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Abstract Considering the axial and radial loads, a math-
ematical model of angular contact ball bearing is deduced
with Hertz contact theory. With the coupling effects of
lateral, torsional and axial vibrations taken into account, a
lumped-parameter nonlinear dynamic model of helical gear-
rotor-bearing system (HGRBS) is established to obtain the
transmission system dynamic response to the changes of dif-
ferent parameters. The vibration differential equations of
the drive system are derived through the Lagrange equation,
which considers the kinetic and potential energies, the dis-
sipative function and the internal/external excitation. Based
on the Runge–Kutta numerical method, the dynamics of the
HGRBS is investigated, which describes vibration proper-
ties of HGRBS more comprehensively. The results show
that the vibration amplitudes have obvious fluctuation, and
the frequency multiplication and random frequency compo-
nents become increasingly obvious with changing rotational
speed and eccentricity at gear and bearing positions. Ax-
ial vibration of the HGRBS also has some fluctuations. The
bearing has self-variable stiffness frequency, which should
be avoided in engineering design. In addition, the bearing
clearance needs little attention due to its slightly discernible
effect on vibration response. It is suggested that a careful
examination should be made in modelling the nonlinear dy-
namic behavior of a helical gear-rotor-bearing system.
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1 Introduction

It is known that the gear rotor bearing system plays an im-
portant role in many sorts of machinery. A failure of the
drive system may cause breakdown of the whole machin-
ery and major economic loss. In the gear transmission sys-
tem, helical gear could produce radial, tangential and ax-
ial forces on the mesh point, which can cause lateral vibra-
tion, torsional vibration, axial vibration and even the coupled
lateral-torsional-axial vibration. The dynamic characteristics
and performances have important influence on the entire ma-
chine [1–3]. In rotational industry, the study on vibration
characteristics of individual component, such as gear pair,
shaft, gear, and bearing, has been established as an important
part of the design. However, the vibration characteristic of an
individual component can change considerably when these
components are assembled together to form one system due
to the coupled effects among these constituent components.
Due to the helical gear meshing of a gear pair, the gear-rotor-
bearing system (HGRBS) has different vibration characteris-
tics as compared with a simplified rotor system. One of the
main features of HGRBS model is that it has coupled lateral-
torsional-axial vibration between the driving shaft and the
driven shaft. If not taken into consideration, the effect of cou-
pled vibration can not only reduce the calculation accuracy,
but also lose some important characteristics of the HGRBS
(torsional excitation excites the lateral response, coupled vi-
bration causes new frequency component). Therefore, it is
important to establish an accurate model for dynamic char-
acteristics of the HGRBS. In recent years, many scholars
did a lot of researches and experiments to analyze the dy-
namic characteristics of helical gear-rotor-bearing systems,
and reached some remarkable achievements. A number of
models were proposed to describe the dynamic behavior of
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helical gear systems [4–21]. On the basis of gear dynamic
model, Kaharman et al. [4, 5] studied the nonlinear charac-
teristics of gear systems with harmonic balance and Runge–
Kutta methods, and solved the nonlinear dynamic response
of spur gear systems. In order to consider the effect of time-
varying mesh stiffness, Al-shyyab and Kaharman et al. [6]
sequentially analyzed the influence of the rotor-bearing sys-
tem with the gear clearance and the time-varying meshing
stiffness, and carried out a detailed analysis of the system.
Lin et al. [7] and Rao et al. [8] established a torsional vi-
bration model of gear rotor systems, and studied the mesh-
ing force, dynamic load factor and tip relief parameter. A
dynamic model of the coupled HGRBS was established, in
which the lateral-torsional-axial-pendulum motion was con-
sidered and the kinetic equation was obtained. It provided
effective method for dynamic design of the helical gear sys-
tem [9, 10]. A model which considered the coupled lateral
and torsional nonlinear vibration of the gear meshing and
torsional action was established in Refs. [11–13] for a high-
speed gear-rotor-bearing system. The dynamic differential
equations were deduced for the imbalance rotors. The lat-
eral and torsional vibration response was investigated using
numerical simulations. The effects of eccentricity and gear
stiffness etc. were studied on the system vibration response.
Using finite element and Lagrange methods, the gyroscopic
effect and oil film supported were taken into account, and
a lateral and torsional vibration model was established to
analyze the gear vibration [14]. Wang et al. [15] and Lee
et al. [16] established a dynamical model of coupled lateral-
tensional-axial-swing motion of two-stage helical gear trans-
mission system, in which time-varying meshing stiffness,
meshing error and backlash were taken into consideration.
The dynamic equation of the helical gear transmission was
solved and dynamic response was calculated. Chen et al. [17]
established a dynamic lumped-parameter gear model incor-
porating the effects of time-varying and asymmetric mesh
stiffness and a backlash nonlinearity to analyze the spur gear
rattle response under the idling condition. Wu et al. [18]
studied the effects of tooth crack on the vibration response of
a one-stage gearbox with spur gears. The growth in a tooth
crack was reflected in the total mesh stiffness of the gear sys-
tem. A lumped-parameter model was used to simulate the
vibration response of the pair of meshing gears. Walha et
al. [19] adopted a gear impact theory based on the work and
used lumped stiffness and damping representations to model
the supporting bearings. Russo et al. [20] performed a lot
of experiments to quantify the effect of lubrication on the
idle gear rattle response of helical pairs inside an automo-
tive gearbox. Han et al. [21] developed a new multi-body
dynamic model to predict the mesh force during gear rat-
tle. The results show good agreement with the predictions of
a single-degree-of-freedom theoretical model that accounts
for the oil squeeze effect between the gear teeth during the
non-contact phases.

It can be seen from the previous references that most

of existing helical gear drive systems were usually regarded
as spur gear drive systems, and the axial vibration was ig-
nored. Now HGBRS comprehensively contains actual gear
rotational speed, eccentricity, bearing nonlinearity and other
factors, and thus using a nonlinear dynamic model to de-
scribe the coupled lateral, torsional and axial vibrations is in
urgent need. In order to obtain precise analysis and master
dynamic characteristics of transmission system, it is neces-
sary to establish precise dynamic model of the HGBRS. A
requirement for reliable HGBRS design calculations is suffi-
cient insight in the dynamics of the entire wind turbine drive
train.

For accurate analytical modeling which can indicate the
meshing relations and the detailed nonlinear characteristics,
it needs to establish a mechanics model and suitable mecha-
nism relation model. Few references can be found on the ef-
fects of rotational speed, eccentricity and bearing clearance
on gear-rotor-bearing systems. In this paper, considering the
complex nonlinear characteristic, an analytical model is pro-
posed via lumped-parameter method, which can systemati-
cally describe the vibration characteristics of HGRBS. And
the model is used to investigate complex, nonlinear dynamic
behavior of the HGRBS, in particular the influence of differ-
ent parameters on vibration characteristics.

2 The lumped-parameter model of HGRBS

Considering the influences of input/output and support bear-
ing et al., the static model of HGRBS is shown in Fig. 1, and
the dynamic model of the transmission system is shown in
Fig. 2. mi (i = 1, 2) is the equivalent mass of helical gear. Ji

(i = 1, 2) represents rotational inertia. mbi (i = 1, 2, 3, 4) is
equivalent mass at bearing position. Jd and J1 indicate rota-
tional inertia in input/output terminal. ρi (i = 1, 2) represents
the eccentricity. Fxi, Fyi, and Fzi (i = 1, 2, 3, 4) are nonlinear
bearing forces in the x, y, and z directions.

2.1 The lumped-parameter model of HGRBS

In Fig. 1, a fixed coordinate system Ai − xiyizi (i = 1, 2)
is set up at Ai, which is the ideal center of the helical gear.
Bi (i = 1, 2, 3, 4) represents the ideal centers of bearings.
O1(x1, y1, z1) and O2(x2, y2, z2) are the rotation centers of
the driving and driven gears; G1(xgl, ygl, zgl) and G2(xg2, yg2,
zg2) represent the centroids, respectively. To obtain differ-
ential equations of the HGRBS, the stress of the cylindrical
gear with helical teeth should be analyzed first. Therefore,
the dynamic model of a gear meshing is shown in Fig. 2.

In Fig. 2, φ1 and θ1 ( j = 1, 2, d, l) are the rotational
angle and angular vibration displacement of driving gear,
driven gear, input terminal and output terminal. rb1 and rb2

are the base radiuses of driving and driven gears, respec-
tively. Ft, Fr, and Fa represent the tangential force; radial
force and axial force. αt and αn are the pressure angles of
the pitch circle in the end face and the normal direction. β
and βt are helix angles of the pitch circle and the base circle.
α1 indicates the installation angle between center line and
vertical direction.
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Fig. 1 Static model of a helical gear-shaft-bearing system

Fig. 2 Dynamic model of a helical gear-rotor-bearing system

According to the geometrical relationships shown in
Figs. 1 and 2, the angle displacements of the input/output,
driving and driven gears can be expressed by the following
equations

φd = ω1t + θd, φ1 = ω1t + θ1,

φ2 = ω2t + θ2, φ1 = ω2t + θ1.
(1)

The relationships between G1(xgl, ygl, zgl), G2(xg2, yg2,
zg2) and O1(x1, y1, z1), O2(x2, y2, z2) are expressed as follows

xgl = x1 + ρ1 cos(−φ1), xg2 = x2 + ρ2 cosφ2,

ygl = y1 + ρ1 sinφ1, yg2 = y2 + ρ2 sin(−φ2),

zgl = z1, zg2 = z2.

(2)

In order to ensure the contact of teeth surface on mesh-
ing performance, it is assumed that the relative deformation
of gear pair is completely changed into elastic deformation
on teeth surface along the mesh line direction. The meshing
gear pair is connected through spring and damping. There-
fore, the comprehensive deformation between the driving
and the driven gear along the mesh line direction is expressed
as

δ = (rb1θ1 − rb2θ2) + [(x1 + ρ1 cosφ1) − (x2 + ρ2 cos φ2)]

× cos(α1 − αt) + [(y1 − ρ1 sin φ1) − (y2 + ρ2 sinφ2)]

× sin(α1 − αt) + (z1 − z2) tanβ − e(t). (3)

Calculate and simulate the gear meshing force based
on the viscoelasticity theory. The meshing force can be de-
scribed as

F = cmδ̇ + kmδ, (4)

where km and cm represent the average meshing stiffness and
damping; rb1 and rb2 are the base radii of helical gears; e(t)
indicates the general transmission error, which can be de-
scribed as follows

e(t) = e0 + er sin(ωet + φe), (5)

where e0 and er are the mean and the amplitude of mesh-
ing error, φe is initial position angle. ωe = 2πn1z1/60. z1

indicates the tooth number of driving gear.
It is assumed that the dynamic meshing force is posi-

tive when it points from the driving gear to the driven gear.
So the meshing forces in the x, y, and z directions can be
respectively described as

Fx = F cos(α1 − αt),

Fy = F sin(α1 − αt),

Fz = F tan β.

(6)

2.2 External excitation

The input torque (Tin) of the helical gear-rotor-bearing sys-
tem (HGRBS) can be expressed by the following equation

Tin = Tinm + Tinr sin(ωt + φ). (7)

The output torque (Tout) of HGRBS can be calculated
from the input torque of the system as

Tout = Tin/i, (8)

where Tinm is the mean of the input torque, Tin represents the
amplitude of the input torque,ω is the angular velocity of the
system, i represents the transmission ratio of the HGRBS.

2.3 Dynamic model of the angular contact ball bearing

Angular contact ball bearing model is shown in Fig. 3. Bear-
ing outer ring is fixed in the bearing chock, and inner ring
is fixed in the shaft. The balls are uniformly distributed be-
tween outer ring and inner ring. The velocities vi and v0 at
the contact point between the rolling ball and outer/inner ring
can be expressed as

vi = ωir, v0 = ω0R, (9)

where R and r represent the radii of the bearing outer and
inner rings, ωi and ω0 are the angular velocities.

Assuming that it is pure rolling between ball and
outer/inner ring, and the velocity of cage can be expressed
as

vb = (v0 + vi)/2 = (ω0R + ωir)/2. (10)

Generally, the bearing inner ring rotates together with
the shaft, and the bearing outer ring is fixed. Utilizing the re-
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lationships ω0 = 0, ωi = ω, the angular velocity of the cage
is

ωb = 2vb/(R + r) = ωir/(R + r). (11)

The rotational angle φi of the i-th rolling ball at t mo-
ment can be expressed as

φi = ωbt + 2π(i − 1)/Nb, i = 1, 2, 3, · · · ,Nb, (12)

where Nb represents the number of rolling ball.
In Fig. 3, db is the diameter of rolling ball; d indicates

the diameter of shaft; di and do represent the diameters of the
bearing inner and outer orbits, respectively; dm is the diame-
ter of pitch circle, and dm = (di + do)/2.

Fig. 3 Schematic diagram of angular contact rolling bearing

When the angular contact ball bearing has a low speed,
the centrifugal force and gyroscopic moment can be ne-
glected. Fr and Fa represent the radial and the axial forces of
the bearing, respectively. The ball bearing and the geometric
deformation at certain position are shown in Fig. 4.

Fig. 4 Ball bearing and geometric deformation at different posi-
tions. a Before being loaded; b After being loaded; c Geometric
deformation relation

In Fig. 4, α0 is the initial contacting angle before being
loaded, α′0 indicates the angle after being loaded; P0 repre-
sents the center of the bearing outer ring before being loaded;
P′0 is the center after being loaded. Because the outer ring is
fixed, P0 and P′0 are the same position; Pi is the center of
the inner ring before being loaded; P′i represents the center
after being loaded; δai, δri, and θi are the axial deformation,
radial deformation and angular deformation, respectively; Ri

is the curvature radius of inner orbit; φi is the position angle;

δi, δ0, and δb represent the contacting deformation and total
deformation between rolling ball and outer and inner orbits.

Because the centrifugal force and the gyroscopic mo-
ment are ignored, the contacting angle between rolling ball
and bearing orbit and the contacting force are the same. In
Fig. 4b, the deformation of rolling ball at position angle φi

can be expressed as

δb = δi + δo = S − A. (13)

According to geometric relationship in Fig. 4c, the dis-
tance S between the curvature center of inner orbit and outer
orbit can be expressed by the following equation

S = [(A sinα0 + z + Riθi cosφi)2

+(A cosα0 + x cosφi + y sinφi)2]1/2. (14)

The normal contacting deformation between the i-th
rolling ball and the bearing orbit is

δb = S − A = [(A sinα0 + δa + Riθi cos φi)2

+(A cosα0 + δr)2]1/2 − A. (15)

Utilizing the relationships δa = z and δr = x cosφi +

y sinφi, Eq. (13) can be expressed by

δb = S − A = [(A sinα0 + z + Riθi cosφi)2

+(A cosα0 + x cos φi + y sin φi)2]1/2 − A, (16)

where x, y, and z represent the vibration displacements re-
spectively; Ri = dm/2 + (ri − db/2) cosα0; A is the initial
distance between curvature center of inner orbit and outer
orbit, and A = ri + r0 + γ0 − db.

At the position angle φi, the actually contacting angular
α′0 can be expressed as

tanα′0 =
A sinα0 + z + Riθi cosφi

A cosα0 + x cosφi + y sinφi
. (17)

According to nonlinear Hertz contact theory, the con-
tact force between the i-th rolling ball and the bearing orbits
is fbi, at the same time, the normal stress can be generated
between the rolling ball and the bearing orbits only when the
δbi is greater than zero. So the force can be expressed by

fbi = Kc(δbi)3/2H(δbi). (18)

The normal load can be known by Eq. (18), and the
axial and radial forces can be expressed as follows

fri = fbi cosα′0 = Kc(δbi)3/2 cosα′0,

fai = fbi sinα′0 = Kc(δbi)3/2 sinα′0.
(19)

So the bearing forces (Fbx, Fby, and Fbz) in the x, y, and
z directions can be expressed by
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Fbx =

Nb∑

i=1

fri cos φi

=

Nb∑

i=1

Kc(δbi)3/2 cosα′0H(δbi) cosφi,

Fby =

Nb∑

i=1

fri sin φi

=

Nb∑

i=1

Kc(δbi)
3/2 cosα′0H(δbi) sin φi,

Fbz =

Nb∑

i=1

fai =

Nb∑

i=1

Kc(δbi)3/2 sinα′0H(δbi).

(20)

2.4 Vibration differential equations of the HGRBS

It is assumed that meshing stiffness of the HGRBS is av-
eraged and neglects the meshing backlash, meshing friction
and the change of meshing position. The meshing force F
along the pressure line direction acts on the center of tooth
width. A displacement vector of a helical gear pair can be
defined from the pressure line co-ordinate system, as shown
in Fig. 2, so

XXX = [θd xb1 yb1 zb1 x1 y1 z1 θ1 xb2 yb2 zb2

xb3 yb3 zb3 x2 y2 z2 θ2 xb4 yb4 zb4 θl]T, (21)

where θd, θ1, θ1, and θ2 represent the angular vibration dis-
placements of input terminal, output terminal, driving gear
and driven gear respectively; xi, yi, and zi (i = 1, 2) are the
linear vibration displacements of driving and driven gears in
the x, y, and z directions; xbi, ybi, and zbi (i = 1, 2, 3, 4) indi-
cate the linear vibration displacements of the bearing in the
x, y, and z directions, respectively.

According to the dynamic analysis of the HGRBS, with
the mesh torque, input/output torque taken into account, the
kinetic energy T , the potential energy U and the dissipation
function R are established. Utilizing the Lagrange equation,
the differential equations of the train system can be expressed
as follows.

The vibration differential equations at the input termi-
nal and on the left bearing of driving shaft

Jdθ̈d + ct1(θ̇d − θ̇1) + kt1(θd − θ1) = T1,

mb1 ẍb1 + csx1(ẋb1 − ẋ1) + ksx1(xb1 − x1) + cb1 ẋb1

= Fbx1,

mb1ÿb1 + csy1(ẏb1 − ẏ1) + ksy1(yb1 − y1) + cb1ẏb1

= Fby1 − mb1g,

mb1 z̈b1 + csz1(żb1 − ż1) + ksz1(zb1 − z1) + cb1żb1

= Fbz1.

(22)

The vibration differential equations of helical gear on
driving shaft

m1 ẍ1 + csx1(ẋ1 − ẋb1) + csx2(ẋ1 − ẋb2)

+ksx1(x1 − xb1) + ksx2(x1 − xb2)

= −Fx + m1ρ1θ̈1 sin φ1 + m1ρ1(ω1 + θ̇1)2 cos φ1,

m1ÿ1 + csy1(ẏ1 − yb1) + csy2(ẏ1 − ẏb2)

+ksy1(y1 − yb1) + ksy2(y1 − yb2) = −m1g − Fy

−m1ρ1θ̈1 cosφ1 + m1ρ1(ω1 + θ̇1)2 sinφ1,

m1z̈1 + csz1(ż1 − żb1) + csz2(ż1 − żb2)

+ksz1(z1 − zb1) + ksz2(z1 − zb2)

= −Fz,

(J1 + m1ρ
2
1)θ̈1 + ct1(θ̇1 − θ̇d) + kt1(θ1 − θd)

= m1ρ1 ẍ1 sin φ1 − m1ρ1ÿ1 cos φ1 − Frb1.

(23)

The vibration differential equations on the right bearing
of driving shaft and left bearing of driven shaft

mb2 ẍb2 + csx2(ẋb2 − ẋ1) + ksx2(xb2 − x1) + cb2 ẋb2

= Fbx2,

mb2ÿb2 + csy2(ẏb2 − ẏ1) + ksy2(yb2 − y1) + cb2ẏb2

= Fby2 − mb2g,

mb2z̈b2 + csz2(żb2 − ż1) + ksz2(zb2 − z1) + cb2 żb2

= Fbz2,

mb3 ẍb3 + csx3(ẋb3 − ẋ2) + ks3(xb3 − x2) + cb3 ẋb3

= Fbx3,

mb3ÿb3 + csy3(ẏb3 − ẏ2) + ksy3(yb3 − y2) + cb3ẏb3

= Fby3 − mb3g,

mb3z̈b3 + csz3(żb3 − ż2) + ksz3(zb3 − z2) + cb3 żb3

= Fbz3.

(24)

The vibration differential equations of helical gear on
driven shaft

m2 ẍ2 + csx3(ẋ2 − ẋb3) + ksx3(x2 − xb3)

+csx4(ẋ2 − ẋb4) + ksx4(x2 − xb4)

= Fx + m2ρ2θ̈2 sin φ2 + m2ρ2(ω2 + θ̇2)2 cos φ2,

m2ÿ2 + csy3(ẏ2 − yb3) + ksy3(y2 − yb3)

+csy4(ẏ2 − ẏb4) + ksy4(y2 − yb4) = −m2g + Fy

+m2ρ2θ̈2 cosφ2 − m2ρ2(ω2 + θ̇2)2 sinφ2,

m2z̈2 + csz3(ż2 − żb3) + ksz3(z2 − zb3)

+csz4(ż2 − żb4) + ksz4(z2 − zb4) = Fz,

(J2 + m2ρ
2
2)θ̈2 + ct2(θ̇2 − θ̇l) + kt2(θ2 − θl)

= m2ρ2 ẍ2 sin φ2 + m2ρ2ÿ2 cos φ2 + Frb2.

(25)

The vibration differential equations at output terminal
and right bearing of driven shaft
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mb4 ẍb4 + csx4(ẋb4 − ẋ2) + ksx4(xb4 − x2) + cb4 ẋb4

= Fbx4,

mb4ÿb4 + csy4(ẏb4 − ẏ2) + ksy4(yb4 − y2) + cb4ẏb4

= Fby4 − mb4g,

mb4z̈b4 + csz4(żb4 − ż2) + ksz4(zb4 − z2) + cb4 żb4

= Fbz4,

Jlθ̈l + ct2(θ̇l − θ̇2) + kt2(θl − θ2) = −Tl,

(26)

where ksxi, ksyi, and kszi (i = 1, 2, 3, 4) are the bending stiff-
ness of the driving and driven shafts; kt1 and kt2 represent the
torsional stiffness of the driving and driven shafts; csxi, csyi,
and cszi (i = 1, 2, 3, 4) indicate the bending damping of driv-
ing and driven shafts; ct1 and ct2 are the torsional damping
of driving and driven shafts; cbi (i = 1, 2, 3, 4) is the bear-
ing damping, Fxi, Fyi, and Fzi (i = 1, 2, 3, 4) indicate the
non-linear bearing forces in the x, y, and z directions.

From Eqs. (22) – (26) it can be seen that it is the second-
order nonlinear differential equations with 22 degrees of
freedom for the helical gears meshing, support bearing and
the coupled lateral-torsional-axial vibration.

3 The dynamic response of the HGRBS

From the previous conclusions and analysis, it can be seen
that the HGRBS is a complicated system with strong non-
linearity, time variance, the support bearing and complicated
working environment. Therefore, it is necessary to give a
detailed analysis of the HGRBS. The dynamic behaviors of
system are investigated by Runge–Kutta numerical simula-
tion method. In this paper, the model of helical gear-shaft-
bearing system is the partial of the MW wind turbine gear-
box transmission system, so the geometric parameters of the
transmission system are obtained though the actual structure
of the 1.5–2 MW wind turbine gearbox transmission system
and the dynamical parameters are obtained by material me-
chanics knowledge and the calculation method of relevant
references [22, 23]. On this basis, the parameters are given
in Table 1.

By applying the coupled vibration model of the
HGRBS, the vibration analysis and calculations are carried
out. In this paper, considering the complex nonlinear char-
acteristics (the meshing stiffness, input and output torques,
meshing error, nonlinear characteristics of the support bear-
ing and gravity effects and so on), the analytical model of
helical gear-rotor-bearing system is investigated using the
Runge–Kutta numerical simulation method, which can be
used to systematically study the vibration characteristics of
HGRBS with changing rotational speed, eccentricity and
bearing clearance. This method, together with the elastic me-
chanics theory, is applied to constitute a lumped-parameter
HGRBS model. A coupled dynamic mechanical analysis is
performed, which considers all the components of influence
factors.

Table 1 Structure and dynamic parameters of helical
gear-rotor-bearing transmission system

Gear parameters

Number of teeth
z1 100

z2 25

Mass/kg
m1 667.89

m2 141.038

Inertia/(kg·m−2)
J1 44.35

J2 0.207

Eccentricity/m
ρ1 5.0×10−5

ρ2 5.0×10−5

Mesh stiffness/(N·m−1) km 6.0×108

Meshing damping ratio ξm 0.1

Gravity acceleration g 9.8

Pressure angle/(◦) αt 23.2

Pitch circle helix angle/(◦) β 15

Base helix angle/(◦) βb 13.8

Position angle/(◦) α1 120

Shaft parameters

Torsional stiffness
kt1 8×108

kt2 1.5×108

Torsional damping ratio ξt 0.07

Bending stiffness
ks1, ks2 6.513×108

ks3, ks4 0.157×108

Bending damping ratio ξs 0.07

Input/out parameters

Input/out rotational inertia
Jd 20

J1 5

Input/out speed/(r·min−1)
n1 500

n2 2 000

Transmission error

Mean/m em 2×10−5

Amplitude/m er 3×10−5

rotation rate/(r·min−1) ωe 2 000

Bearing parameters

Lumped mass/kg
mb1, mb2 115.2

mb3, mb4 73.2

Bearing stiffness/(N·m−1)
kbx1, kbx2 6×108

kby1, kby2 9×108

kbz1, kbz2 4.8×108

Bearing stiffness/(N·m−1)
kbx3, kbx4 2×108

kby3, kby4 3×108

kbz3, kbz4 1.6×108

Bearing damping ratio ξb 0.01

Bearing contact stiffness
kb1 13.34×107

kb2 10.34×107

Bearing outer/inner radius/m
R1 0.25

r1 0.2

Bearing outer/inner radius/m
R2 0.125

r2 0.1
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Figures 5 and 6 are respectively the time-domain wave-
form and the frequency domain response of the driving and
driven helical gears and the corresponding dynamic response
of the left bearing in the x, y, and z directions (local fre-
quency domain response is shown in some figure) for rota-
tional speed n1 = 500 r/min. x1, y1, and z1 represent the
driving helical gear linear vibration displacements in three
directions. xb1, yb1, and zb1 are the corresponding left bear-
ing linear vibration displacements in the x, y, and z direc-
tions. x2, y2, z2; xb2, yb2, and zb2 indicate the linear vibration
displacements of the corresponding driven gear and bearing.
It can be seen from Fig. 5 that driving gear and bearing show
slightly different vibration response in the x, y, and z direc-

tions. By comparing the waveforms between driving gear
(Figs. 5a1–5c1) and bearing (Figs. 5d1–5f1), it can be seen
that the waveform change trend has a little difference, but
the vibration amplitudes have significantly difference. It can
be seen from the frequency spectrograms between driving
gear (Figs. 5a2–5c2) and bearing (Figs. 5d2–5f2) that the fre-
quency components also have significantly difference. The
vibration amplitude in the y direction is higher than that in
the x and z directions. In addition, the main frequency of
vibration in the y direction is significantly higher than those
in the x and z directions, in which the high-order harmonic
components appear. From the frequency domain response of
the driving gear and bearing, it can be seen that the driving

Fig. 5 Lateral and axial vibration waveform and frequency of the driving gear and bearing
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Fig. 6 Lateral and axial vibration waveform and frequency of the driven gear and bearing

shaft rotational frequency f1 (n1/60 = 8.3 Hz) is the main
frequency in the x and z directions, and the driven rotational
frequency f2 (n2/60 = 33.3 Hz) is the main frequency in the
y direction. Moreover, the two rotational frequency com-
ponents ( f1, f2) appear in all directions. The input/output
frequency component ft (ω/(2π) = 159 Hz) and the bearing
variable stiffness frequency f3 (52 Hz) appear in the z direc-
tion of driving shaft and bearing. However, the frequency
features become more complicated in the x and y directions,
in which the frequency combination f2 − f1(25 Hz) and the
frequency multiplication 2 f2 (66.7 Hz) also appear. In ad-
dition, a high-frequency component fm (meshing frequency
n1z1/60 = 833.3 Hz) appears in three directions, but this

component is relatively weak. This comparison proves that
the frequency components in the z direction are relatively
simpler than those in the x and y directions, which shows
larger amplitude of low-speed shaft frequency f1, a smaller
amplitude of high-speed shaft frequency f2 and gear meshing
frequency fm.

The lateral and axial vibration responses of driven gear
and bearing are shown in Fig. 6. It can be seen from Fig. 6
that the vibration waveforms in the x, y, and z directions have
an obvious difference between the driven shaft and bearing.
Compared with the driving shaft, the main frequency com-
ponent in the x direction is higher. However, the waveform
in the y direction is a superposition of several frequencies
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(which can be confirmed by referring to the spectrum), and
the low frequency component in the z direction is the main
response. The amplitude in the y direction is obvious higher
than those in the x and z directions, which are the same as
those of driving shaft. The mesh form of helical gears and
coordinate system has a significant influence on the dynamic
behavior. In Figs. 6a2–6f2, the rotational frequencies f1 and
f2, are the main frequency components in the x direction, and
the frequencies combination f2− f1 (25 Hz), f2+ f1 (41.7 Hz)
and 2 f2 also weakly appear. The rotational frequencies, the
meshing frequency fm and torsional frequency ft also appear
in the y direction. The frequency components in the z di-
rection are simpler than others. For the driven bearing, the
rotational frequency component of driven shaft is obvious,
and the f1, frequency combination f2 − f1, frequency mul-
tiplication 2 f2 also appear. Besides, the variable stiffness
frequency f4 of the driven bearing and the input/output fre-
quency component ft have a little difference in the x direc-
tion. However, the frequency components in the y direction

become more complicated, which includes more obvious ro-
tational frequencies of driving and driven shafts and the in-
put/output frequency component. In addition, the frequency
multiplication 2 f2, 3 f2, variable stiffness frequency and other
frequency combination components also appear.

Figure 7 shows the torsional vibration responses of the
driving and driven gears. From the waveforms it can be seen
that the torsional vibration of the driving helical gear is pos-
itive, and it is negative for the driven helical gear, which
is mainly caused by the selection of the meshing direction.
Pinion torsional amplitude is bigger because of the different
torsional stiffness of shaft. From the frequency domain re-
sponse it can be seen that the rotational frequencies of two
shafts, the input/output frequency and the meshing frequency
are shown in Figs. 7a2 and 7b2, in which the meshing fre-
quency of driving shaft is considerably higher than that of
the driven shaft, and the frequency components amplitude
are much different between driving shaft and driven shaft.

Fig. 7 Torsional vibration waveform and frequency of the driving/driven gears

From the above response analysis of the HGRBS, it
can be seen that the lateral, torsional and axial vibration re-
sponses and bearings behaviors are obviously different due
to the influence of the gear assembly characteristics, gear
geometry parameters and the angular contact ball bearings
characteristics. Difference appears not only in the rotational
frequencies and meshing frequency, but also in the bearing
variable stiffness frequency and frequencies combination in
all direction, which makes the vibration waveforms more
complicated. Due to the influence of the coupled lateral-
torsional-axial vibration, the lateral harmonic frequencies
(rotational frequencies and meshing frequency) appear in the
rotational directions, but the bearing variable stiffness fre-
quency does not appear. In order to correctly analyze and
investigate nonlinear characteristics of the systems, it is nec-
essary to systematically study the influences of rotational
speed, gear eccentricity and bearing clearance on the coupled
lateral, torsional and axial vibration, which are discussed in
the following sections.

3.1 Dynamics response of HGRBS with changing rotational
speed

Figures 8–10 are respectively the time-domain waveforms
and the frequency domain responses at rotational speed n1 =

700 r/min. Comparing Figs. 5, 6 with Figs. 8, 9, the vibration
characteristics of the driving and driven gears have a lot of
changes in the x, y, and z directions when the rotational speed
changes. Due to the changes of gears and bearings are basi-
cally identical, only the variation curves of gear are given.
As can be seen from Fig. 8, the harmonic components have
obvious difference in vibration waveforms. Namely, not only
the higher-order harmonic components show some decrease,
but also the vibration amplitudes have grown to some extent
in the x direction. The vibration amplitude in the y direction
is higher than those in the x and z directions (it is in accor-
dance with the present analysis), and the waveform becomes
more complicated. Meanwhile the waveform has little dif-
ferences in the z direction.

In the figures of frequency domain response, the fre-
quency combination and frequency multiplication of the
driving and driven shafts obviously appear in the x and y
directions, in which the rotational frequency f1 is the main
frequency. The waveform has no obvious change in the y
direction, where the rotational frequency f2 is the main fre-
quency, and the frequency combination ( f2 − f1) has lowered
to some degree. In addition, the input/output frequency and
meshing frequency components are contained in all direc-
tions.
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Figure 9 shows dynamic response of the driven helical
gear. Comparing Fig. 9 with Fig. 6, the vibration amplitudes
of driven gear have obvious increase in the x and y direc-
tions, which are similar to those of driving gear. However,
the vibration features have no obvious change in the z di-
rection. In the frequency domain, it can be seen that the
driving shaft rotational frequency f1 is the main frequency in
the x direction, and the 2 f1 component becomes more obvi-
ous. However, the rotational frequency f1 is also the main
frequency in the y and z directions. With the change of rota-
tional speed, the frequency features will become more com-
plicated in the y direction, in which the frequency multipli-
cation (2 f2) and the bearing variable stiffness frequency f3 of

driving bearing are shown obviously but the driven bearing
variable stiffness frequency f4 can not be seen clearly, at the
same time, the meshing frequency fm becomes lower. The
2 f2 also appears in the z direction, but the other frequency
components have little change. The frequency features of
the driven bearing become more complicated in the x and
y directions, where frequency multiplication and frequency
combination present more obvious differences. However, we
find significant change in the driven bearing variable stiffness
frequency f4 in the x direction, and the frequency f4 becomes
weak in the y direction. f1, f2, ft, and fm are also the main
frequency components in the z direction, and the frequency
amplitudes have little increase.

Fig. 8 Lateral and axial vibration waveform and frequency of the driving gear and bearing

Fig. 9 Lateral and axial vibration waveform and frequency of the driven gear and bearing
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The torsional vibration responses of the driving and
driven helical gears are shown in Fig. 10 for the driving ro-
tational speed of 700 r/min. Comparing Fig. 7 with Fig. 10,
the positive and negative torsional vibration responses have
no difference with the rotational speed fluctuation of driving
shaft, and the vibration amplitudes have little increase. In the
frequency domain, it can be seen that the rotational frequen-
cies f1, f2, the input/output frequency ft and the meshing
frequency fm are also the main frequencies. In addition, the
rotational frequency of driving shaft is higher than the oth-
ers and the difference between driving and driven rotational
frequency becomes slight.

The above part makes a detailed analysis and descrip-
tion about the vibration response characteristics with n1 =

500 r/min and n1 = 700 r/min. In order to accurately an-

alyze the dynamics of the HGRBS with rotational speed,
three-dimensional plots of the system are shown in Figs. 11
and 12 for different rotational speed. With increasing rota-
tional speed, the meshing frequency fm in the x, y, and z
directions decrease first, and then increase (the meshing fre-
quency has a general trend of decreasing with the change
of the rotational speed in the three-dimensional plots of fre-
quency spectrum), and the frequency amplitude reaches a
minimum value when the rotational speed of driving gear is
650 r/min. The rotational frequency f1 is the main frequency
in the x direction, which decreases first, and then increases
and reaches the minimum when the rotational speed of driv-
ing gear is 500 r/min. In addition, the bearing variable stiff-
ness frequency has no obvious change. The rotational fre-
quency f2 is also the main frequency in the y direction,

Fig. 10 Torsional vibration waveform and frequency of the driving/driven gears

Fig. 11 Lateral vibration 3-D spectrum diagram of the master/slave gears and bearings

Fig. 12 Torsional vibration 3-D spectrum diagram of the gears
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the frequency f2 increases first, and then decreases with
the change of the rotational speed. The frequency ampli-
tude reaches a peak value when the driving rotational speed
n1 = 500 r/min, and the frequency f1 is increasing gradually.
The rotational frequency f2 is the main frequency in the z di-
rection. With increasing rotational speed, the frequency f2 is
increasing. The frequency amplitude reaches the maximum
when the rotational speed of driving shaft n1 = 650 r/min.
For the driven shaft, the meshing frequency component fm
has a similar changing trend in the x, y, and z directions.
The rotational frequency f2 is the main frequency in the x
direction. With increasing rotational speed, the frequency f2
increases first, and then decreases, and the frequency ampli-
tude reaches a peak value when the driven rotational speed
n2 = 2 000 r/min. The frequency combination components
( f2 − f1, · · · ) have no obvious fluctuation, and the bearing
variable stiffness frequency f4 does not show any obvious
change. In the y direction, the frequencies have obvious fluc-
tuation with changing rotational speed, and the frequency
f1 is the main frequency. In the z direction, the frequency
f1 reaches the maximum when the driven rotational speed
n2 = 2 600 r/min, while other frequencies have no signifi-
cant change. Figure 12 shows torsional three-dimensional
plots of frequency spectrum of the gears. It can be seen that
the rotational frequencies, input/output frequency and mesh-
ing frequency appear obviously, and the rotational frequency
f1 increases first, and then decreases, and the amplitude of
frequency f1 has a peak value when the rotational speed
of driven gear is 2 400 r/min. What is more, the rotational
frequency f2 decreases and then increases, which reaches
the minimum when the rotational speed of driving shaft is
600 r/min. The meshing frequency of the driven shaft de-
creases first, and then increases, but it is obviously different
from that of the driving shaft. The amplitude of frequency
f2 is much larger than that of the driving shaft frequency.
Through comparing Fig. 11 with Fig. 12, it can be seen that
the rotational frequency components are the main character-
istics of two shafts in the x direction. The other frequency
components are the main factors in the y direction, but its
own frequency is not gradually weakened. The rotational
frequency component of driving shaft is the main frequency
in the z direction, which is the same as the result of previ-
ous analysis. Besides, with the increase of speed, the mesh-
ing frequency fm gradually decreases, and other frequencies
present different trends.

3.2 Dynamics response of HGRBS with changing eccentric-
ity

In this section, the eccentricity of driving and driven gears
enhances from ρ1 = ρ2 = 50 μm to ρ1 = ρ2 = 100 μm.
Figures 13–15 are the vibration responses of the HGRBS.
Through comparing Figs. 5 and 6 with Figs. 13 and 14, the
vibration characteristics and frequency components of gears
have obvious differences in the x, y, and z directions when

the driving and driven gears eccentricity enhances, especially
the vibration amplitude of driven gear increases significantly,
but the fluctuation trend is almost unchanged. For the driving
gear, the vibration amplitude in the y direction is obviously
higher than those in the x and z directions. It also can be
found from the spectrogram (Fig. 13) that the rotational fre-
quency f1 is still the main frequency in the x direction. In
addition, the frequency combination components ( f2 − f1,
f2 + f1, · · · ), frequency multiplication 2 f1 and the driving
bearing variable stiffness frequency f3 also increases signifi-
cantly, but the torsional frequency ft reduces. The frequency
amplitudes are doubled in the y direction and the frequency
components become more complicated (some components
need to enlarge). Besides, a large number of frequency com-
ponents also appear (the rotational frequencies f1, f2, the fre-
quency multiplication 2 f1, 2 f2, 3 f2, the frequency combina-
tion components f2 − f1, f2 + f1, the driving bearing variable
stiffness frequency f3 and the input/output frequency compo-
nent ft). In the z direction of driven shaft gear, in addition to
the original frequency components ( f1, f2, f3, ft), some new
frequency components ( f2 − f1, 2 f2, 3 f2, · · · ) are presented
with the change of eccentricity.

Comparing Fig. 13 with Fig. 6, it can be found that the
vibration amplitudes become higher in the x, y, and z di-
rections when the gear eccentricities increase, but the har-
monic components of waveform have no obvious change.
This comparison proves that the frequency combination and
the frequency multiplication components become more obvi-
ous and the vibration amplitudes are doubled. The frequency
components in the y direction become more complicated.
The main frequencies are composed of rotational frequencies
and the input/output frequency. In addition, the frequency
multiplication (2 f2, 3 f2, · · · ) and the frequency combination
components ( f2 − f1, f2 + f1, · · · ) are more prominent. With
the increase of gear eccentricity, the rotational frequency f1
becomes the main frequency in the z direction and frequency
multiplication components also appears. According to the
above analysis, it can be found that the vibration characteris-
tics of the driven shaft are similar to that of the driving shaft,
which may be ascribed to the flexibility of shafts.

Comparing Fig. 15 with Fig. 7, it can be found that the
torsional vibration amplitudes of driving and driven shafts
increase obviously, but the waveforms have no obvious fluc-
tuation. Besides, this comparison of rotational frequen-
cies proves that the frequency components have no obvi-
ous change. However, the amplitudes of the rotational fre-
quencies, the input/output frequency and the meshing fre-
quency components are increased, even doubled. The fre-
quency components of driven are relatively high in the rota-
tional spectrum diagram, which is related to the flexibility of
driven shaft. Therefore, it can be seen that the eccentricity
has obvious effect on the amplitudes of the gear in the rota-
tional direction, which is a fundamental proportional relation
and will be analyzed in detail in the following.
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Fig. 13 Lateral and axial vibration waveform and frequency of the driving gear and bearing

Fig. 14 Lateral and axial vibration waveform and frequency of the driven gear and bearing

Fig. 15 Torsional vibration waveform and frequency of the driving/driven gears
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In above sections, the response characteristics are ana-
lyzed for ρ1 = ρ2 = 50 μm and ρ1 = ρ2 = 100 μm. In or-
der to study the effect of the eccentricity, three-dimensional
plots of frequency spectrum of the gears in all directions
are shown in Figs. 16 and 17. It can be seen from Fig. 16
that the frequency components of driving and driven shafts
have obvious differences, which are due to the change of
eccentricity, but not monotonously increasing with the in-
crease of eccentricity. For the driving gear, the rotational fre-
quencies attain the minimum when the eccentricities reach
ρ1 = ρ2 = 60 μm in the x direction, but the bearing variable
stiffness frequency component f3 has no obvious change.
The rotational frequency amplitudes of driving and driven
shafts increase gradually with the increase of eccentricity in
the y direction, and the meshing frequency components fm
reflects the growth of the fluctuation. The rotational ampli-
tude spectrogram of driving shaft also has obvious fluctua-
tion in the z direction, but f3 is the main frequency and other
frequencies have no obvious change. For the driven gear,
the rotational frequency f2 becomes the main frequency in
the x direction, which is due to the high rotational speed of
driven shaft. Besides, the rotational frequency amplitude,
which present a state of fluctuation, increase with the change
of the eccentricity. The meshing frequency component fm is
very obvious in the y direction and the frequency multipli-

cation and random spectrum components are more and more
obvious, moreover, the rotational frequency f1 also becomes
more obvious. For the bearing, the frequency amplitudes are
similar to those of the driving and driven gears when the ec-
centricity changes (It will not be reiterated here.). The rota-
tional frequencies ( f1, f2), the meshing frequency fm, and the
input/output frequency components are the main frequencies
in the rational direction. In addition, the frequency ampli-
tudes increase gradually and the driven amplitude is higher
than that of the driving shaft. Based on the above analysis,
with the change of eccentricity, the frequency components at
all positions are increasing, but they are not monotonously
increasing, and the variational pattern of frequency is basi-
cally identical. The meshing frequency and the input/output
frequency components have a little fluctuation and no signif-
icant effects were found with change of eccentricity.

3.3 Dynamic response of HGRBS with changing bearing
clearance

This section will analyze the influence of the bearing clear-
ance. The vibration characteristics caused by change of bear-
ing clearance are similar to the forgoing ones, because of the
limited space, this paper does not discuss the time domain
response, and Figs. 18 and 19 are three-dimensional plots of

Fig. 16 Lateral vibration 3-D spectrum diagram of the master/slave gears and bearings

Fig. 17 Torsional vibration 3-D spectrum diagram of the gears
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the frequency spectrum at key positions. For the driving gear,
it can be found that the amplitude of rotational frequency
f1 increases first, and then decreases with the change of the
bearing clearance, but the behavior has no obvious change
in the x direction. Moreover, 2 f1 grows continually. The
rotational frequency f2 and the meshing frequency fm are
obvious in the y direction, but the variation trend of ampli-
tude has no obvious difference. The bearing variable stiff-
ness frequency f3 also appears. In the z direction, the rota-
tional frequencies f1, f2 are the main components, and the
bearing variable stiffness frequency, the frequency combi-
nation and the rotational frequency multiplication are rela-
tively lower. Besides, with increasing bearing clearance, the
amplitudes of the rotational frequencies increase first, and
then decrease, but the meshing frequency remains almost
unchanged. The results show that the driving bearing fea-
tures are similar to the driving rotational frequency. Due to
the nonlinear characteristic of bearing, the frequency mul-
tiplication and the random frequency become obvious near
f1 (so it will not be reiterated). For the driven shaft, be-
cause of the high rotational speed, the driven rotational fre-

quency, the bearing frequency and other components appear
obviously. The frequency component is relatively simple in
the x direction, in which the rotational frequency f2 is the
main frequency and others are not obvious. The frequency
f2 attains the minimum when the bearing clearance reaches
60 μm. With increasing bearing clearance, the frequency am-
plitude in the y direction increases first, and then decreases
as well. The meshing frequency fm, the frequency multi-
plication and frequency combination components are more
and more obvious. The driving rotational frequency f1 is
the main frequency and other frequency components become
more complicated in the z direction. The torsional three-
dimensional plots of frequency spectrum of the gears are
shown in Fig. 19. It can be seen that the torsional frequency
amplitudes and the stiffness frequency amplitude remain al-
most unchanged. Based on the results obtained in the previ-
ous sections, it can be seen that the bearing clearance has a
little effect on the driving gear characteristics in the x and z
directions. Moreover, the vibration responses are not sensi-
tive to bearing clearance. Therefore, it needs little attention
in related designs.

Fig. 18 Lateral vibration 3-D spectrum diagram of the driving/driven gears and bearings

Fig. 19 Torsional vibration 3-D spectrum diagram of the driving/driven gears
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4 Conclusion

In this paper, a lumped-parameter mathematical model is
used to numerically analyze the nonlinear dynamic charac-
teristics of coupled lateral-torsional-axial vibrations for the
helical gear transmission system, and vibration responses
of the system was investigated systematically by changing
speed, eccentricity and bearing clearance. Based on the re-
sults of the parametric study presented in the previous sec-
tions, conclusions can be summarized as follows:

(1) Because of the axial force, there is a close coupling rela-
tionship between the lateral and the torsional vibrations
of the HGRBS. Hence, for the HGRBS, it is necessary to
take into account the coupled lateral-torsional-axial vi-
bration.

(2) Due to the influence of coupled lateral, torsional and ax-
ial vibrations, an obvious rotational frequency compo-
nent of driven shaft yields in the driving shaft. At the
same time, the rotational frequency of driving shaft ap-
pears in the driven shaft. The rotational frequencies and
the input/output frequency components are more obvious
in the torsional direction, which has different character-
istics with the change of the rotational speed. The bear-
ing has its own resonance frequency, and the effect of
the variable stiffness frequency of the bearings in system
should be avoided in the system design stage.

(3) With the increase of the eccentricity, the rotational am-
plitude spectrograms are not increasing monotonously
in the lateral and torsional directions. Besides, the fre-
quency multiplication and the random frequency become
more and more obvious at the bearing position. The bear-
ing clearance has no obvious effect on the vibration re-
sponse of the system. Therefore, the bearing clearance
needs little attention in engineering design.
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