plane θ1–θ2

Fig. 15 Time histories of the angular displacements of both link
and rotor in Eq. (5) for Case 2 shown in Fig. 11b, where a θ1–t and
b θ2–t
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whereas lose their stability to undergo a relaxation oscilla-
tion with shaking under the second kind. For the case of a
large delay, two types of driving forces lead to a regular peri-
odic oscillation at first and then such oscillation is enhanced
to be a bursting, in which the instability of the system be-
comes worse. It implies that an appropriate design for both
the flexible joint and the driving force is very important. Oth-
erwise, one may observe more complicated oscillations of
the system, such as different types of bursting and chaotic
oscillations, etc.

5 Conclusion and discussion

This paper aims to predict some possible dynamical behav-
iors of a flexible joint system by modeling the motions of
an industrial robot manipulator. Some main conclusions are
drawn as follows.

(1) The structure under consideration may be modeled to be
a slow-fast delayed system when the moment of inertia
of the lightweight link (or arm) is far less than that of
the heavy rotor. The transformation delay from driving
to acting arises from the flexible connection or joint be-
tween the rotor and the link. To model such a transfor-
mation delay, a delay in time scale is used.

(2) The geometric singular perturbation method can be ex-
tended to analyze the stability and the oscillations of a
slow-fast system. Meanwhile, both the slow and the fast
manifolds can be expressed analytically. The stability of
the slow manifold is investigated and the critical bound-
aries are obtained, which bound the stable and the un-
stable regions. Stability analysis shows that a very small
delay does not affect the stability of the slow manifold
but a large delay does.

(3) The driving force, derived from the negative feedback of
the link, determines the intersection of the slow and the
fast manifolds. We have considered two quantitatively
different driving forces to investigate the stability and the
oscillations of the system under consideration. For the
case of a small delay, both the link and the rotor exhibit
stable state under the first kind of driving force but lose
their stability and undergo relaxation oscillation under
the second kind of driving force. For the case of a large
delay, two types of driving forces lead to a regular pe-
riodic oscillation and a bursting oscillation, respectively.
That is, the instability of the system becomes worse. It
implies that an appropriate design for both the flexible
joint and the driving force is of essential importance.
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