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Abstract A new numerical technique named as fuzzy fi-
nite difference method is proposed to solve the heat con-
duction problems with fuzzy uncertainties in both the phys-
ical parameters and initial/boundary conditions. In virtue of
the level-cut method, the difference discrete equations with
fuzzy parameters are equivalently transformed into groups
of interval equations. New stability analysis theory suited to
fuzzy difference schemes is developed. Based on the param-
eter perturbation method, the interval ranges of the uncertain
temperature field can be approximately predicted. Subse-
quently, fuzzy solutions to the original difference equations
are obtained by the fuzzy resolution theorem. Two numeri-
cal examples are given to demonstrate the feasibility and effi-
ciency of the presented method for solving both steady-state
and transient heat conduction problems.

Keywords Heat conduction · Fuzzy uncertainties · Finite
difference method · Parameter perturbation · Stability analy-
sis

1 Introduction

Thermal analysis has undergone a rapid development in en-
gineering, especially in the field of aeronautics and astro-
nautics, where the coupled interaction of structure and heat
conduction is playing a more and more significant role. Tra-
ditional thermal analysis has been conducted by solving the
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heat conduction equations under the assumption that the
physical properties and initial/boundary conditions are deter-
ministic. But in actual engineering projects, due to model in-
accuracies, physical imperfections and system complexities,
uncertainties in material properties, geometric dimensions
and initial/boundary conditions are unavoidable, which will
lead to the uncertainty of the structural temperature field [1–
3].

The main approaches to model above uncertainties in-
clude three categories: stochastic analysis, fuzzy set and
interval model [4]. When there exists substantial statis-
tical information, the probability theory offers a power-
ful mathematical framework to represent such uncertainties.
The probabilistic approaches, such as Monte Carlo simu-
lation, stochastic perturbation method and stochastic spec-
tral method, can be designated as the most valuable solution
strategies [5–7]. Reliable application of probabilistic meth-
ods requires enough information to construct the probability
density functions of uncertain parameters, which are not eas-
ily available for many complex practical problems. In such
situations, non-probabilistic approaches, such as interval al-
gebra [8], convex models [9] and fuzzy set [10] can be used.
In this paper, the system uncertainties are described as fuzzy
variables. The fuzzy set theory, introduced by Zadeh [11] in
1965, is very suitable for representing the uncertain parame-
ter whose subjective probability based on the expert opinions
is available. Combined with the finite element method, the
fuzzy numerical analysis has achieved many research results
regarding non-deterministic models [12–14].

Over last several decades, the uncertain analysis of heat
conduction problems has not developed to the same level as
structural mechanics, but it still gained some valuable re-
sults. Hien and Kleiber [15] suggested the stochastic varia-
tional principle and stochastic finite element method for tran-
sient heat problem with random parameters. Kaminski and
Hien [16] tested the stochastic finite element method with a
laminated composite plate and examined the impact on the
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uncertain temperature response made by every single ran-
dom variable. By combining boundary element method with
orthogonal expansion theory, a new numerical method was
proposed for solving stochastic heat transfer problems [17].
On the basis of generalized polynomial chaos, Xiu [18] pre-
sented a random spectral decomposition method for the so-
lution of transient heat conduction subjected to random in-
puts. From the current research on uncertain heat conduction
we can see that the development of numerical computing
techniques are mainly concentrated in the field of stochas-
tic analysis with finite element method. However, the finite
difference method [19], with the unique advantages of in-
tuitive mathematical concepts, optional precision and easy
programming, should be emphasized in the uncertain ther-
mal analysis.

Hence, deriving the fuzzy difference method with
broader applicability is significant in both theory and en-
gineering practice. In view of this need, we take the heat
conduction problems with kinds of fuzzy parameters as an
example to propose the new method in this paper. Besides
the computing formulae of the fuzzy temperature field, we
will develop the stability theory applicable to fuzzy differ-
ence schemes.

2 Basis of fuzzy mathematics

Definition 1: Given the definition domain U, the mapping

A : U → [0, 1], u| → A(u) (1)

is called a fuzzy set. A(u) is denoted as the membership func-
tion, whose values locate in a closed interval [0, 1]. If only
the point values 0 and 1 are suitable, the fuzzy set A degen-
erates into a normal one, which means that the normal set is
a special form of the fuzzy sets.

Definition 2: Given a fuzzy set A, for any λ ∈ [0, 1], the
normal set

Aλ = {u|u ∈ U, A(u) � λ} (2)

is defined as the λ cut set, where λ is the cut level. Usually,
the cut sets are considered as intervals of confidence, since
in the case of convex fuzzy sets, they are closed intervals
associated with a gradation of confidence between [0, 1].

Definition 3: For any λ ∈ [0, 1], the mathematical operation

(λA)(u) = λ ∧ A(u) = min{λ, A(u)} (3)

is called the multiplying operator of real number λ and fuzzy
set A. Obviously, the product λA is also a fuzzy set.

Decomposition Theorem: In virtue of the cut sets, any
fuzzy set A defined in the domain U can be visually ex-
pressed by normal sets

A =
⋃

λ∈[0,1]
(λAλ). (4)

3 Steady-state heat conduction problem

The governing equation of a two-dimensional steady-state

heat conduction problem with a heat source can be written
as

k
(
∂2u
∂x2
+
∂2u
∂y2

)

+ f (x, y) = 0, (x, y) ∈ G, (5)

where G is a bounded domain, u = u(x, y) stands for the tem-
perature field, k represents the heat conductivity of the ma-
terial, and f (x, y) is the intensity of the heat source. In order
to determine the solution to the elliptic equation (5), here we
provide three commonly used types of boundary conditions
as follows.

Dirichlet Condition: the temperature uw on the bound-
ary is given as

u|Γ = uw. (6)

Neumann Condition: the heat flux qqq is given as

−k
∂u
∂nnn

∣∣∣∣∣
Γ
= qqq, (7)

where nnn is the unit normal vector of the boundary.
Robin Condition: the temperature uf of the fluid cir-

cumstance and the heat transfer coefficient hhh are known

−k
∂u
∂nnn

∣∣∣∣∣
Γ
= hhh(u − uf). (8)

In the finite difference method, derivatives in control
equations are usually replaced by difference schemes. Here
we just take the five-point scheme with second-order accu-
racy into account and gradually introduce the matrix expres-
sion of steady-state heat conduction equation with fuzzy pa-
rameters. Firstly, choose space steps h1, h2 along the x-
axis and y-axis respectively, and then establish two groups
of straight lines parallel to the axis to divide the bounded
region G into finite units. Subsequently, denote the temper-
ature at grid node (xi, y j) by ui, j, adopt second-order central
difference schemes to replace the derivative terms ∂2u/∂x2

and ∂2u/∂y2 in Eq. (5), and obtain the following discrete ex-
pression

k
ui+1, j − 2ui, j + ui−1, j

h2
1

+ k
ui, j+1 − 2ui, j + ui, j−1

h2
2

+ fi, j = 0, (9)

which can be rewritten as

k

h2
2

ui, j−1 +
k

h2
1

ui−1, j −
(2k

h2
1

+
2k

h2
2

)

ui, j

+
k

h2
1

ui+1, j +
k

h2
2

ui, j+1 = − fi, j. (10)

By means of matrices and vectors, the commonly used
finite difference formats including Eq. (10) can always be ex-
pressed as an algebraic equation

KKKUUU = FFF, (11)

where UUU is the temperature vector at all nodes; KKK represents
the thermal stiffness matrix; FFF stands for the thermal load
vector.
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In this paper, fuzziness in both system parameters and
boundary conditions, such as heat conductivity k, intensity
of the heat source f , heat flux qqq, boundary temperature uw,
ambient temperature uf and heat transfer coefficient hhh, are all
taken into account simultaneously. From various approaches
to deal with boundary conditions [20], we know that fuzzi-
ness in every parameter will lead to certain uncertainties in
coefficient matrix KKK or vector FFF in Eq. (11), so that the tem-
perature field UUU will present certain fuzzy uncertainty.

Supposed that all the uncertain parameters can be de-
noted as a fuzzy vector

ααα = (α1, α2, · · · , αm)T, (12)

the difference equation of the steady-state heat conduction
problem with fuzzy parameters can be expressed as

KKK(ααα)UUU = FFF(ααα). (13)

Similarly, for the high-dimensional fuzzy heat conduc-
tion equation, by using difference schemes to approximate
the spatial derivative in every direction, we can still derive
its matrix expression like Eq. (13).

4 Transient heat conduction problem

For simplicity, here we just take the following one-
dimensional transient heat conduction equation as an in-
stance to introduce the common difference discrete schemes

ρc
∂u
∂t
+ k
∂2u
∂x2
+ f (x) = 0, 0 < t � T, (14)

where u = u(x, t) is the unsteady temperature field; ρ and c
are the density, specific heat capacity of the material, respec-
tively.

Besides the boundary conditions as shown in Eqs. (6)–
(8), an initial condition is necessary for solving transient
problems. We assume that the distribution law φ(x) of the
initial temperature field is known, i.e.,

u(x, 0) = φ(x). (15)

Space step Δx and time step Δt are used to divide the
spatial domain and time domain, respectively. Then denote
the temperature at grid node (x j, tk) by uk

j, and adopt forward
difference scheme in time and central difference scheme in
space to compose a discrete equation

ρc
uk+1

j − uk
j

Δt
+ k

uk
j+1 − 2uk

j + uk
j−1

Δx2
+ f j = 0. (16)

By introducing a transition parameter r = kΔt/(ρcΔx2),
Eq. (16) can be simplified as

uk+1
j = −ruk

j−1 + (1 + 2r)uk
j − ruk

j+1 −
Δt
ρc

f j, (17)

which is called the forward difference scheme.
Similarly, by adopting backward difference in time and

central difference in space at grid node (x j, tk+1), the so-
called backward difference scheme is presented to be

ruk+1
j−1 + (1 − 2r)uk+1

j + ruk+1
j+1 = uk

j −
Δt
ρc

f j. (18)

Combining the above two schemes to extract the arith-
metic mean, one can get the six-node symmetrical difference
format as follows
r
2

uk+1
j−1 + (1 − r)uk+1

j +
r
2

uk+1
j+1,

= − r
2

uk
j−1 + (1 + r)uk

j −
r
2

uk
j+1 −

Δt
ρc

f j, (19)

In all, the commonly used two-layer finite difference
formats such as Eqs. (17)–(19) can be expressed in the form
of matrices and vectors, i.e.,

AAAUUUk+1 = BBBUUUk + FFF, (20)

where UUUkkk = (uk
1, u

k
2, · · · , uk

N)T, FFF = −Δt
ρc

( f1, f2, · · · , fN)T; AAA,

BBB are N × N-order matrices.
In virtue of the fuzzy vector, we can denote the recur-

rence equation (20) with fuzzy parameters as

AAA(ααα)UUUk+1 = BBB(ααα)UUUk + FFF(ααα). (21)

Besides, by extending the coefficient matrices and re-
lated vectors, such an expression as Eq. (21) could be de-
rived for high-dimensional fuzzy transient heat conduction
problems.

5 Stability analysis

As we know, fuzzy variables can be viewed as a general-
ization of interval variables. Considering values of interval
variables lie within the lower and upper bounds, the fuzzy
approach generalizes this concept by introducing a member-
ship function. Thus, for any λ ∈ [0, 1], the fuzzy parameter
vector can be visually expressed by an interval vector, i.e.,

αααλ = ((α1)λ, (α2)λ, · · · , (αm)λ)T

= (αI
1,λ, α

I
2,λ, · · · , αI

m,λ)
T = αααI

λ. (22)

Therefore, given one fixed cut level, the original dis-
crete equations (13) and (21) with fuzzy parameters can be
transformed into the following formats with interval param-
eters, respectively,

KKK(αααI
λ)UUU = FFF(αααI

λ), (23)

AAA(αααI
λ)UUU

k+1 = BBB(αααI
λ)UUU

k + FFF(αααI
λ). (24)

Beside the interval vector αααI
λ, it is obvious that co-

efficient matrices AAA(αααI
λ), BBB(αααI

λ) and right vector FFF(αααI
λ) in

Eq. (24) also depend on the time step Δt and space step Δx.
Supposing that for any ααα∗ ∈ αααI

λ, the matrix AAA(ααα∗,Δt,Δx) is
always nonsingular, thus we can introduce another parameter
matrix

CCC(αααI
λ,Δt,Δx) = AAA−1(αααI

λ,Δt,Δx) × BBB(αααI
λ,Δt,Δx). (25)

For a discrete equation with an initial condition, if it can
be ensured that the error introduced in one time layer would
not be constantly amplified in the later time, then the differ-
ence discrete format is said stable [21]. Accordingly, given
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the initial condition UUU0 = ΨΨΨ , Eq. (24) can be rewritten as

UUUk+1 = CCC(αααI
λ,Δt,Δx)UUUk

+AAA−1(αααI
λ,Δt,Δx) × FFF(αααI

λ,Δt,Δx),

UUU0 = ΨΨΨ.

(26)

In this paper, the error εεε0 in initial condition is taken
into account to investigate the interval stability. Denoting
the corresponding solution by ŨUU, one can get

ŨUU
k+1
= CCC(αααI

λ,Δt,Δx)ŨUU
k

+AAA−1(αααI
λ,Δt,Δx) × FFF(αααI

λ,Δt,Δx),

ŨUU
0
= ΨΨΨ + εεε0.

(27)

By using εεεk+1 to express the error in every time layer,
and subtracting Eq. (27) from Eq. (26), we obtain

εεεk+1 = ŨUU
k+1 −UUUk+1 = CCC(αααI

λ,Δt,Δx)(ŨUU
k −UUUk)

= CCCk+1(αααI
λ,Δt,Δx)εεε0,

εεε0 = ŨUU
0 −UUU0.

(28)

If there exists a constant K > 0, for any UUU0 ∈ RRRN ,
0 < Δt � Δt0, 0 < Δx � Δx0, ααα∗ ∈ αααI

λ, the following inequa-
tion is always satisfied,
∥∥∥εεεk+1

∥∥∥ =
∥∥∥CCCk+1(αααI

λ,Δt,Δx)εεε0
∥∥∥ � K

∥∥∥εεε0
∥∥∥ , (29)

and then the interval difference format is considered to be
stable.

In other words, the necessary and sufficient condition
to ensure the stability is
∥∥∥CCCk+1(αααI

λ,Δt,Δx)
∥∥∥ � K, (30)

which means that the interval matrix family
{
CCCk+1(αααI

λ,Δt,Δx)
∣∣∣ 0 < Δt � Δt0, 0 < Δx � Δx0

}
(31)

is uniformly bounded.
Based on the traditional Von Neumann qualification,

for anyααα∗ ∈ αααI
λ, the spectral radius of the interval coefficient

matrix CCC(αααI
λ,Δt,Δx) is required to satisfy

ρ(CCC(ααα∗,Δt,Δx)) � 1 + O(Δt,Δx), ∀ααα∗ ∈ αααI
λ, (32)

which is called the interval Von Neumann condition to ana-
lyze the stability of interval difference scheme.

For any cut level λ ∈ [0, 1], if the stability condition
such as inequation (32) is always satisfied to the correspond-
ing interval difference format,

max
ααα∗∈αααI

λ

ρ(CCC(ααα∗,Δt,Δx)) � 1 + O(Δt,Δx), ∀λ ∈ [0, 1], (33)

then the original fuzzy difference equation (21) is claimed to
be stable regarding the initial values.

6 Parameter perturbation method

Parameter perturbation technique, combined with the finite
element method, has gained many research results in struc-

tural mechanics with uncertain parameters [22], while it is
yet unexplored in thermal analysis. In this section, we will
focus on the application of parameter perturbation in the
fuzzy finite difference method to deal with uncertain heat
conduction problems.

In Eq. (23), expand the coefficient matrix KKK(αααI
λ) and

right vector FFF(αααI
λ) at the midpoints of the interval parame-

ters, ignore the terms higher than the second order ones and
obtain the following approximate expressions according to
the interval expansion principle [23].

KKK(αααI
λ) = KKK(αααc

λ) +
m∑

i=1

∂KKK
∂αi,λ

∣∣∣∣∣
αααc
λ

(αI
i,λ − αc

i,λ)

= KKK(αααc
λ) +

m∑

i=1

∂KKK
∂αi,λ

∣∣∣∣∣
αααc
λ

Δαi,λδi

= KKK(αααc
λ) + ΔKKK(αααI

λ),

FFF(αααI
λ) = FFF(αααc

λ) +
m∑

i=1

∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

(αI
i,λ − αc

i,λ)

= FFF(αααc
λ) +

m∑

i=1

∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

Δαi,λδi

= FFF(αααc
λ) + ΔFFF(αααI

λ),

(34)

where αc
i,λ = (ᾱi,r + αi,r)/2 and Δαi,r = (ᾱi,r − αi,r)/2 are the

midpoint and the radius of the interval number αI
i,λ, respec-

tively; the transition parameter δi belongs to a fixed interval,
i.e. δi = [−1, 1].

The steady-state interval temperature field can be de-
noted as the sum of midpoint and radius under the λ cut level

UUU I
λ = UUUc

λ +ΔΔΔ(UUUλ)I. (35)

Substituting Eqs. (34) and (35) into Eq. (23)

(KKK(αααc
λ) + ΔKKK(αααI

λ))(UUU
c
λ +ΔΔΔ(UUUλ)I) = FFF(αααc

λ) + ΔFFF(αααI
λ) (36)

and ignoring the cross second-order small terms, one can ob-
tain an approximate solution

UUUc
λ = KKK−1(αααc

λ)FFF(αααc
λ),

ΔΔΔ(UUUλ)I = KKK−1(αααc
λ)(ΔFFF(αααI

λ) − ΔKKK(αααI
λ)UUU

c
λ)

= KKK−1(αααc
λ)
( m∑

i=1

∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

Δαi,λδi

−
m∑

i=1

∂KKK
∂αi,λ

∣∣∣∣∣
αααc
λ

Δαi,λδiUUU
c
λ

)

=

m∑

i=1

KKK−1(αααc
λ)
(
∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

− ∂KKK
∂αi,λ

∣∣∣∣∣
αααc
λ

UUUc
λ

)

Δαi,λδi

= ΔΔΔ(UUUλ)δ = ΔΔΔ(UUUλ) · [−1, 1],

(37)

where

ΔΔΔ(UUUλ) =
m∑

i=1

∣∣∣∣∣KKK
−1(αααc

λ)
(
∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

− ∂KKK
∂αi,λ

∣∣∣∣∣
αααc
λ

UUUc
λ

)

Δαi,λ

∣∣∣∣∣. (38)
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The interval of the steady-state fuzzy temperature field
under the λ cut level can be calculated by

UUU I
λ = [UUUc

λ −ΔΔΔ(UUUλ),UUUc
λ +ΔΔΔ(UUUλ)]. (39)

Similarly, in terms of the Taylor expansion series, the
interval coefficient matrices and vector in Eq. (24) can be ex-
pressed as the sum of midpoint and radius. Subsequently,
based on the matrix perturbation theory, the approximate cal-
culations of the transient interval temperature field can be
obtained by

(UUUk+1
λ )c = AAA−1(αααc

λ)(BBB(αααc
λ)(UUU

k
λ)

c + FFF(αααc
λ)),

ΔΔΔ(UUUk+1
λ )I = AAA−1(αααc

λ)(ΔFFF(αααI
λ) + ΔBBB(αααI

λ)(UUU
k
λ)

c

+BBB(αααc
λ)ΔΔΔ(UUUk

λ)
I − ΔAAA(αααI

λ)(UUU
k+1
λ )c)

= AAA−1(αααc
λ)
( m∑

i=1

∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

Δαi,λδi

+

m∑

i=1

∂BBB
∂αi,λ

∣∣∣∣∣
αααc
λ

Δαi,λδi(UUUk
λ)

c + BBB(αααc
λ)ΔΔΔ(UUUk

λ)δ

−
m∑

i=1

∂AAA
∂αi,λ

∣∣∣∣∣
αααc
λ

Δαi,λδi(UUUk+1
λ )c
)

=

m∑

i=1

AAA−1(αααc
λ)
(
∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

+
∂BBB
∂αi,λ

∣∣∣∣∣
αααc
λ

(UUUk
λ)

c

− ∂AAA
∂αi,λ

∣∣∣∣∣
αααc
λ

(UUUk+1
λ )c
)

Δαi,λδi

+AAA−1(αααc
λ)BBB(αααc

λ)ΔΔΔ(UUUk
λ)δ

= ΔΔΔ(UUUk+1
λ )δ

= ΔΔΔ(UUUk+1
λ ) · [−1, 1],

(40)

where

ΔΔΔ(UUUk+1
λ ) =

m∑

i=1

∣∣∣∣∣AAA
−1(αααc

λ)
(
∂FFF
∂αi,λ

∣∣∣∣∣
αααc
λ

+
∂BBB
∂αi,λ

∣∣∣∣∣
αααc
λ

(UUUk
λ)

c

− ∂AAA
∂αi,λ

∣∣∣∣∣
αααc
λ

(UUUk+1
λ )c
)

Δαi,λ

∣∣∣∣∣

+
∣∣∣∣AAA−1(αααc

λ)BBB(αααc
λ)ΔΔΔ(UUUk

λ)
∣∣∣∣. (41)

Therefore, the interval range of the transient fuzzy tem-
perature field at every time layer under the λ cut level can be
expressed as

(UUUk+1
λ )I = [(UUUk+1

λ )c − Δ(UUUk+1
λ ), (UUUk+1

λ )c + Δ(UUUk+1
λ )]. (42)

Finite cut levels λi ∈ [0, 1] i = 1, 2, · · · , n are cho-
sen to express the character of the fuzzy parameter vector.
For any fixed cut level λi, the interval temperature field can
be approximately calculated by using the above perturbation
method. Thus, based on the fuzzy decomposition theorem,
the final fuzzy temperature field of steady-state and transient
thermal conduction problems can be expressed as

UUU =
⋃

i=1,2,··· ,n
(λiUUU I

λi
), UUUk+1 =

⋃

i=1,2,··· ,n
(λi(UUUk+1

λi
)I). (43)

7 Numerical examples

7.1 Steady-state fuzzy temperature field of a circular plate

In order to test the performance of the proposed method,
here we consider a circular plate with the thickness of 0.1m,
as shown in Fig. 1, where the left and right borders are
coated with heat-insulating layers. Due to the errors in man-
ufacture and measurement, some parameters present fuzzy
uncertainties, where the membership functions of heating
ambient temperature Tuf(◦C), internal working temperature
Tdf(◦C), heat conductivity k (W/(m·◦C)), heat transfer coef-
ficient h (W/(m2·◦C)) and heat source f (W/m3) all satisfy
mid-trapezoid distribution as follows

μ(Tuf) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(Tuf − 85)/10,

1,

(110 − Tuf)/10,

0,

Tuf � 85,

85 < Tuf < 95,

95 � Tuf � 105,

105 < Tuf < 115,

Tuf � 115,

μ(Tdf) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(Tdf − 10)/5,

1,

(30 − Tdf)/5,

0,

Tdf � 10,

10 < Tdf < 15,

15 � Tdf � 25,

25 < Tdf < 30,

Tdf � 30,

μ(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(k − 15)/3,

1,

(25 − k)/3,

0,

k � 15,

15 < k < 18,

18 � k � 22,

22 < k < 25,

k � 25,

μ(h) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(h − 70)/5,

1,

(90 − h)/5,

0,

h � 70,

70 < h < 75,

75 � h � 85,

85 < h < 90,

h � 90,

μ( f ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

( f − 90)/5,

1,

(110 − f )/5,

0,

f � 90,

90 < f < 95,

95 � f � 105,

105 < f < 110,

f � 110.
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Fig. 1 Circular plate model and difference elements

Divide the plate uniformly along the thickness direc-
tion as shown in Fig. 1, and establish the algebraic equation
based on the five-point difference scheme. Under the eleven
cut levels λk = (k − 1) × 0.1, k = 1, 2, · · · , 11, the lower
and upper bounds of the interval temperature field can be ef-
ficiently calculated by the proposed parameter perturbation
method.

From the results listed in Table 1, we can see that the
ranges of interval temperatures at reference points gradually
decrease when the cut level increases. Furthermore, in virtue
of the decomposition theorem, corresponding membership
functions of the fuzzy temperature field are plotted in Fig. 2.

Table 1 Bounds of the temperature response under
different cut levels

Cut level
Bounds

Reference points

λ 1 2 3 4 5 6

0
Lower 53.27 50.98 48.69 46.15 43.31 40.46

Upper 80.61 77.40 74.19 71.26 68.67 66.07

0.3
Lower 55.73 53.36 50.99 48.41 45.60 42.79

Upper 77.98 74.92 71.86 69.02 66.42 63.83

0.5
Lower 57.38 54.95 52.52 49.92 47.12 44.33

Upper 76.25 73.28 70.31 67.52 64.92 62.33

0.7
Lower 59.03 56.54 54.05 51.43 48.65 45.86

Upper 74.52 71.65 68.76 66.02 63.43 60.83

1.0
Lower 61.53 58.94 56.35 53.68 50.92 48.16

Upper 71.96 69.21 66.45 63.77 61.17 58.58

Fig. 2 Fuzzy temperature responses at reference points

It is illustrated that fuzzy uncertainties in physical parame-
ters and boundary condition could cause non-negligible im-
pact on the temperature field, whose membership function
still satisfies trapezoid distribution.

7.2 Transient fuzzy temperature field of a square-sectioned
column

Figure 3 depicts a 20 mm× 10 mm square-sectioned in-
finitely long column with adiabatic lower and upper bor-
ders. It is supposed that the physical parameters, initial value
and boundary conditions are all fuzzy, where the member-
ship functions of heat conductivity k (W/(m·◦C)), specific
heat capacity c (J/(kg·◦C)), material density ρ (kg/m3), initial
temperature T |t=0(◦C),ambient temperature Tf(◦C) and heat
transfer coefficient h (W/(m2·◦C)) all satisfy the following
normal distribution

μ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

exp[−(x − aα)2/b2
α], |x − aα| � cα,

0, |x − aα| > cα.
(44)

Fig. 3 Square-sectioned column

For every fuzzy parameter, the specific values of char-
acteristic parameters aα, bα, cα in Eq. (44) are listed in Ta-
ble 2.

Table 2 Specific values of characteristic parameters

Characteristic parameters
Fuzzy parameters

k c ρ T |t=0 Tf h

aα 16 200 5 000 20 100 1 600

bα 0.9 4.7 23.3 0.9 2.3 23.3

cα 2 10 50 2 5 50

In order to calculate the structural transient temperature
field in the heating process, space steps Δx = Δy = 1 mm are
selected to divide the model into 20× 10 square elements by
two groups of parallel lines as shown in Fig. 4. To ensure the
fuzzy stability of the six-node symmetrical difference for-
mat with second-order accuracy, we set the time step to be
Δt = 0.01 s. It should be noted that owing to the symmetry
of structure about x = 10 mm, the analysis needs to cover
only half of the structure in the calculating process, which
can effectively reduce the computational cost.
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Fig. 4 Discrete diagram of difference elements

Given the uniform cut level for all the fuzzy parame-
ters, by using the proposed interval parameter perturbation
method we can easily obtain the time evolutions of the tem-
perature bounds at reference points 1, 2, 3, which are plotted
in Figs. 5–7, respectively. It is visible that the node tempera-
ture always changes in a certain interval range for any fixed
cut level and the range gradually decreases with the increase
of cut level. After the time t = 40 s, the upper and lower
bounds at the three reference points all tend to be stationary.
The same case happens to other points, which means that
the transient temperature field enters gradually into a steady-
state.

Fig. 5 Time evolution of the temperature at reference point 1 under
different cut levels

Fig. 6 Time evolution of the temperature at reference point 2 under
different cut levels

Fig. 7 Time evolution of the temperature at reference point 3 under
different cut levels

At different time instants, based on the interval tem-
perature results and decomposition theorem, we can plot in
Figs. 8 and 9 the membership functions of the fuzzy temper-
ature responses at the three reference points. It is illustrated
that the fuzzy uncertainties in structural parameters and ini-
tial/boundary conditions bring certain fuzziness to the tran-
sient temperature field, whose membership function still fol-
lows the normal distribution.

Fig. 8 Membership function of the fuzzy temperature at time
t = 10 s

Fig. 9 Membership function of the fuzzy temperature at time
t = 20 s
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8 Conclusion

In this study, we have combined the fuzzy theory with the
finite difference method, and proposed a new technique,
named as fuzzy finite difference method, to analyze the un-
certainty in the heat conduction problems with fuzzy param-
eters. The fuzzy uncertainties in structural parameters and
initial/boundary conditions are all fully considered, which
makes the calculation more objective. By introducing the cut
level, the fuzzy parameters are transformed into a series of
interval parameter vectors. Subsequently new stability the-
ory suited to transient fuzzy difference schemes is developed.
On the basis of parameter perturbation theory, the upper and
lower bounds of the temperature field can be obtained more
effectively. Then the membership function of the fuzzy tem-
perature field is derived by means of the decomposition the-
orem. Compared with the existing uncertain finite element
method, application of the proposed fuzzy finite difference
method avoids the complex discrete process and greatly im-
proves the efficiency of numerical calculation. For steady
state and transient state, two numerical examples fully val-
idate the feasibility and superiority of the suggested model
and method for dealing with heat conduction problems with
kinds of fuzziness. Furthermore, the research in this paper
aims at providing a potential tool for uncertainty analysis in
the thermal material engineering.
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