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Abstract The low-thrust trajectory optimization with com-
plicated constraints must be considered in practical engi-
neering. In most literature, this problem is simplified into
a two-body model in which the spacecraft is subject to the
gravitational force at the center of mass and the spacecraft’s
own electric propulsion only, and the gravity assist (GA) is
modeled as an instantaneous velocity increment. This pa-
per presents a method to solve the fuel-optimal problem of
low-thrust trajectory with complicated constraints in a full
ephemeris model, which is closer to practical engineering
conditions. First, it introduces various perturbations, includ-
ing a third body’s gravity, the nonspherical perturbation and
the solar radiation pressure in a dynamic equation. Second,
it builds two types of equivalent inner constraints to describe
the GA. At the same time, the present paper applies a series
of techniques, such as a homotopic approach, to enhance the
possibility of convergence of the global optimal solution.

Keywords Low-thrust · Full ephemeris model · Gravity as-
sist

1 Introduction

Electric propulsion has attracted much attention in the past
few decades. Compared with traditional chemical propul-
sion, electric propulsion can efficiently reduce the fuel con-
sumption due to a higher specific impulse [1, 2]. Electric
propulsion was first used in the Deep Space mission 1 [3] and
demonstrated its appeal in the recently successful Hayabusa
return mission [4]. Combined with the technique of plane-
tary gravity assist (GA), electric propulsion is usually a pre-
ferred propulsion for future interplanetary missions. Much
research has been conducted on low-thrust trajectory opti-
mization, the methods of which are typically categorized
into [5] direct methods [6, 7], indirect methods [8, 9] and
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combinations of these two, which are termed hybrid meth-
ods [10, 11]. The present paper is based on indirect meth-
ods. The indirect methods are always used to solve two-
point boundary-value problems (TPBVPs) derived from the
calculus of variations and Pontryagin’s maximum principle
(PMP). However, with small convergence radii, the sensitive
initial guesses and the fussy formula derivations with com-
plex constraints, the solutions of shooting functions corre-
sponding to TPBVPs are rather difficult to achieve. In addi-
tion, the discontinuous control (bang-bang control [12–14])
can also lead to bad integral accuracy.

The fuel consumption is large when the target is far
away from the Earth. In many missions, GA is also used
to reduce the fuel consumption, a technique that has been
applied in many missions. GA was initially studied for the
engineering mission, and some typical GA sequences were
gradually presented. The most typical example, Jupiter’s
Galileo, used an EVEEJ sequence [15], and the craft finally
arrived at Jupiter with a low cost. The GA was later ana-
lyzed theoretically. Broucke et al. [16] used linked conics in
a two-body model and gave the flyby maneuver to increase or
decrease the orbit energy. Prado et al. [17] gave the measure
of the GA time via a combination of the impulsive maneuver
and the GA. Felipe et al. [18, 19] sorted the trajectory by an-
alyzing the mechanical energy of the spacecraft and the GA
planet. Strange et al. [20] proposed the method to search for
the GA sequence by analyzing the energies of the spacecraft
and the planet. All the researches above treated the GA in
the linked-conics model (two-body model), in which the GA
planet was considered as massless and the GA was modeled
as an instantaneous velocity increment. The work to study
the GA via a full ephemeris model is scarce. Bayliss [21]
studied the GA by considering the third body’s gravity per-
turbation in a two-body model, which did not avoid linking
the trajectory, and the procedure was very complicated.

After the primary design in a two-body model, three
challenging problems have to be faced. On the one hand,
in the real deep space environment, the spacecraft is subject
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to various perturbations that have influences and can not be
ignored during the long travel. On the other hand, the grav-
ity of a GA planet can not be neglected but is instead the
main factor when flying through the sphere of planetary in-
fluence, so the GA in the two-body model can not describe
the real GA process. Finally, is the simplification of the
two-body model that is commonly used reasonable, and does
the design have a reference value? This paper provides an-
swers to these three problems. First, the present paper gives
a further trajectory design that considers complicated con-
straints, which is closer to the practical space environment.
The paper introduces various main perturbations, including
the third body’s gravity, the nonspherical perturbation and
the solar radiation pressure, which strengthen the nonlinear-
ity of the dynamic equation, and derives the first-order nec-
essary conditions of optimal control. Second, the present
paper builds two sets of 3-D equivalent inner equality con-
straints to describe the GA. The first type of the constraints
constrains the actual orbit inclination, the perigee distance
and the true anomaly relative to the GA planet. The sec-
ond type of the constraints constrains the B-plane parame-
ters and the true anomaly relative to the GA planet. Finally,
the present paper compares the two-body model and the full
ephemeris model and assesses the reference value of the two-
body model. At the same time, the present paper applies a se-
ries of techniques to enhance the possibility of convergence
of the global optimal solution, including, among others, the
homotopic approach method [22, 23].

The remainder of the present paper is organized as
follows: the second section discusses TPBVPs in the full
ephemeris model, which introduces the gravity of the third
body, the nonspherical perturbation and the solar radiation
pressure in a dynamic equation, and derives the first-order
necessary conditions of optimal control. The third section
discusses the problem in which the spacecraft departs from
Asteroid 1 and targets Asteroid 2 in the full model with a
single GA from the Earth and builds two types of inner con-
straints to describe the GA. The fourth section presents two
numerical examples using the method presented in Sect. 2
and Sect. 3 and gives a comparative analysis of the two-body
model and the full ephemeris model. Conclusions are drawn
in the last section.

2 The low-thrust trajectory optimization in a full
ephemeris model

In the research of the low-thrust trajectory optimization
problem, a heliocentric two-body model is commonly used
to reduce the number of numerical calculations; this model
assumes that the spacecraft is subject only to the central force
of the Sun’s gravity and the force of the craft’s own elec-
tric propulsion system. In a practical space environment,
the spacecraft is also subject to various perturbations, which
can cause obvious deviations due to these perturbations’
long-term effects. It is therefore necessary to research the
low-thrust trajectory optimization in a full ephemeris model,

which contains the planetary gravity perturbation of a third
body, the solar radiation pressure perturbation and the non-
spherical perturbation. This paper takes a heliocentric two-
body trajectory as an example to check the design method in
a full ephemeris model.

2.1 The perturbations in a full ephemeris model

To research the low-thrust heliocentric transfer trajectory, the
main perturbation forces are the planetary gravity perturba-
tion, the solar radiation pressure perturbation and the non-
spherical perturbation.

2.1.1 Planetary gravity perturbation

In the heliocentric transfer trajectory, the spacecraft is sub-
ject to not only the Sun’s gravity but also the planetary grav-
ity. In the heliocentric ecliptic reference frame (HERF), the
third-body gravity perturbative acceleration fff Pl is

fff Pl = − μPl

‖rrr − rrrPl‖3
(rrr − rrrPl) − μPl

‖rrrPl‖3
rrrPl, (1)

where rrr and rrrPl denote the positions of the spacecraft and
the planet in the HERF, respectively. μPl denotes the gravita-
tional constant of the planet.

2.1.2 Solar radiation pressure perturbation

Because the area of the solar cell panels of the electric
propulsion spacecraft is large, the solar radiation pressure is
one of the main disturbing forces. Suppose that the solar cell
panels are always facing the Sun; the solar radiation pressure
acceleration fff Solar can be written as

fff Solar =
(1 + η)S L0

c
rrr

mr3
= β

rrr
mr3

, (2)

where η ∈ [0, 1] denotes the reflection coefficient of the
spacecraft’s surface. S denotes the area of the spacecraft’s
surface. L0 is the solar flux near Earth. c is the speed of
light. m is the instantaneous mass of the spacecraft. All the
variables are constants except rrr and m, and β = (1+ η)S L0/c
is called the solar radiation pressure factor.

2.1.3 Nonspherical perturbation

When the spacecraft is swinging in the main planet’s sphere
of influence, departing from the main planet or targeting the
main planet, nonspherical perturbations can not be ignored.
Because the time in the main planet’s sphere of influence is
short, the influence of the nonspherical perturbation is tiny.
Only the largest factor J2 is considered. The nonspherical
perturbation fff C is

fff C = −
μPlr2

0 J2

2

(
− 15rrr sin2 ϕ

r5
+

3rrr

r5
+

6 sinϕ
r4

∂z
∂rrr

)
, (3)

where φ denote the geocentric dimension and ∂z/∂rrr =
[0 0 1]T. All variables are projected in the equatorial co-
ordinate system of the planet.

2.2 Problem statement

The dynamic equations of a low-thrust trajectory can be writ-
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ten as

ṙrr = vvv,

v̇vv = − μ
r3

rrr +
∑

fff Pl + fff Solar + fff C +
Tmaxu

m
ααα,

ṁ = −Tmax

Ispg0
u,

(4)

where vvv denotes the velocity vectors in the
HERF. μ denotes the Sun’s gravitational constant,
1.327 124 400 18× 1011 km3/s2. The control variables con-
sist ofααα, the unit vector of the thrust direction, and u ∈ [0, 1],
the ratio of the practical thrust to the maximum thrust. Tmax

and Isp are the maximum thrust magnitude and the thruster-
specific impulse of the onboard engine. g0 is the standard
acceleration of gravity at sea level, 9.806 65 m/s. The quan-
tities Tmax, Isp, and g0 are customarily in international units.∑

fff Pl are the perturbations of all third bodies, mainly the
eight main planets.

The fuel-optimal control problem is to maximize the fi-
nal mass of the spacecraft or to minimize the fuel consump-
tion expressed by

J =
Tmax

Ispg0

∫ tf

t0

udt. (5)

To study an interplanetary trajectory, the scenario of the
spacecraft departing from Earth at the sphere of influence,
with a hyperbolic excess velocity vector vvv∞ provided by the
launch vehicle, is considered. The initial states of the space-
craft can therefore be written as

rrr(t0) = rrrE(t0) + rrr∞, vvv(t0) = vvvE(t0) + v∞, m(t0) = m0, (6)

where t0 is the launch time. rrrE(t0) and vvvE(t0) are the position
vector and the velocity vector of Earth at t0, respectively. rrr∞
is the position vector pointing from Earth to the sphere of in-
fluence, and vvv∞ is the escape velocity vector. The 6-D equal-
ity constraints correspond to Lagrange numerical multipliers
χχχ1–6.

The final conditions are the Asteroid rendezvous con-
ditions

rrr(tf ) = rrrAs(tf), vvv(tf ) = vvvAs(tf), (7)

where tf is the final time. rrrAs(tf) and vvvAs(tf) are the posi-
tion and velocity vectors of the target Asteroid at tf . The
6-D equality constraints correspond to Lagrange numerical
multipliers χχχ7–14.

By introducing the costate vectors λλλ = [λλλr , λλλv, λm]T,
the Hamiltonian can be given as

H =
Tmax

Ispg0
u + λλλr · vvv + λλλv ·

(
− μ

r3
r +
∑

fff Pl + fff Solar

+ fff C +
Tmaxu

m
ααα
)
− λm

Tmax

Ispg0
u. (8)

The optimal direction and the magnitude of the thrust vector,
which should minimize the Hamiltonian using PMP, are then
determined by

ααα = − λλλv

‖λλλv‖ , (9)

u = 0, if ρ > 0,

u = 1, if ρ < 0,

0 � u � 1, if ρ = 0,

(10)

where ρ is called the switch function, which has the form of

ρ = 1 − Ispg0 ‖λλλv‖
m

− λm, (11)

The costate differential functions can be derived as

λ̇λλr =
μλλλv

r3
− 3μrrrλλλvrrr

r5
−
∑ ∂(λλλv fff Pl)

∂rrr

−∂(λλλv fSolar)
∂rrr

− ∂(λλλv fC)
∂rrr

,

λ̇λλv = −λλλr,

λ̇m = −Tmaxu ‖λλλv‖
m2

− ∂(λλλv fSolar)
∂m

,

(12)

where

∂(λλλv fff Pl)
∂rrr

=
μPlλλλv

‖rrr − rrrPl‖3
+

3μPlλλλv(rrr − rrrPl)

‖rrr − rrrPl‖5
(rrr − rrrPl),

∂(λλλv · fff Solar)
∂rrr

= β
(
λλλv

mr3
− 3λλλv · rrr

r5
rrr
)
,

∂(λλλv fff Solar)
∂m

= −βλλλv · rrr
m2r3

,

∂(λλλv fff C)
∂rrr

=
15μr2

0 J2

2

[ sin2 ϕ

r5
λλλv − 7 sin2 ϕ(λλλvrrr)

r7
rrr

+
2 sinϕ(λλλvrrr)

r6

∂z
∂rrr

]

−μr2
0 J2

2

[ 3
r5
λλλv − 15

(λλλvrrr)
r7

rrr
]

−3μr2
0 J2

(
λλλv
∂z
∂rrr

)(
− 5 sinϕ

r6
rrr +

1
r5

∂z
∂rrr

)
.

(13)

As in Eq. (3), the variables in Eq. (13) are projected in the
equatorial coordinate system of the planet.

According to the transversal conditions, when the
boundary state is fixed, the corresponding boundary costate
is free, and when the former is free, the latter is fixed. The
initial position and velocity constraints are time dependent,
so the initial costate vectors and the final transversal condi-
tions should satisfy

λλλr,v(t0) + χχχ1–6 = 0, (14)

−λλλr,v(tf) + χχχ7–12 = 0, (15)

λm(tf) = 0. (16)

For convenience, in the numerical solution process, χχχ1–12 is
expressed with λλλr(t0), λλλv(t0), λλλr(tf ), and λλλv(tf ) via Eqs. (14)
and (15). Therefore, the Lagrange numerical multipliers
χχχ1–12 do not appear in the shooting functions.

The final stationary conditions are derived as



618 X.-S. Cai, et al.

−H(t0) − χχχ1–3 · vvvE(t0) − χχχ4–6 · aaaE(t0) = 0, (17)

H(tf) − χχχ7–9 · vvvAs(tf) − χχχ10–12 · aaaAs(tf) = 0. (18)

It is clear that there are nine unknowns, including the
7-D initial values of the costate vectors λ(t0) and the 2-D
initial time t0 and final time tf . At the same time, there are
the same number of equations, including the 6-D rendezvous
conditions (7), the 1-D transversal condition (16), and the 2-
D stationary condition (17) and (18).

3 The low-thrust trajectory optimization with GA in a
full ephemeris model

In the research of a trajectory design with GA, the heliocen-
tric transfer trajectory is usually modeled with a two-body
model. For convenience, the effect of planetary GA is mod-
eled as an instantaneous velocity increment of the spacecraft
at the event time, showed in Fig. 1a. At the event time, it is
constrained that the position of the spacecraft rrr(tm) to be the
same as that of the GA planet rrrPl(tm), the incoming hyper-
bolic excess speed vvv−∞ is equal to the outgoing speed vvv+∞, and
the rotation angle θ should not be greater than the maximum
rotation angle θmax. This result is acceptable in an initial tra-
jectory design.

In the practical mission, the GA is not one instanta-
neous process but is instead a continuous process, showed in
Fig. 1b. The spacecraft approaches the GA planet gradually
and flies mainly under the GA planet’s gravity in the planet’s
sphere of influence for several days. During the flyby pro-
cess, the states of the spacecraft are continuous. After the
GA process, the states of the spacecraft are different from
the result designed with a two-body model, which can result
in a large error after the following flight. The instantaneous
incremental velocity model can not satisfy the precision re-
quirement.

Fig. 1 a GA in a two-body model; b GA in a full ephemeris model

This section considers the low-thrust trajectory with a
single GA using a full ephemeris model, and builds two types
of equivalent inner constraints, that can accurately describe
the GA process, to achieve the GA effect, which can change
the states of the spacecraft freely.

3.1 Boundary conditions

The techniques presented in the preceding section are used in
this complex case involving inner constraints. The dynamic
equations are the same as Eq. (4). The performance index
and the Hamiltonian are the same as Eqs. (5) and (8). The
optimal direction and the magnitude of the thrust vector are
the same as Eqs. (9) – (11). The costate differential equations
are the same as Eq. (12).

The optimal control problem with a fixed boundary
only is considered as well. The spacecraft is considered that
starts from Asteroid 1 with the same velocity vectors as the
Asteroid 1 at a fixed time t0, and is then flying by a GA planet
to obtain a GA, and finally targets Asteroid 2. The initial
states and the final states of the spacecraft can therefore be
written as

rrr(t0) = rrrAs1(t0), vvv(t0) = vvvAs1(t0), m(t0) = m0, (19)

rrr(tf ) = rrrAs2(tf), vvv(tf ) = vvvAs2(tf), (20)

where rrrAs1(t0) and vvvAs1(t0) are the position vector and the ve-
locity vector of Asteroid 1 at t0, and rrrAs2(t0) and vvvAs2(t0) are
the position vector and the velocity vector of Asteroid 2 at tf ,
respectively. These 12-D equality constraints correspond to
the Lagrange numerical multipliers χχχ1–12.

3.2 The inner constraints

The next step is to build inner equality constraints. The tra-
jectory of the spacecraft relative to the GA planet is a hy-
perbolic curve, which is called the GA hyperbolic. The GA
hyperbolic is the constraint of the GA process. The direction
and magnitude of the velocity relative to the GA planet are
established when the spacecraft arrives at the GA planet’s
sphere of influence. The hyperbolic can therefore be deter-
mined by the time and two other parameters. The time can
be expressed by the true anomaly. The two other parameters
are of two types. The first type constrains the actual orbit in-
clination and the perigee distance relative to the GA planet.
The second type constrains two B-plane parameters BT and
BR relative to the GA planet. Both of these types have 3-D
equality constraints, which correspond to the Lagrange nu-
merical multipliersχχχ13–15. The nominal values of both of the
types of inner constraints are given by the two-body model.

3.2.1 First type of inner constraints

The first type of inner constraints is written as

ψ1
13–15

Δ
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i(tm) − inorm = 0

rp(tm) − rpnorm = 0

f (tm) − fnorm = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (21)

where tm is the time of the perigee of the hyperbolic relative
to the GA planet. i(tm), rp(tm), and f (tm) are the actual or-
bit inclination, the perigee distance and the true anomaly of
the hyperbolic in the full ephemeris model. inorm, rpnorm, and
fnorm are the nominal orbit inclination, the perigee distance
and the true anomaly given by the two-body model. The first
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two equations ensure that the spacecraft’s states are suitable
for the states given by the two-body model at the perigee
time, and the last equation ensures that tm is the time of the
perigee of the hyperbolic. Therefore let us set fnorm = 0.

3.2.1.1 Nominal orbit inclination and the perigee distance

The nominal orbit inclination and the perigee distance can
be defined by the incoming and outgoing hyperbolic residual
velocities in the two-body model of the trajectory with GA.
The nominal orbit inclination is defined as

cos(inorm) = nz

/
‖nnn‖ , (22)

nnn =
vvv−∞ × vvv+∞
|vvv−∞ × vvv+∞| , nz = nnn · kkk, (23)

where nnn is the orbital plane normal to the spacecraft rel-
ative to the GA planet and kkk is the reference unit vector,
which is set as the ecliptic plane normal for convenience,
kkk = (0, 0, 1)T.

The nominal perigee distance is defined as

rpnorm =
μPl

v2∞

[ 1
sin(θ/2)

− 1
]
, (24)

where θ is rotational angle of the hyperbolic excess speed for
the planetary GA, which is defined as

sin
θ

2
=

√
1 − cos θ

2
, cos θ =

vvv−∞ · vvv+∞
v2∞

. (25)

3.2.1.2 Actual orbit inclination, the perigee distance and the
true anomaly

The actual orbit inclination, the perigee distance and the true
anomaly can be calculated from the actual position and ve-
locity vectors relative to the GA planet. The actual orbit in-
clination is defined as

cos(i(tm)) = hz

/
‖hhh‖, (26)

where hhh is the angular momentum of the spacecraft relative
to the GA planet

hhh = Δrrr(tm) × Δvvv(tm), hz = hhh · NNN, (27)

where

Δrrr(tm) = rrr(tm) − rrrPl(tm), Δvvv(tm) = vvv(tm) − vvvPl(tm). (28)

The actual semi-major axis is

a(tm) =
μPl( 2μPl

Δrrr(tm)
− Δv2(tm)

) . (29)

The eccentricity vector is

eee =
1
μPl

[(
Δvvv(tm)2 − μPl

Δrrr(tm)

)
Δrrr(tm)

−(Δrrr(tm) · Δvvv(tm))Δvvv(tm)
]
, (30)

The perigee distance is therefore defined as

rp(tm) = a(1 − e). (31)

It is trivial to obtain the true anomaly; let us constrain
the spacecraft at the perigee via a simple form at the inner
time tm, that is

Δrrr(tm) × Δvvv(tm) = 0. (32)

3.2.2 Second type of inner constraints

The concept of the B-plane is used to describe the hyperbolic
relative to the GA. The second type of inner constraints is
therefore given as

ψ2
13–15

Δ
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BT(tm) − BTnorm

BR(tm) − BRnorm

f (tm) − fnorm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (33)

where BT(tm) and BR(tm) are the actual B-plane parameters
at tm. BTnorm and BRnorm are the nominal B-plane parameters.

Figure 2 shows the hyperbolic trajectory and the B-
plane relative to the planet, where SSS is the unit vector that
has its origin at the target body’s center of mass and is paral-
lel to the incoming asymptote. The unit vectors TTT and RRR lay
on the B-plane and have their origin at the target body’s cen-
ter of mass. SSS , TTT , and RRR constitute a right-handed Cartesian
coordinate system. Let us set a reference unit vector NNN as the
ecliptic plane normal, so TTT and RRR are defined as

TTT = SSS ×NNN, RRR = SSS × TTT , (34)

and BBB, BT, and BR can be defined as

BBBnorm = b(SSS × nnn), BT = BBB · TTT , BR = BBB ·RRR. (35)

Fig. 2 B-plane

3.2.2.1 Nominal B-plane parameters

The nominal B-plane parameters can be defined by the in-
coming and outgoing hyperbolic excess velocities in the two-
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body model with a GA. First, the normal of the hyperbolic
trajectory is the same as Eq. (23), and the incoming asymp-
tote unit vector can be defined as

SSS = vvv−∞/v∞. (36)

The semi-major axis and the semi-minor axis of the hy-
perbolic trajectory are defined as

a = −μPl

v2∞
, b = −a cot

(
θ

2

)
, (37)

where θ is the tuning angle of the hyperbolic excess speed
for the planetary GA, and is defined as

θ = 2 sin−1
[(

1 +
v2∞rp

μPl

)−1]
, (38)

where rp is the radius of the GA given by a two-body model,
which is the same as rpnorm.

Therefore, the nominal B-plane parameters can be ob-
tained via Eqs. (35) and (36).

3.2.2.2 Actual B-plane parameters

The actual B-vector and B-plane parameters are given via the
states of the spacecraft relative to the GA planet at the time
of the perigee of the GA planet. First, the normal unit vector
of the trajectory relative to the GA planet nnn is defined as

nnn =
Δrrr(tm) × Δvvv(tm)
‖Δrrr(tm) × Δvvv(tm)‖ , (39)

and the SSS vector, which can be calculated from Δrrr and Δvvv, is
defined as

SSS =
eee
e

cos γ +
nnn × eee
|nnn × eee| sin γ, (40)

where eee is the eccentricity vector and has the form of
Eq. (37). B is defined as

γ = cos−1(1/e). (41)

Therefore, the actual B-plane parameters can be ob-
tained via Eq. (35).

3.3 Solving strategy summary

According to the transversal conditions, when the boundary
state is fixed, the corresponding boundary costate is free, and
when the former is free, the latter is fixed. The initial posi-
tion and velocity constraints are time dependent, so the initial
and final costate vectors should satisfy

λλλr(t0) = −χχχ1−3, λλλv(t0) = −χχχ4–6, (42)

λλλr(tf) = χχχ7–9, λλλv(tf) = χχχ10–12, (43)

λm(tf) = 0. (44)

For convenience, in the numerical solution process,
χχχ1–12 is expressed with λλλr(t0), λλλv(t0), λλλr(tf), and λλλv(tf ) via
Eqs. (42) and (43). Therefore, the Lagrange numerical mul-
tipliers χχχ1–12 do not appear in the shooting functions.

Similarly, the intermediate transversal conditions are

−λ(t−m) + λ(t+m) +
χχχ13–15 · ∂ψψψ13–15

∂x(tm)
= 0. (45)

The boundary stationary conditions are derived as

−H(t0) − χχχ1−3 · vvvAs1(t0) − χχχ4−6 · aaaAs1(t0) = 0, (46)

H(tf) − χχχ7−9 · vvvAs2(tf) − χχχ10−12 · aaaAs2(tf) = 0. (47)

The inner stationary is

H(t−m) − H(t+m) +
χχχ13–15 · ∂ψψψ13–15

∂tm
= 0. (48)

If the initial time, the event time or the final time is
fixed, then the corresponding stationary conditions will dis-
appear.

The inner constraints are associated with an interme-
diate state and time. The remaining task is to calculate the
derivatives of the inner constraints ψψψ13–15; in other words,
the i(tm), rp(tm), and f (tm) or BT, BR, and f (tm) with respect
to the basic variables rrr(tm), vvv(tm), and tm.

With the inequality constraints and the two types of in-
ner constraints above, after some complicated derivation and
assembly, the relation of the inner constraints and the inter-
mediate state and time is finally deduced. The form of the
formula of the second type is very complicated, and thus this
paper simply gives the derivation of the formula of the first
type of the inner constraints.

For convenience, the “(tm)” is omitted after the vari-
ables a, eee, e, i, hhh, h, rrr, r, vvv, v, BBB, SSS , BT , and BR in the
derivation; the values of all of these variables are assumed
to be at tm. First, let us find the derivatives of the first type
of the inner constraints ψψψ1 to the basic variables rrr(tm), vvv(tm),
and tm.

The partial derivative with respect to xxx(tm) of the cosine
of the orbit inclination is

∂(cos i − cos inorm)
∂xxx(tm)

= − 1
h3

∂hhh
∂xxx(tm)

·hhh ·hhhT ·kkk+ 1
h

∂hhh
∂xxx(tm)

·kkk, (49)

where hhh is a column vector and hhhT is a row vector. If the
column vector aaa = (a1, a2, a3)T, ãaa is denoted as

ãaa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and it can be easily seen that ãaaT = −ãaa. Then

∂hhh
∂xxx(tm)

=
∂(Δrrr × Δvvv)
∂xxx(tm)

=
∂Δrrr
∂xxx(tm)

· Δṽvv − ∂Δvvv
∂xxx(tm)

Δr̃rr, (50)

and the partial derivative with respect to tm of the cosine of
the orbit inclination is

∂(cos i − cos inorm)
∂tm

= − 1
h3

(
∂hhh
∂tm
·hhh
)
·hhh(tm) · kkk + 1

h
∂hhh
∂tm
· kkk, (51)

where

∂hhh
∂tm
=
∂Δrrr
∂tm
× Δvvv + Δrrr × ∂Δvvv

∂tm
, (52)
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∂Δrrr(tm)
∂tm

= −vvvpl(tm),
∂Δvvv(tm)
∂tm

= −aaapl(tm). (53)

The partial derivative with respect to xxx(tm) of the
perigee distance is

∂(rp − rpnorm)

∂xxx(tm)
= (1 − e)

∂a
∂xxx(tm)

− a
∂e

∂xxx(tm)
, (54)

where

∂a
∂xxx(tm)

=
2μPl(2μPl

Δr
− Δv2

)2
(
μPl

Δr2

∂Δrrr
∂xxx(tm)

+ Δv
∂Δvvv
∂xxx(tm)

)
, (55)

∂e
∂xxx(tm)

=
1
e

∂eee
∂xxx(tm)

· eee, (56)

where

∂Δrrr
∂xxx(tm)

=
1
Δr

∂Δrrr
∂xxx(tm)

· Δrrr,
∂Δv
∂xxx(tm)

=
1
Δv

∂Δvvv
∂xxx(tm)

· Δvvv, (57)

∂e
∂xxx(tm)

=
1
μPl

(
2Δv

∂Δv
∂xxx(tm)

+
μPl

Δr2

∂Δr
∂xxx(tm)

)
ΔrrrT

+
1
μPl

(
Δv2 − μPl

Δr

)
∂Δrrr
∂xxx(tm)

− 1
μPl

(
∂Δrrr
∂xxx(tm)

· Δvvv
)
ΔvT

− 1
μPl

(
∂Δvvv
∂xxx(tm)

· Δrrr
)
ΔvvvT − 1

μPl
(Δrrr · Δvvv)

∂Δvvv
∂xxx(tm)

. (58)

The partial derivative with respect to tm of the perigee
distance is

∂(rp − rpnorm)

∂tm
= (1 − e)

∂a
∂tm
− a

∂e
∂tm

, (59)

where

∂a
∂tm
=

2μPl(2μPl

Δr
− Δv2

)2
(
μPl

Δr2

∂Δrrr
∂tm
+ Δv

∂Δvvv
∂tm

)
, (60)

∂e
∂tm
=

1
e
∂eee
∂tm
· eee, (61)

where

∂Δrrr
∂tm
=

1
Δr

∂Δrrr
∂tm
· Δrrr,

∂Δv
∂tm
=

1
Δv

∂Δvvv
∂tm
· Δvvv, (62)

∂eee
∂tm
=

1
μPl

(
2Δv

∂Δv
∂tm
+
μPl

Δr2

∂Δrrr
∂tm

)
Δrrr

+
1
μPl

(
Δv2 − μPl

Δr

)
∂Δrrr
∂tm
− 1
μPl

(
∂Δrrr
∂tm
· Δvvv
)
Δvvv

− 1
μPl

(
∂Δvvv
∂tm
· Δrrr
)
Δvvv − 1

μPl
(Δrrr · Δvvv)

∂Δvvv
∂tm

. (63)

The partial derivative with respect to xxx(tm) of the third
of Eq. (21) is

∂(Δrrr · Δvvv)
∂xxx(tm)

=
∂Δrrr
∂xxx(tm)

· Δvvv +
∂Δvvv
∂xxx(tm)

· Δrrr. (64)

It is clear that there are 13 unknowns, including the 7-
D initial values of the costate vectors λλλ(t0), the 3-D initial

time t0, event time tm, and final time tf , and the 3-D nu-
merical multipliers XXX13–15. At the same time, there are an
identical number of equations, including the 6-D rendezvous
conditions (20), the 1-D transversal condition (44), the 3-D
stationary condition (46)–(48), and the 3-D inner constraint
(21) or (33). It is important to note that the transversal con-
ditions (45) are not used to constitute targeting functions but
are used to update the value of the costate vectors at the event
time tm. The values of the position vectors, the velocity vec-
tors and the mass of the spacecraft are continuous at the event
time tm, so they need not be updated.

4 Examples and results

Two examples of fuel-optimal problems with fixed bound-
ary conditions with and without an intermediate GA in a full
ephemeris model will be given to substantiate the techniques
and theories presented in Sects. 2 and 3, respectively. The he-
liocentric position, velocity and orbit elements of the planets
are computed online by the JPL Horizons system.

In the numerical results, a series of techniques is ap-
plied to enhance the possibility of convergence of the global
optimal solution. First, by multiplying the performance in-
dex by a positive unknown factor, the optimal control prob-
lem can be made homogeneous to the Lagrange multipliers
including this factor. Hence, normalization can restrict the
unknown multipliers on a unit hypersphere. Second, an in-
tegration rule using the Runge–Kutta algorithm with a fixed
step is constructed to guarantee the accuracy for the bang-
bang control; in addition, the switching function’s first- and
second-order derivatives with respect to time are derived to
predict the thrust trend. Third, a homotopic approach that
solves the fuel-optimal problem of a low-thrust trajectory by
starting from the related and easier energy-optimal problem
is applied.

For calculation convenience, the quantities of length,
time, and mass are normalized by the astronomy unit (AU,
149 597 870.66 km), a year (a, 356.25× 86 400 s), and the
initial spacecraft mass (m0), respectively. Therefore, the
value of μ should be 39.476 926 AU3/a2, and the other values
should be made consistent with the normalized units.

4.1 Rendezvous problem from the sphere of influence of
Earth to Apophis

The mass of the spacecraft, the specific impulse of the elec-
tric propulsion system, and other parameters are given in Ta-
ble 1.

The rendezvous problem from Earth to Apophis is
considered; in this problem, the spacecraft starts with the
hyperbolic excess velocity vector vvv∞ provided by the launch

Table 1 The values of the parameters of the spacecraft

m0/kg Tmax/mN Isp/s η S/m2 L0/(N·km2) J2

1 750 160 1 600 0.37 26.78 3.03× 1025 1 082.63× 106
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vehicle at a parking orbit, flies through Earth’s sphere of in-
fluence, and finally arrives at Apophis with the same helio-
centric position and velocity. For simplicity, the initial time

t0, the final time tf and the boundary value are fixed. The
example therefore becomes a TPBVP. The boundary value is
listed in Table 2.

Table 2 The boundary value of the mission

Parameter Value

Initial time (MJD) 58 051.021

Initial position/km [127 477 808.816; 783 369 336.728; −354 430 668.107]

Initial velocity/(km·s−1) [−12.719 331; 27.696 476; −1.685 359]

Final time (MJD) 58 964.979

Final position/km [−160 034 368.427; 248 741 925.082; −5 126 777.683]

Final velocity/(km·s−1) [−1.935 541; −25.903 673; 1.333 462]

The techniques and the solving strategy presented in
Sect. 2 are applied to solve this fuel-optimal rendezvous
problem. In the process of optimizing the low-thrust trajec-
tory, because the ephemeris data are read frequently, the time
spent on the numerical calculation with the full ephemeris
model is longer than that with the two-body model. To im-
prove the computational efficiency, the low-thrust trajectory
optimization with the two-body model is solved first, and
then the solution is set as the initial value of the costate vec-
tors for the problem with the full ephemeris model.

Figure 3 shows the transfer trajectory with both the
two-body model and the full ephemeris model. Figure 4
shows the optimal magnitude of the thrust for both the two-
body model and the full ephemeris model, and the boot
and shutdown sequence is listed in Table 3. Both models
have identical boot and shutdown sequences, but the time is
slightly different. The fuel consumption is 221.4 kg in the
full ephemeris model, which is close to the fuel consump-
tion of 221.3 kg in the two-body model. Figure 5 shows the
control history in the two-body model and the full ephemeris
model. Through the contract, it is clear that the two-body

model is reasonable in the initial design of the trajectory, and
the result of the fuel consumption has a high reference value.
However, in practical engineering, the result designed with
the full ephemeris model has to be used.

Figure 6 shows the changing trend of various main per-
turbations during the spacecraft’s flight, which represents
typical perturbative conditions of the spacecraft near the
Earth. The units of the vertical axis are km/s2, the magnitude
of the central force of the Sun’s gravity is 5× 10−6 km/s2, and
the magnitude of the force of the electric propulsion system
is 9× 10−8 km/s2. The figure shows that the main perturba-
tions are Earth’s and the Moon’s gravities when the craft is
just leaving Earth. The main perturbations become the solar
radiation pressure and Earth’s gravity in the cruising flight,
and Jupiter’s and Venus’s gravities can not be ignored.

4.2 Rendezvous problem from Apophis to 1996FG3

The mass of the spacecraft, the specific impulse of the elec-
tric propulsion system, and other parameters are given in Ta-
ble 4.

Table 3 The boot and shutdown sequence

Sequence Full ephemeris model Two-body model

Departing from Earth 58 051.021 58 051.021

Turning on the electric propulsion system 58 203.024 58 203.476

Shutting off the electric propulsion system 58 206.280 58 206.974

Turning on the electric propulsion system 58 543.289 58 543.743

Shutting off the electric propulsion system 58 677.023 58 676.682

Turning on the electric propulsion system 58 718.982 58 718.869

Shutting off the electric propulsion system 58 778.684 58 778.596

Turning on the electric propulsion system 58 910.433 58 909.972

Targeting Apophis 58 964.979 58 964.979
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Fig. 3 Heliocentric orbit in the two-body model and the full
ephemeris model

Fig. 4 Fuel consumption rate in the two-body model and the full
ephemeris model

Fig. 5 Control history in the two-body model and the full ephemeris
model

Fig. 6 The magnitudes of various forces in the full ephemeris model

Table 4 The values of the parameters of the spacecraft

m0/kg Tmax/mN Isp/s η S/m2 L0/(N·km2) J2

2 000 40 1 600 0.37 26.78 3.03× 1025 1 082.63× 106

The rendezvous problem from Apophis to 1996FG3 via
an Earth GA with the full ephemeris model is considered. In
this problem, the spacecraft starts with the Apophis heliocen-
tric position and velocity and arrives at 1996FG3 with the
same heliocentric position and velocity of 1996FG3. This
example, which avoids the escaping orbit and the capture or-
bit, is chosen to highlight the core technique presented in
Sect. 3. It hardly matters, which is not because the effect of
the GA is not very significant in this example, but is because
the difference discussed here is between the optimization us-
ing the two-body model and using the full ephemeris model
for GA, rather than between the low-thrust trajectory opti-
mization with and without GA. The boundary value is listed
in Table 5.

Table 6 lists the result designed via the two-body
model, including the initial time, the final time, the hy-
perbolic excess velocity vvv−∞, vvv+∞, and the rotation angle δ0,
among others. The nominal orbit inclination and the perigee
distance are calculated from these values via the formula
given in Sect. 3. All the vectors are projected into the HECS.

Table 5 The boundary value of the mission

Parameter Value

Initial time (MJD) 59 731.267

Initial position/km [63 961 111.513; −93 560 609.112; 6 499 338.545]

Initial velocity/(km·s−1) [29.036 008; 23.084 452; −0.524 435]

Final time (MJD) 60 357.404

Final position/km [−159 321 689.607; 140 531 008.822; −2 374 517.803]

Final velocity/(km·s−1) [−14.064 768; −14.480 514; −0.674 215]
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Because of the highly nonlinear, highly sensitive initial
values of the costate vectors in the fuel-optimal problem with
the full ephemeris model, the first half of the mission has to
be solved, which starts from Apophis and arrives at the GA
planet, Earth. In this problem, the initial state and the start-
ing time are identical to those above, and the final boundary
value is the same as the inner constraints of the whole mis-

sion. The solution of the two-body model is given for the
equation of the first half of the mission, and then the solution
of the first half is given for the whole mission. A fixed step
is used in the switching detection integration method and the
homotopic approach. Approximately one week is required
to obtain the solutions of the whole mission using the full
ephemeris model. The result is listed in Table 7.

Table 6 The result designed via the two-body model

Variables Value

Event (MJD) 60 078.339

The incoming hyperbolic excess velocity vvv−∞/(km·s−1) [2.164 069, 8.946 526, 1.201 325]T

The outgoing hyperbolic excess velocity vvv+∞/(km·s−1) [3.120 867, 8.737 213, 0.296 646]T

The velocity increment ΔvvvGA/(km·s−1) [0.956 798, −0.209 313, −0.904 679]T

The rotation angle δ0/(◦) 8.237

The fuel consumption Δm/kg 567.98

The nominal value designed via the two-body model cos i0 −0.730 113

The nominal value designed via the two-body model rp0 59 785.98

Table 7 The result designed with the full ephemeris model

Variables Value

The time entering the sphere of influence of Earth tm0 (MJD) 60 077.210

The incoming hyperbolic excess velocity vvv−∞/(km·s−1) [2.163 688, 8.974 275, 1.203 794]T

The perigee time tm (MJD) 60 078.339

The time leaving the sphere of influence of Earth tm0 (MJD) 60 079.467

The outgoing hyperbolic excess velocity vvv+∞/(km·s−1) [3.125 561, 8.765 581, 0.267 808]T

The fuel consumption Δm/kg 567.40

Figure 7 shows the transfer trajectory in the HOCS. Fig-
ure 8 shows the trajectory near the Earth when it receives a
GA. In the full ephemeris model, the spacecraft flies through
the sphere of influence of Earth for two days, and the GA
trajectory near Earth is obtained. In the two-body model,
however, the trajectory flies through the center of Earth at
the event time and obtains the velocity increment instanta-
neously, which can not describe the GA trajectory.

Figures 9 and 10 give the fuel consumption rate and the
control history both for the two-body model and for the full
ephemeris model, which are close to each other. Table 8 lists
the boot and shutdown sequence.

Figure 11 shows the main force and perturbations dur-
ing the flight. As in the first example, the spacecraft flies
closely by the GA planet, and the spacecraft is subject to
perturbations throughout the flight, especially the solar radi-
ation pressure and the gravities of Venus and Jupiter.

Fig. 7 Heliocentric trajectory in the two-body model and the full
ephemeris model
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Fig. 8 Heliocentric trajectory near the Earth

Fig. 9 Fuel consumption rate in the two-body model and the full
ephemeris model

Fig. 10 Control history in the two-body model and the full
ephemeris model

Fig. 11 The magnitude of various forces in the full ephemeris
model

Table 8 The boot and shutdown sequence

Sequence Full ephemeris model Two-body model

Departing from Apophis 59 731.267 59 731.267

Shutting off the electric propulsion system 59 868.402 59 868.382

Turning on the electric propulsion system 59 939.324 59 939.181

Shutting off the electric propulsion system 59 979.444 59 979.564

Turning on the electric propulsion system 60 220.562 60 220.410

Shutting off the electric propulsion system 60 256.127 60 257.203

Turning on the electric propulsion system 60 311.355 60 313.876

Targeting 1996FG3 60 357.404 60 357.404

By analyzing the curve of the fuel consumption and the
control history, the trajectory, the boot and the shutdown se-
quence and the fuel consumption are similar to the results
obtained from the two-body model. The result designed via
the two-body model is therefore reasonable and convincing.

Figures 12 and 13 show the change of mechanical en-
ergy during the trajectory both in the two-body model and the
full ephemeris model, especially during the process of GA.
From the figure, because of the Earth’s gravity, the mechani-
cal energy of the spacecraft increases when it is approaching

the Earth in the full ephemeris model. However, the mechan-
ical energy decreases when the spacecraft leaves the Earth
because the gravity of the Earth becomes a resistance. The
change of the mechanical energy can exactly describe the en-
tire process in the full ephemeris model. Due to the GA of
Earth, the mechanical energy increases from approximately
−280 km2/s2 before the GA to approximately −260 km2/s2

after the GA. The mechanical energy remains the same dur-
ing the rest of trajectory after leaving Earth.
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Fig. 12 Energy-changing curve in the full ephemeris model

Fig. 13 Energy-changing curve at GA point in the full ephemeris
model

5 Conclusion

The low-thrust trajectory optimization using a full ephemeris
model is discussed, in which various perturbations, including
a third-body’s gravity perturbation, the solar radiation pres-
sure and the nonspherical perturbation, are introduced into
the dynamic equation. Compared with the central force and
the force of electric propulsion, the perturbation is tiny, and
the solution including the control history and the fuel con-
sumption rate shows little difference. Because the ephemeris
data are read frequently, the time spent on the numerical cal-
culation with the full ephemeris model is longer than that
with the two-body model.

In the full ephemeris model with GA, because the GA
planet can not be modeled as a massless point, two sets of
new equivalent inner constraints, which can accurately de-
scribe the GA process, are built to achieve the GA effect. The
solutions including the control history and the fuel consump-
tion rate of both models show little difference. Because the
spacecraft flies through the GA planet’s sphere of influence
during the flight, the perturbation of the GA planet is obvi-
ous, the nonlinearity of the shoot function is enhanced, the
domain of convergence becomes narrower, the initial values

of the costate vectors become more sensitive, and the solu-
tion of the shooting function becomes much harder to ob-
tain; in addition, the time spent on solving the shoot function
dozens of times longer than that using the two-body model,
even if the homotopic approach is used.

Comparing the two-body model and the full ephemeris
model, the design results both with and without GA show
that the solutions of both models show little difference, and
thus the two-body model has a high reference value. For a
practical mission, the preliminary design using the two-body
model is therefore reasonable, and its precision can be re-
liably improved in the subsequent design by using the full
ephemeris model.
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