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Abstract The nonlinear radiated waves generated by a
structure in forced motion, are simulated numerically based
on the potential theory. A fully nonlinear numerical model is
developed by using a higher-order boundary element method
(HOBEM). In this model, the instantaneous body position
and the transient free surface are updated at each time step.
A Lagrangian technique is employed as the time marching
scheme on the free surface. The mesh regridding and inter-
polation methods are adopted to deal with the possible nu-
merical instability. Several auxiliary functions are proposed
to calculate the wave loads indirectly, instead of directly
predicting the temporal derivative of the velocity potential.
Numerical experiments are carried out to simulate the heave
motions of a submerged sphere in infinite water depth, the
heave and pitch motions of a truncated flared cylinder in
finite depth. The results are verified against the published
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numerical results to ensure the effectiveness of the proposed
model. Moreover, a series of higher harmonic waves and
force components are obtained by the Fourier transformation
to investigate the nonlinear effect of oscillation frequency.
The difference among fully nonlinear, body-nonlinear and
linear results is analyzed. It is found that the nonlinearity due
to free surface and body surface has significant influences on
the numerical results of the radiated waves and forces.

Keywords Wave radiation · Fully nonlinear · Body-
nonlinear · HOBEM · Flared structure

1 Introduction

In recent years, although accurate and efficient numerical
models develop rather fast, it is still a challenge to simu-
late strong nonlinear wave–structure interaction. For many
years, the perturbation expansion in terms of wave steepness
and the Taylor approximation of boundary conditions on the
mean water and body surfaces have been widely used to de-
rive the linear, second-order and even much higher-order the-
ories [1–4]. Such methods are valid only when the wave
amplitude and the body motion amplitude are small relative
to the wavelength and the representative dimension of the
body, respectively. Most of early studies on the waves gener-
ated by moving bodies were based on either linear or higher-
order perturbation analyses. For example, Goren [5] used the
second-order theory to simulate the waves generated by the
oscillations of a truncated cylinder in the frequency domain.
Isaacson & Ng [6] and Teng et al. [7] carried out second-
order time-domain simulations of similar problems.

When the body motion amplitude relative to its dimen-
sion is not small, the nonlinearity of the body motion can
not be ignored. Since updating the body surface is not as
complex as updating the free surface, the so-called body-
nonlinear method was developed, where linear (or higher-
order) free surface and nonlinear body-boundary conditions
are applied. The body-nonlinear method has been applied



668 B.-Z. Zhou, et al.

to frequency-domain [8, 9] and time-domain [10, 11] for
simulating wave radiation problems. Ferrant [12] used a
coupled time and frequency approach to simulate a sub-
merged sphere undergoing large amplitude motions. Qiu &
Peng [13] employed the time-domain Green function to sim-
ulate the waves generated by a submerged sphere and a trun-
cated vertical cylinder under prescribed motions.

If the motion of the body and the wave surface are
strongly nonlinear, a fully nonlinear model should be used to
ensure accuracy. The fully nonlinear time-domain method,
initially introduced by Longuet-Higgins and Cokelet [14],
has been developed and applied to many water wave prob-
lems in parallel with the rapid growth of the numerical tech-
nique and the computer capacity. The major difficulties asso-
ciated with the fully nonlinear method lie in the modeling of
the time-varying free surface, the treatment of the intersec-
tion between the body and the water surface and the tremen-
dous computational cost etc. Additionally, the numerical in-
stability is another problem to be solved. Recent applications
of fully nonlinear models for simulating the nonlinear wave
diffraction and radiation problems include the finite element
models (FEM) [15–20] and the HOBEM models [21–28].
Among these applications, Hu et al. [17] and Wang et al. [20]
calculated the fully nonlinear radiated wave field using the fi-
nite element method (FEM), and Bai and Eatock Taylor [23]
using the HOBEM.

The applications above-mentioned are mostly dealing
with submerged bodies or cylindrical floating structures.
with no variation of the cross section in the vertical direction.
In fact, the nonlinear effect will become more pronounced
for non-wall-sided structures, such as flared structures. As
stated in Ref. [20], the presence of the flare makes the sim-
ulation more complicated. Firstly, the projection of the wa-
terline on a horizontal plane varied with time because of the
flare. This requires. mesh regeneration to be more flexible
and be able to efficiently deal with arbitrary shapes. The flare
could also cause a rapid variation in pressure and velocity.
This will require finer mesh and small time step if the same
accuracy is desired as that for wall-sided structures. Because
of these reasons, there has been far less work on wave ra-
diation by 3D non-wall-sided structures. based on the fully
nonlinear model.

The aim of this study is to develop a fully non-
linear numerical model to investigate the wave radiation
by three-dimensional submerged structures and surface-
piercing structures with flare undergoing forced motions.
The model is developed by using a time-domain HOBEM
based on the potential theory. One advantage of the HOBEM
is that the remeshing is much easier in comparison with the
FEM. Another advantage is that it is easier to calculate the
velocities at grid points, and to determine the intersection be-

tween the body and the water surfaces. A Lagrangian tech-
nique is used as the time marching scheme on the free sur-
face, and the mesh regridding and interpolation techniques
are adopted to mitigate the possible numerical instability.
Hydrodynamic forces are calculated based on some auxil-
iary functions instead of directly calculating the temporal
derivative of the potential. Numerical experiments are car-
ried out to simulate a submerged sphere in heave motion and
a truncated flared structure undergoing heave and pitch mo-
tions. The corresponding hydrodynamic forces on the struc-
tures and radiation waves are investigated comprehensively.
A series of higher-harmonic forces and wave elevation com-
ponents are derived by Fourier transformation and compared
with the body-nonlinear results. By comparing the fully non-
linear results with the numerical results of both linear and
body-nonlinear methods, the importance of the nonlineari-
ties from the free surface and the body surface is discussed
extensively. The nonlinear features of waves and hydrody-
namic forces have been captured in larger wave steepness
(i.e., large oscillation amplitude or high frequency). The
comparison indicates that the fully- and the body-nonlinear
results are in good agreement with each other at smaller wave
steepness, and differ from each other at larger wave steep-
ness. With the increase of wave steepness, the nonlinearity
is expected to become more prominent.

2 Mathematical formulations

2.1 Boundary value problem and numerical schemes

To describe a forced moving body in an open sea with wa-
ter depth d, two right-handed Cartesian coordinate systems
are defined in Fig. 1. One is a space-fixed coordinate system
oxyz with the oxy plane on the mean free surface and with the
z-axis being positive upwards. The other is a body-fixed co-
ordinate system o′x′y′z′ with its origin o′ placed at the center
of mass of the body. When the body is at its equilibrium po-
sition, these two sets of coordinate systems are parallel. In
Fig. 1, S F, S B, and S D represent the free surface, the body
surface and the bottom surface, respectively. The centre of
mass is located initially at XXXc0 in the space-fixed coordinate
system, and at XXXc (= XXXc0 +ζζζ) subsequently. Here ζζζ = (ζ1, ζ2,
ζ3) is introduced to denote the translational displacements of
surge, sway and heave, and the Euler angles θθθ = (α, β, γ) is
defined to illustrate the angles of roll, pitch and yaw, which
are rotations about x′, y′, and z′, respectively. The relation-
ships between the two systems can be written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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where [29]

CCC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos β cosγ − cos β sin γ sin β

sinα sin β cosγ + cosα sin γ − sinα sin β sin γ + cosα cos γ − sinα cos β

− cosα sin β cosγ + sinα sin γ cosα sin β sin γ + sinα cosγ cosα cos β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)
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Fig. 1 Sketch of coordinate system and computational domain

Assuming that the fluid is ideal and incompressible, and
flow is irrotational, the velocity potential φ (x, y, z, t) can be
introduced, which satisfies the Laplace equation in the fluid
domain R

∇2φ = 0. (3)

On the instantaneous free water surface S F, the fully
nonlinear kinematic and dynamic boundary conditions in the
Lagrangian expression can be written as [23]

DXXX
Dt
= ∇φ,

Dφ
Dt
=

1
2
∇φ · ∇φ − gη,

on S F

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (4)

where g is the acceleration due to gravity, XXX = (x, y, z) de-
notes the position vector of a free surface particle, η is the el-

evation of water surface above its mean level,
D
Dt
=
∂

∂t
+uuu ·∇

is the full derivative with uuu being the velocity of the fluid
particle. In the linear wave theory, the linear free-surface
conditions are

∂η

∂t
=
∂φ

∂z
,

∂φ

∂t
= −gη,

on z = 0

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (5)

The kinematic condition on the instantaneous wetted
body surface S B is

∂φ

∂t
= VVV · nnn, (6)

where VVV is the velocity of the body surface, nnn is the normal
unit vector of the surface pointing out of the fluid domain, as
shown in Fig. 1. The body surface velocity can be expanded
as

VVV = UUU +ΩΩΩ × rrrb, (7)

where rrrb = XXX′ is the position vector in the body-fixed coor-
dinate system, UUU is the translational velocity of the reference
point on the body at rrrb = 0, and ΩΩΩ in the equation is the
rotational velocity of the body about x′, y′, z′, respectively.

For the linear model, the linear free-surface conditions
in Eq. (5) and the body-boundary condition in Eq. (6) are sat-

isfied on the mean position of water surface and body sur-
face. For the body-nonlinear model, the linear free-surface
conditions Eq. (5) are satisfied on the mean water surface,
and the body-boundary condition Eq. (6) on the instanta-
neous wetted body surface.

In order to avoid the abrupt initial condition during the
initial time steps, a cosine ramp function Rm is used to mod-
ulate the above body-surface condition. Rm is taken as

Rm =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

[

1 − cos
(
πt
Tm

)]

, if t � Tm,

1, if t > Tm,

(8)

where Tm is chosen here as twice the excitation period or 2T .

An artificial damping layer is applied on the outer an-
nulus of the circular domain to absorb the scattered wave
energy. In the present study, both φ- and η-type damping
terms are added to the free surface conditions in Eq. (4) [23].
Finally, as the body starts to oscillate from rest in still water,
the initial velocity potential and wave elevation can be set to
zero.

2.2 Higher-order boundary element method

By applying Green’s second identity in the fluid domain R,
the above mentioned boundary value problem can be con-
verted into the following boundary integral equation

α(ppp)φ(ppp) =
∫∫

S

(

φ(qqq)
∂GGG(ppp,qqq)
∂n

−GGG(ppp,qqq)
∂φ(qqq)
∂n

)

ds, (9)

where ppp = (x0, y0, z0) and qqq = (x, y, z) are source and field
points, respectively, α(ppp) is the ratio of the solid angle to 4π.
S stands for all the boundaries and GGG is the simple Green
function.

For cases in which the computational domain is sym-
metric about the x–z plane and the seabed is horizontal, the
simple Rankine source and its image with respect to the sym-
metry plane (y = 0) and the seabed (z = −d) can be chosen as
the Green function. Thus, only half of the computational do-
main is considered, and the seabed is excluded. Similarly, for
cases in which the computational domain is symmetric about
both the x–z and the y–z plane, and the seabed is flat, the sim-
ple Rankine source and its image with respect to the symme-
try planes (y = 0 and x = 0) and the seabed can be chosen
as the Green function. The integration needs to be evaluated
over a quarter of the computational boundaries only, and the
seabed is excluded. Under these conditions, the Green func-
tion can be written as Eq. (10). For the present computation,
M equals eight for the heave motion, while four for the pitch
motion.

GGG(ppp,qqq) = − 1
4π

M∑

i=1

1
Ri
, (10)

where
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R1 =
√

(x − x0)2 + (y − y0)2 + (z − z0)2,

R2 =
√

(x − x0)2 + (y + y0)2 + (z − z0)2,

R3 =
√

(x − x0)2 + (y − y0)2 + (z + z0 + 2d)2,

R4 =
√

(x − x0)2 + (y + y0)2 + (z + z0 + 2d)2,

R5 =
√

(x + x0)2 + (y − y0)2 + (z − z0)2,

R6 =
√

(x + x0)2 + (y + y0)2 + (z − z0)2,

R7 =
√

(x + x0)2 + (y − y0)2 + (z + z0 + 2d)2,

R8 =
√

(x + x0)2 + (y + y0)2 + (z + z0 + 2d)2.

(11)

The higher-order boundary element method is used
to solve the above boundary value problem at each time
step. The boundary surface is discretized by the quadratic
isoparametric elements. After introducing shape functions
h(ξ, ς) [30] in each surface element, one can write the po-
sition coordinate, the velocity potential and its derivatives
within an element in terms of nodal values as follows

XXX(ξ, ς) =
K∑

k=1

hk(ξ, ς)XXXk,

φ(ξ, ς) =
K∑

k=1

hk(ξ, ς)φk,

∂φ

∂n
=

K∑

k=1

hk(ξ, ς)
(
∂φ

∂n

)

k
,

(12)

where (ξ, ς) represents the local intrinsic coordinates; XXXk,
φk, (∂φ/∂n)k and hk are the coordinates, potentials, normal
derivatives of the potential and the shape functions corre-
sponding to the k-th node in the local system; K is the total
number of nodes in the element (eight for quadrilateral and
six for triangle).

By substituting Eq. (12) into Eq. (9), the integral equa-
tion is formulated in the following form

α(ppp)φ(ppp) =
N∑

n=1

M∑

m=1

∂GGG(ppp,qqqm)
∂n

( K∑

k=1

hk(ξ, ς)φk

)

×ωm|Jm(ξ, ς)| −
N∑

n=1

M∑

m=1

GGG(ppp,qqqm)

×
( K∑

k=1

hk(ξ, ς)
∂φk

∂n

)

ωm|Jm(ξ, ς)|, (13)

where M is the number of samping points used in the stan-
dard Gauss–Legendre method to evaluate numerically the in-
tegration over each element, ωm is the integral weight at the
m-th sampling point, Jm (ξ, ς) represents the Jacobian trans-
formation from the global to the local intrinsic coordinates,
and N is the total number of elements. ppp is an arbitrary point
on the free surface and other discretized boundaries.

The final matrix equation is obtained by imposing
Eq. (13) at all the nodal points

AAAxxx = BBB, (14)

in which xxx includes the unknown nodal normal velocities on
the free surface and nodal potentials on the solid surfaces, AAA
is the influence coefficient matrix and BBB is a column obtained
from the known terms of Eq. (13).

2.3 Hydrodynamic forces

Hydrodynamic forces on the body FFF = { f1, f3, f3} and mo-
ments NNN = { f4, f5, f6} can be obtained by integrating the
pressure over the wetted body surface

fi =
∫∫

S B

Pnids

= −ρ
∫∫

S B

(
∂φ

∂t
+

1
2
|∇φ|2 + gη

)

nids,

i = 1, 2, · · · , 6, (15)

where ρ is the fluid density, nnn = (n1, n2, n3), and rrrb×nnn = (n4,
n5, n6). The calculation of the last two terms in Eq. (15)
is straightforward. However, it is non-trivial to evaluate φt.
This term can be calculated using the backward finite differ-
ence method in the perturbation expansion technique, which
requires calculating the same nodes at two moments. How-
ever, for the fully nonlinear problem, integration should be
carried out on the wetted body surface and the nodes mov-
ing with the time. So the backward finite difference method
is inaccurate and may even be prone to instability, particu-
larly for a floating body. To overcome this difficulty, we use
the method developed by Wu [31, 32], which has also been
successfully used by Kashiwagi [33] and Bai & Eatock Tay-
lor [24–26]. In this approach, some auxiliary functions ψi

(i = 1, 2, · · · , 6) are introduced, instead of direct computa-
tion of φt (details can be found in Ref. [30]). These functions
satisfy the Laplace equation in the fluid and the correspond-
ing boundary conditions. Finally, the hydrodynamic forces
can be given by the following expression

fi = −ρ
∫∫

S B

ψi(U̇UU + Ω̇ΩΩ × rrrb) · nnnds

+ρ

∫∫

S B

{∇ψi[(UUU +ΩΩΩ × rrrb) · nnn]·

[∇φ − (UUU +ΩΩΩ × rrrb)] + ψi(ΩΩΩ ×UUU) · nnn}ds

−ρ
∫∫

S B+S F

(

gz +
1
2
∇φ · ∇φ

)
∂ψi

∂n
ds, (16)

where the dot over UUU and ΩΩΩ indicates the derivatives with
respect to time.

3 Mesh regridding and interpolation

As the Lagrangian method is used, the saw-tooth appearance
will develop in the numerically computed wave profile after a
sufficiently long period of time due to particle nodes moving
horizontally and vertically. Remeshing on the free surface
is implemented to remove the numerical instability due to
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the saw-tooth appearance. For moving boundary problems,
we need to move the nodes horizontally prior to the verti-
cal interpolation in order to maintain a good aspect ratio of
the elements. To implement this process, the mesh on the
instantaneous free surface is projected onto the horizontal
plane. Then it is divided into the inner subdomain S in and
the outer subdomain S out, as illustrated in Fig. 2. These two
subdomains are separated by circle A (the solid line in Fig. 2)
at the initial time, and the inner subdomain moves together
with the body in the horizontal plane (indicated by the dot
line in Fig. 2), in order to guarantee the elements around the
body to be smooth. Meanwhile, the radius of the circle re-
mains unchanged. The mesh distribution in the inner subdo-
main is generated by the conventional orthogonal grid. The
meshing in the outer subdomain is carried out based on the
elliptic partial differential equations. Cubic B-Spline func-
tion is employed to create new sets of equally spaced (in arc
length) grid points on the intersection line, and the horizon-
tal coordinates of the new nodes are then obtained. Once
the new nodes on the boundary line of the free surface are
known, the original mesh method is used to obtain other new
nodes on the free surface.

Fig. 2 Sketch of free surface domain division

When the horizontal coordinates of new nodes are ob-
tained, interpolation can be employed to calculate the wave
elevation as well as the potential of new nodes. For a node
P (xi, yi) in new mesh, we first find node Q in the old mesh
which is closest to P. The elements in old mesh surrounding
node Q are numbered as m = 1, 2, · · · ,N. We then seek a so-
lution for (ξ, ς) in element m by the following equation [34]

xi −
K∑

k=1

hk(ξ, ς)xm
k = 0,

yi −
K∑

k=1

hk(ξ, ς)ym
k = 0,

(17)

based on the Newton–Raphson iteration method, where (xm
k ,

ym
k ) is the nodal horizontal coordinates in element m. If the

solution satisfies

|ξ| � 1, |ς| � 1, (18)

P must lie inside this element. The vertical coordinate and

potential at P can be subsequently obtained by using the
shape function within this element.

The total velocity of fluid particle uuu on the waterlines
can be expressed as three components (ux, uy, uz) in the x,
y and z directions, that is (φx, φy, φz), and it can also be de-
noted by (uτ1 , uτ2 , un) in two tangential directions τττ1, τττ2 and
one normal direction nnn at the same point on the body sur-
face. τττ1 and τττ2 can be any two vectors perpendicular to nnn.
For certainty, τττ1 is chosen to be τττ1 = nnn× eeey (or τττ1 = nnn× eeex if
nnn×eeey = 0), where eeex and eeey are unit vectors along the +x and
+y axes in the space coordinate system, i.e., eeex = (1, 0, 0)

and eeey = (0, 1, 0), while τττ2 is determined by τττ2 =
τττ1 × nnn
|τττ1 × nnn| .

Three velocity components (ux, uy, uz) can be obtained by
the above mentioned method, and the velocity components
(uτ1 , uτ2 , un) in directions τττ1, τττ2 and nnn are estimated by the
following equations

uτ1 = (ux, uy, uz) · τττ1,

uτ2 = (ux, uy, uz) · τττ2,

un = (ux, uy, uz) · nnn.
(19)

In general, the velocity normal component un is not
equal to the normal velocity of the body VVV · nnn in Eq. (6),
which will lead to the nodes on the waterlines separate from
the body surface. In order to ensure the nodes on the wa-
terlines are always on the body surface, the fluid velocity
component un is replaced by the normal velocity of the body
Vn, i.e., VVV · nnn, then the new velocity of the fluid uuu′ can be
derived as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′x
u′y
u′z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uτ1

uτ2

Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1x τ1y τ1z

τ2x τ2y τ2z

nx ny nz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Then the new spatial derivative of the potential φ can be cor-
rected by the new velocity of the fluid uuu′. By substituting
the new spatial derivative of the potential into Eq. (4), the
material derivatives DXXX/Dt, and Dφ/Dt can be obtained and
then the free surface particle is updated by the revised veloc-
ity, which will ensure the fluid particle on the intersections
moves together with the body and remains on the body sur-
face. When steep waves are simulated, the smoothing based
on the scheme of Longuett-Higgins and Cokelet [14] is ap-
plied on the waterline.

Takes a vertical cylinder in surge motion as an exam-
ple, the process of mesh regridding on the free surface is
presented in Fig. 3. Figure 3a is the initial mesh on the free
surface. After the cylinder moves in the horizontal direc-
tion, the mesh is deformed, as shown in Fig. 3b. The mesh
near the body is uneven and the orthogonality deteriorates.
For the problem of wave–structure interactions, the change
of wave field near bodies is significant. Poor quality grids
will induce instability of numerical calculations. Therefore,
mesh regridding is needed to ensure high quality grids. Fig-
ure 3c presents the new mesh on the free surface according
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to the above mesh regridding method, in which the dividing
line is changed from the dotted line to the heavy solid line.
It can be seen from Fig. 3c that the uniformity and orthog-
onality of grids near the cylinder are improved, while they
deteriorate far away from the cylinder. Because the varia-
tion of wave field is relatively slow far away from the body,
the impact on the whole calculation is small. Consequently,
mesh regridding by the above method can make the mesh
near the body always maintain high quality.

After mesh regeneration on the free surface, the process
of mesh regridding on the body surface is presented in Fig. 4,

which takes a cylinder with flare in heave motion for exam-
ple. Figure 4a shows the initial mesh on the surface of the
body with an initial draft B/R = 1.5. After the body moves
in the vertical direction, the wetted body surface has been
changed. Figures 4b and 4c show the instantaneous mesh on
the wetted body surface when the displacement of the body
is ζ3 = 0.5R and −0.5R, respectively. It is noticeable that
the numbers of grids remain unchanged, but the size of them
varies. Moreover, compared with the initial grids shown in
Fig.4a, the grids in Fig. 4b are compressed, while they are
stretched in Fig. 4c.

Fig. 3 Sketch of mesh regridding on the free surface. a Initial mesh; b Deformated mesh; c Regenerated mesh

Fig. 4 Sketch of mesh regridding on the body surface. a ζ3 = 0; b ζ3 = 0.5R; c ζ3 = −0.5R

4 Numerical results and discussions

In this section, numerical experiments are carried out for a
submerged sphere in heave motion and a truncated cylinder
with flare undergoing heave and pitch motions. The displace-
ment of the body is governed by ζi = ai sin(ωt), where ω is
the oscillation frequency and ai represents the motion ampli-
tude of the body motion. Also throughout the study, t defines
the real time and T = 2π/ω defines the period of the oscilla-
tory motion.

4.1 A fully submerged sphere in heave motion

Firstly, the problem of a submerged sphere undergoing
forced sinusoidal heave motion in infinite water depth is
considered, as shown in Fig. 5. The distance between the
sphere centre and the mean water surface is Z0/R = 2, with
R being the radius of the sphere. For different cases, mesh
dependency study has been carried out, and it was found that

further increase in mesh density makes little difference on
the numerical results. As an example, the distributions of the
mesh on the free surface and the sphere surface for kR = 2.0
are shown in Fig. 6. There are totally 675 elements on the

Fig. 5 Sketch of a submerged sphere in heave motion in infinite
water depth
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Fig. 6 Illustration of the initial mesh generation on the free surface
and the sphere surface at kR = 2.0. a On the free surface; b On the
sphere surface

water surface and 49 elements on the sphere surface. The
computational time step is set to be Δt = T/60 for all the fol-
lowing cases. To absorb scattering waves, the outer annulus
radius of the damping zone is set to be 1.5λ for kR > 1.25 and
λ for other wave numbers. In the following discussion, the
linear results, the body-nonlinear results and the fully nonlin-
ear results are used to stand for the numerical results from the
linear model, the body-nonlinear model and the fully nonlin-
ear model, respectively.

In order to testify the accuracy of the present numer-
ical method, the hydrodynamic forces acting on the sub-

merged sphere are compared with the published results of
Ferrant [12]. Ferrant carried out numerical simulations with
nonlinear body condition and linear free surface conditions.
From Fig. 7, it can be seen that the body-nonlinear results
are in good agreement with the numerical results of Fer-
rant [12], which are also based on the body-nonlinear the-
ory. The results based on the fully- and the body-nonlinear
models agree well with each other in Fig. 7a, where the oscil-
lation frequency is small, while the difference between them
is much significant at higher oscillation frequency, as illus-
trated in Fig. 7b. It seems that, the difference arises from
the nonlinear effect of the free surface boundary conditions.
Moreover, the nonlinearity of the free surface becomes more
pronounced at higher oscillation frequency.

The cases of kR = 2.0 and three values of motion am-
plitude of a3/R = 0.1, 0.3, and 0.5 are computed by the fully
nonlinear model. Figure 8 shows the time histories of wave
elevations at (3R, 0) and the vertical forces on the sphere.
The figure reveals that the changes in wave elevations are
quite noticeable especially at higher oscillation amplitude.
The wave crests and the wave troughs become smaller with
the increase of motion amplitude. However, no strong non-
linearity is noticed in vertical forces as the motion amplitude
increases, which is because the pressure below the free sur-
face is relatively small and the wetted body surface is con-
stant for the submerged body.

Fig. 7 Vertical forces on the submerged sphere in heave motion at a3/R = 0.5. a kR = 0.5; b kR = 2.0

Fig. 8 Wave elevations at (3R, 0) and vertical forces on the submerged sphere in heave motion at kR = 2.0. a Wave elevations at (3R, 0);
b Vertical forces

In order to investigate the effect of wave number on the
results, wave elevations at (3R, 0) and vertical forces are cal-
culated for oscillation amplitude of a3/R = 0.5 and differ-
ent wave numbers. The time histories of wave elevations at

(3R, 0) and two wave numbers of kR = 0.5, 2.0 are given in
Fig. 9. The corresponding vertical forces for kR = 0.5 and
2.0 have been illustrated in Fig. 7. From Figs. 7a and 9a, it
can be seen that the influence of nonlinearity on wave ele-
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vations is much stronger than that on vertical forces at lower
frequency. At kR = 0.5, the second-harmonic component of
wave elevations, which can not be detected in the linear re-
sults, is significant in the fully nonlinear results. Figure 9a
demonstrates the limitation of the linear model on predicting
the wave elevations. The body-nonlinear results in Fig. 9a
are closer to the fully nonlinear results compared with the
linear results. However, the body-nonlinear results are still
different from the fully nonlinear results, indicating the sig-
nificance of the free surface nonlinearity.

The calculated wave elevations at (3R, 0) and the verti-
cal forces in four steady-state wave periods are decomposed
into harmonic components by the Fourier transformation.
Figure 10 shows the 1st- and 2nd-harmonic wave elevations
versus the wave number kR. The 1st-harmonic wave eleva-
tion (η(1)/a3) increases with increasing kR until kR = 1.25,
beyond which η(1)/a3 starts decreasing with increasing kR.
It can be seen from Fig. 10a that the agreement among the
fully nonlinear, body-nonlinear and linear methods is good

only at small kR. With increasing wave number, the dif-
ference among the three methods becomes more prominent.
In addition, it is clear that the 1st-harmonic wave elevation
reaches a maximum at kR = 1.25. The difference in the 2nd-
harmonic wave elevation between the fully- and the body-
nonlinear models may be ascribed to the existence of some
power exchanges between different wave frequencies. So the
contribution from some high or higher frequencies can not
be reflected by the linear solutions and the body-nonlinear
results. The above analysis also shows that the fully non-
linear method is the only correct choice in strong nonlinear
wave circumstance. Figure 11 presents the 1st- and 2nd-
harmonic vertical forces versus the wave number kR. The
difference in the 1st-harmonic force among the three meth-
ods is small. The difference between the fully- and the body-
nonlinear 2nd-harmonic force increases with increasing kR
as kR > 1.25. From the above comparison, it can be seen
that the difference between the fully- and the body-nonlinear
results becomes significant for strong nonlinear waves.

Fig. 9 Wave elevations at (3R, 0) for the submerged sphere in heave motion at a3/R = 0.5. a kR = 0.5; b kR = 2.0

Fig. 10 The 1st- and 2nd-harmonic wave elevations at (3R, 0) at a3/R = 0.5 versus kR. a 1st-harmonic; b 2nd-harmonic

Fig. 11 The 1st- and 2nd-harmonic vertical forces on the submerged sphere at a3/R = 0.5 versus kR. a 1st-harmonic; b 2nd-harmonic
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4.2 A truncated cylinder with flare in heave motion

In this and the following subsection, the wave radiation by
a truncated cylinder with flare shown in Fig. 12 in various
forced motions is investigated. The symbol θ is defined as
the angle between the flare and the horizontal plane, and rd

denotes the radius of the bottom circular surface of the cylin-
der. In all the following simulations of the truncated flared
cylinder, the water depth is set to be d/rd = 3 and the ini-
tial draught of the cylinder is B/rd = 1.5. The flare angle is
θ = 80◦ unless otherwise specified.

A cylinder with θ = 80◦ in vertical oscillation is first
considered. The distribution of the mesh on the free sur-
face and the body surface for krd = 2.0 is shown in Fig. 13.
There are totally 864 elements on the water surface and 384
elements on the body surface. For the heave cases, a half
of elements are used in Fig. 13, because the computational
domain is symmetric about both the x–z and the y–z plane.
All the numerical results of the present study used time step
Δt = T/60. Mesh dependency and temporal-convergence
studies for all examples have been carried out, and it was

found that further increasing in mesh density and decreasing
in computational time step makes little difference on the nu-
merical results. To absorb scattering waves, the outer annu-
lus radius of the damping zone is set to be 1.5λ for krd > 1.25
and λ for other wave numbers.

Fig. 12 Definition of a truncated cylinder with flare

Fig. 13 Illustration of the initial mesh generation on the free surface and the flared cylinder surface at krd = 2.0. a On the free surface;
b On the flared cylinder surface

Figure 14 presents the comparison of wave elevations
at (2rd, 0) and vertical forces with the fully nonlinear re-
sults of Wang et al. [20] at krd = 2.0, a3/rd = 0.3. It can
be seen from Fig. 14 that the present fully nonlinear results
are in reasonably good agreement with the results of Wang
et al. [20]. The body-nonlinear results are slightly different
from the fully nonlinear results because the free surface is
treated linearly. Figure 15 gives the time histories of wave el-
evations at (2rd, 0) and the vertical forces on the cylinder for
excitation amplitude of a3/rd = 0.15, 0.3, 0.6 at krd = 2.0.

The figure clearly reveals that no strong nonlinearity is no-
ticed in the wave elevations, except the wave crests tend to
be sharper and deeper than the troughs which appear with
the increase of heave amplitude. However, the changes in
the vertical forces are quite noticeable especially at larger
amplitude, as high harmonics occur, which clearly indicate
the presence of high nonlinearity. Such strong nonlinearity is
mainly due to the variation of wetted surface of the cylinder
during heave motion.

Fig. 14 Comparison of wave elevations and vertical forces on the cylinder with θ = 80◦ in heave motion at krd = 2.0, a3/rd = 0.3.
a Waves elevations at (2rd, 0); b Vertical forces
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Fig. 15 Wave elevations and vertical forces on the cylinder with θ = 80◦ in heave motion at krd = 2.0. a Waves elevations at (2rd, 0);
b Vertical forces

Further calculations are then carried out for a variety of
wave numbers. Numerical results are analyzed by Fourier
analysis to evaluate the 1st- and 2nd-harmonic components
of wave elevations and the vertical forces. Figures 16 and
17 present respectively the 1st- and 2nd-harmonic wave el-
evation and the vertical force components versus the wave
number at a3/rd = 0.3. The body-nonlinear and linear re-
sults are also presented for comparison. It can be seen from
Figs. 16 and 17b that, the difference in the 1st- and 2nd- har-
monic wave elevations and the 2nd-harmonic vertical forces
between the two models increases with the increase of wave
number, while the difference in the 1st-harmonic vertical
forces is weak. The comparison indicates that the fully- and

the body-nonlinear results are in good agreement with each
other at smaller wave steepness, and differ from each other
at larger wave steepness, indicating the importance of free-
surface nonlinearity. With the increase of wave numbers, the
nonlinearity is expected to become more remarkable. In the
body-nonlinear model, the body boundary conditions are ap-
plied at the actual time depending body surface whereas the
free surface conditions are linearized. In contrast, the fully
nonlinear model seems to capture the higher-harmonics quite
well. From the above discussion, the calculated hydrody-
namic forces induced by heave motion of a body from differ-
ent models could be different significantly, especially when
the body is in large-amplitude vertical motion.

Fig. 16 Comparison of the 1st- and 2nd-harmonic wave elevations at (2rd, 0) for the cylinder with θ = 80◦ in heave motion at a3/rd = 0.3.
a 1st-harmonic; b 2nd-harmonic

Fig. 17 Comparison of the 1st- and 2nd-harmonic vertical forces on the cylinder with θ = 80◦ in heave motion at a3/rd = 0.3.
a 1st-harmonic; b 2nd-harmonic

Comparison is also made for three different structures.
with θ = 85◦, 80◦, 75◦ based on the fully nonlinear method.
The case of krd = 2.0 and a3/rd = 0.3 is calculated, and
the results are presented in Fig. 18. The wave elevations are

given at (2rd, 0), as in previous cases. As expected, the cylin-
der with greater flare in vertical motion creates larger radi-
ated waves, which is consistent with the result of Wang et
al. [20]. Moreover, the peaks of the vertical force on the
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cylinder with greatest flare are visibly the largest. This is
partly because the sides of the cylinder with flare also pro-
vide a contribution to the vertical force, and the level pro-
jection area of the side surface is larger for the cylinder with
greater flare. The other reason is that θ = 75◦ corresponds

to a larger water plane area. Relative to the diameter of the
water plane, the draught of the cylinder is smaller in the case
of θ = 75◦. The change at the bottom of the cylinder has,
therefore, a larger effect on the results.

Fig. 18 Influence of flare on wave elevations and vertical forces on the body in heave motion at krd = 2.0 and a3/rd = 0.3 based on the
fully nonlinear method. a Wave elevations at (2rd, 0); b Vertical forces

4.3 A truncated cylinder with flare in pitch motion

Finally, a truncated cylinder with flare undergoing pitch mo-
tion about its mass center (0, 0, 0) is investigated. The
prediction of the intersection line between the free surface
and the rotating body surface, and mesh regeneration on the
free surface and the body surface become more complicated.
Therefore, there are rarely fully nonlinear results of the ro-
tation problem in publications. Figure 19 presents the time
histories of wave elevation at (2rd, 0) and the hydrodynamic
forces and moment on the cylinder with θ = 80◦ for three
different pitch angles at krd = 2.0. From the figure, it can
be seen that with increasing pitch amplitude, the wave crest
becomes larger, and the wave trough is found to be smaller.
Moreover, it can be observed that the increase of motion am-
plitude does not produce any noticeable change on the hori-

zontal forces and the moment about the y-axis. In addition,
the vertical force is smaller in comparison with the horizon-
tal force, but it increases rapidly with the increase of oscil-
lation amplitude. The vertical force appears to oscillate at
double frequency of the body motion, which is consistent
with the conclusion of Bai and Eatock Taylor [23] and Wang
et al. [20]. On the basis of the linear theory, for the surge or
pitch motion of a body which is symmetric about the y-axis,
the wave field is anti-symmetric about the y-axis. The verti-
cal force must be zero. However, the second order wave field
is not anti-symmetry anymore, and will generate the second-
order force.

Then the impact of oscillation frequency on the 1st- and
2nd-harmonic wave elevation components and the harmonic
forces and moment is given in Figs. 20 and 21. For the anal-
ysis presented here, the motion amplitude of the body is kept

Fig. 19 Wave elevations, hydrodynamic forces and moment on the cylinder in pitch motion at krd = 2.0. a Wave elevations at (2rd, 0);
b Horizontal forces; c Vertical forces; d Moment about the y-axis
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Fig. 20 Comparison of the 1st- and 2nd-harmonic wave elevations at (2rd, 0) for the cylinder with θ = 80◦ in pitch motion at krd = 2.0.
a 1st-harmonic; b 2nd-harmonic

Fig. 21 Comparison of harmonic forces and moment on the cylinder with θ = 80◦ in pitch motion at a5 = π/30. a 1st-harmonic horizontal
force; b Mean vertical force; c 2nd-harmonic vertical force; d 1st-harmonic moment about the y-axis

constant at a5 = π/30. As can see seen from Fig. 20a, the dif-
ference in the 1st-harmonic wave elevations becomes more
significant with the increase in wave number. Moreover, the
body-nonlinear results are closer to the linear solutions than
the fully nonlinear results. However the difference in the
2nd-harmonic wave elevations is more prominent at lower-
frequencies. The time histories of wave elevation at (2rd, 0)
for krd = 0.75 and 2.5 are presented in Figs. 22a and 22b.
It can be seen that there still exists difference between the
fully nonlinear results and the body-nonlinear results both at
krd = 0.75 and 2.5, in the wave crest for the former and the
wave trough for the latter. As observed from Fig. 21b, the

difference in the mean vertical forces becomes more signifi-
cant with increasing wave number, which also suggests that
the nonlinearity of the vertical forces becomes stronger with
the increase in the wave number. However, there is no no-
ticeable difference among others. The discrepancy between
the fully nonlinear results and the body-nonlinear solutions is
mainly due to the variation of the instantaneous free surface,
which is not considered in the body-nonlinear method. In
the body-nonlinear model, the mean water surface is consid-
ered, while in the fully nonlinear models, the instantaneous
surface is updated continuously.

Fig. 22 Wave elevations at (2rd, 0) for the cylinder with θ = 80◦ in pitch motion at a5 = π/30. a krd = 0.75; b krd = 2.5
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5 Conclusions

A three-dimensional fully nonlinear numerical wave model
is developed to simulate radiated waves generated by sub-
merged or surface-piercing structures. subjected to forced
sinusoidal motions. The model is solved in the time-domain
by using the HOBEM. The body-nonlinear and linear mod-
els are also presented for comparison. For the purpose of
validation, the present model is compared with the published
numerical results, and reasonably good agreement between
them is obtained. Wave radiation from a fully submerged
sphere in heave motion and a truncated cylinder with flare
undergoing forced heave and pitch motions is analyzed, and
brief parametric study is performed to determine the effect
of oscillation amplitude and frequency on wave elevations
and hydrodynamic forces. The following observations can
be concluded after a series of numerical calculations. For a
surface-piercing structure in heave motion, the nonlinearity
of the vertical force is very strong, even in the case where
the generated waves are linear. For a truncated flared cylin-
der undergoing pitch motion, the vertical force oscillates
at twice the frequency of the body motion. Its amplitude
is smaller in comparison with that of the horizontal force,
but it increases rapidly with the increase in the oscillation
amplitude. Compared with the fully nonlinear method, the
body-nonlinear method can also produce reasonable results
for radiation problem if the wave frequency is low. There-
fore, when the free-surface nonlinearity is not significant, the
body-nonlinear method can be used as an alternative for the
fully nonlinear scheme without the need to deal with compli-
cated free surface and possible numerical instability. The dif-
ference between fully- and body-nonlinear results becomes
significant at higher wave frequency, which reveals the lim-
itation of the body-nonlinear method and the importance of
the fully nonlinear method. The present model can be ex-
tended to simulate the interaction between surface waves and
free floating bodies of arbitrary geometry.

Acknowledgment The LRF helps to protect life and property by
supporting engineering-related education, public engagement and
the application of research.

References

1 Eatock Taylor, R., Hung, S.M.: Second order diffraction forces
on a vertical cylinder in regular waves. Appl. Ocean Res. 9,
19–30 (1987)

2 Abul-Azm, A.G., Williams, A.N.: Second-order diffraction
loads on truncated cylinders. J. Waterway, Port, Coastal &
Ocean Eng. 114, 436–454 (1988)

3 Kim, Y., Kring, D.C., Sclavounos, P.D.: Linear and non-
linear interactions of surface waves with bodies by a three-
dimensional Rankine panel method. Appl. Ocean Res. 19,
235–249 (1997)

4 Bai, W., Teng, B.: Second-order wave diffraction around 3-D
bodies by a time-domain method. China Ocean Eng. 15, 73–85
(2001)

5 Goren, O.: On the second-order wave radiation of an oscillating
vertical circular in finite-depth water. J. Ship Res. 40, 224–234
(1996)

6 Isaacson, M., Ng, J.Y.T.: Second-order wave radiation of three-
dimensional bodies by time-domain method. Int. J. Offshore
Polar Eng. 3, 264–272 (1993)

7 Teng, B., Bai, W., Dong, G.H.: Simulation of second-order
radiation of 3D bodies in time domain by a B-spline method.
In: Proc. of 12th International Offshore and Polar Engineering
Conference, Kitakyushu, Japan, 487–493 (2002)

8 Wu, G.X.: Hydrodynamic forces on a submerged circular
cylinder undergoing large-amplitude motion. J. Fluid Mech.
254, 41–58 (1993)

9 Wu, G.X.: Hydrodynamic forces on a submerged sphere un-
dergoing large amplitude motion. J. Ship Res. 38, 272–277
(1994).

10 Zhu, D.X., Katory.: A time-domain prediction method of ship
motions. Ocean Eng. 25, 781–791 (1998)

11 Koo, W.C, Kim, M.H.: Numerical simulation of nonlinear
wave and force generated by a wedge-shape wave maker.
Ocean Eng. 33, 983–1006 (2006)

12 Ferrant, P.: A coupled time and frequency approach for nonlin-
ear radiation. In: Proc. of 18th Symposium on Naval Hydro,
Ann Arbor, Michigan, 67–83 (1991)

13 Qiu, W., Peng, H.: Numerical solution of body-exact problem
in the time domain with a panel-free method. In: Proc. of 22nd
IWWWFB, Plitvice, Croatia (2007)

14 Longuet-Higgins, M.S., Cokelet, C.D.: The deformation of
steep surface waves on water: I. A numerical method of com-
putation. Proc. R Soc. Lond. A. 350, 1–26 (1976)

15 Ma, Q.W., Wu, G.X., Eatock Taylor, R.: Finite element simu-
lation of fully non-linear interaction between vertical cylinders
and steep waves—Part 1: Methodology and numerical proce-
dure. Int J. Numer. Meth. Fluids 36, 265–285 (2001)

16 Ma, Q.W., Wu, G.X., Eatock Taylor, R.: Finite element simu-
lation of fully non-linear interaction between vertical cylinders
and steep waves—Part 2: Numerical results and validation. Int
J. Numer. Meth. Fluids 36, 287–308 (2001)

17 Hu, P.X., Wu, G.X., Ma, Q.W.: Numerical simulation of non-
linear wave radiation by a moving vertical cylinder. Ocean Eng.
29, 1733–1750 (2002)

18 Wu, G.X., Hu, Z.Z.: Simulation of nonlinear interactions be-
tween waves and floating bodies through a finite-element-based
numerical tank. Proc. R. Soc. Lond. A 460, 2797–2817 (2004)

19 Wang, C.Z., Wu, G.X.: An unstructured mesh based finite ele-
ment simulations of wave interactions with non-wall-sided bod-
ies. J. Fluids Struct. 22, 441–461 (2006)

20 Wang, C.Z., Wu, G.X., Drake, K.R.: Interactions between
fully nonlinear water waves and non-wall-sided 3D structures.
Ocean Eng. 34, 1182–1196 (2007)

21 Xue, M., Xu, H., Liu, Y., et al.: Computations of fully nonlin-
ear three dimensional wave–wave and wave–body interactions.
Part 1. Dynamics of steep three-dimensional waves. J. Fluid
Mech. 438, 11–39 (2001)

22 Xue, M., Xu, H., Liu, Y., et al.: Computations of fully nonlin-
ear three dimensional wave–wave and wave–body interactions.
Part 2. Nonlinear waves and forces on a body. J. Fluid Mech.
438, 41–46 (2001)

23 Bai, W., Eatock Taylor, R.: Higher-order boundary element
simulation of fully nonlinear wave radiation by oscillating ver-



680 B.-Z. Zhou, et al.

tical cylinders. Appl. Ocean Res. 28, 247–265 (2006)
24 Bai, W., Eatock Taylor, R.: Numerical simulation of fully non-

linear regular and focused wave diffraction around a vertical
cylinder using domain decomposition. Appl. Ocean Res. 29,
55–71 (2007)

25 Bai, W., Eatock Taylor, R.: Fully nonlinear simulation of wave
interaction with fixed and floating flaRes. structures. Ocean
Eng. 36, 223–236 (2009).

26 Bai, W., Feng, X., Eatick Taylor, R., et al.: Fully nonlinear anal-
ysis of near-trapping phenomenon around an array of cylinders.
Appl. Ocean Res. 44, 71–81 (2014)

27 Ning, D.Z., Zhou, B.Z., Teng, B., et al.: Numerical simulation
of nonlinear regular and focused waves generated by a piston
wave maker. In: Proc. of the 5th international conference on
Asian and Pacific Coasts, Singapore (2009)

28 Zhou, B.Z., Teng. B, Ning, D.Z., et al.: Fully Nonlinear Wave
Diffraction by a velocity potential division method. In: Proc.
of the 22nd International Offshore and Polar Engineering Con-
ference, Rhodes, Greece (2012)

29 Liu, Y.Z., Miao, G.P.: Theory of Ship Motions in Waves.
Shanghai Jiao Tong University Press, Shanghai (1987) (in Chi-
nese)

30 Ning, D.Z., Zhou, B.Z., Teng, B.: Numerical simulation of
nonlinear wave generation by a piston wave maker in a step-
type wave flume. Advances in Eng. Res. 2 (2011)

31 Wu, G.X.: Transient motion of a floating body in steep wa-
ter waves. In: Proc. of 11th IWWWFB, Hamburg, Germany
(1996)

32 Wu, G.X., Eatock Taylor, R.: The coupled finite element and
boundary element analysis of nonlinear interactions between
waves and bodies. Ocean Eng. 30, 387–400 (2003)

33 Kashiwagi, M.: Non-linear simulations of wave-induced mo-
tions of a floating body by means of the mixed Eulerian-
Lagrangian method. In: Proc. Inst. Mech. Engrs. C, 214,
841–855 (2000)

34 Grilli, S.T., Guyenne, P., Dias, F.A.: Fully non-linear model for
three-dimensional overturning waves over an arbitrary bottom.
Int. J. Numer. Meth. Fluids 35, 829–867 (2001)


