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Abstract The advantage of solar sails in deep space ex-
ploration is that no fuel consumption is required. The helio-
centric distance is one factor influencing the solar radiation
pressure force exerted on solar sails. In addition, the solar
radiation pressure force is also related to the solar sail ori-
entation with respect to the sunlight direction. For an ideal
flat solar sail, the cone angle between the sail normal and the
sunlight direction determines the magnitude and direction of
solar radiation pressure force. In general, the cone angle can
change from 0◦ to 90◦. However, in practical applications,
a large cone angle may reduce the efficiency of solar radi-
ation pressure force and there is a strict requirement on the
attitude control. Usually, the cone angle range is restricted
less more than an acute angle (for example, not more than
40◦) in engineering practice. In this paper, the time-optimal
transfer trajectory is designed over a restricted range of the
cone angle, and an indirect method is used to solve the two
point boundary value problem associated to the optimal con-
trol problem. Relevant numerical examples are provided to
compare with the case of an unrestricted case, and the effects
of different maximum restricted cone angles are discussed.
The results indicate that (1) for the condition of a restricted
cone-angle range the transfer time is longer than that for the
unrestricted case and (2) the optimal transfer time increases
as the maximum restricted cone angle decreases.
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1 Introduction

Solar sails consist of large-area reflective films that harvest
thrust by reflecting solar photons without fuel consumption.
Since the early 1990s, solar sails have aroused increasing in-
terest in both theoretical and experimental communities. The
launch of IKAROS in May 2010, the first successful solar
sail mission, denoted the emergence of the engineering stage
of solar sail technology. In fact, many research institutes,
such as NASA, JAXA, ESA, and DLR, have started projects
to develop solar sail technology. The Japanese IKAROS (In-
terplanetary Kite-craft Accelerated by Radiation Of the Sun)
developed by JAXA is the first successful spacecraft to test
the solar radiation pressure as the propellantless propulsion,
which was launched into a near-Venus transfer trajectory in
May 2010 [1]. In November 2010, the NanoSail-D solar sail
craft developed by NASA, which is a small satellite to study
the deployment of a solar sail, was successfully launched
into a low Earth orbit [2]. In November 2009, DLR and ESA
agreed to a 3-step Gossamer road map to solar sailing. The
goals of this project are to develop and to demonstrate solar
sail technology as a safe, reliable and manageable propul-
sion technique for long-lasting and deep-space missions [3].
These institutes have implemented a series of solar sail re-
lated activities, including a significant amount of theoreti-
cal researches and pre-launch experiments [4–7]. The two
successful solar sailing demonstrations in space have led to
developments of solar sail knowledge and related technolo-
gies that can not be acquired by ground-based experiments.
Nevertheless, some of the key technologies of solar sails are
still immature, including the solar sail craft design and man-
ufacturing process, trajectory optimization, and attitude con-
trol. In fact, the launching of demonstration flights brings
new challenges to theoretical studies, which are now being
requested to be more practical and detailed.

In deep space exploration, the attractive advantage of
using solar sails is its propellantless propulsion. Therefore,
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through solar sailing, orbital maneuvers and interplanetary
transfers can be performed without consuming any fuel. In
general, because the solar radiation pressure force is rather
small, the deep space flight time is relatively long. As a re-
sult, trajectory optimization to achieve the minimum flight
time based on solar sailing is hurry.A number of studies on
solar-sailing-based interplanetary missions were performed
in the late 1970s, with on the most notable being the study of
a rendezvous with Comet Halley in 1986 [8]. Sauer [9] pre-
sented detailed trajectory designs, based upon a generalized
variational approach, assuming the orbits of Earth and Mars
to be circular and coplanar. Lebedev and Zhukov [10] first
investigated the time-optimal transfer from Earth to Mars us-
ing a solar sail. Jayaraman [11] revisited the minimum-time
transfers between the orbits of Earth and Mars using differ-
ent characteristic accelerations. Jayaraman’s solutions were
different from those obtained by Lebedev and Zhukov. Ja-
yaraman’s transfer times were approximately 10% larger and
his sail orientation histories were significantly different to the
results of Lebedev and Zhukov. Wood et al. [12] commented
on the work of Jayaraman, indicating that the solutions in
Ref. [11] were correct and the transversality condition of
variational calculus had been applied incorrectly. Indirect
methods are quite conventional and available for solving tra-
jectory optimization problems, and in many literatures some
practical details of indirect methods were discussed [13–16].
In recent years, many trajectory optimization studies of solar
sailing exploration missions have been reported. Hughes and
Macdonald [17] studied a Mercury sample return mission us-
ing solar sail propulsion and provided details of the mission
and a trajectory analysis. Mengali and Quarta [18] investi-
gated the potential offered by a solar-sail-based rendezvous
mission toward Asteroid 99942 Apophis, using an optical
solar sail model to determine the rapid transfer trajectories.
In this paper, for an ideal flat solar sail, the transfer time for
rendezvous mission is optimized over a restricted cone-angle
range, and an optimal control model will be proposed by us-
ing an indirect method for the optimization problem.

2 Optimal control model to determine the minimum ren-
dezvous transfer time

Consider the problem of minimizing the transfer time of in-
terplanetary rendezvous mission. In this paper, an ideal, per-
fectly reflecting flat sail is assumed. The lightness number
β is used to describe the solar sail performance of the solar
radiation pressure acceleration. A cone angle α and a clock
angle δ are used to define the orientation of the solar sail.
As shown in Fig. 1, the cone angle α is defined as the angle
between the sail surface normal nnn and the incident radiation
direction, and the clock angle δ is defined as the angle be-
tween the solar sail heliocentric angular momentum hhh and
the projection of nnn onto the plane normal to the radial direc-
tion of solar sail. Therefore, the unit vector of the sail surface
normal nnn may be written as

n̂nn = cosαr̂rr + sinα cos δĥhh + sinα sin δt̂tt, (1)

where the unit vectors r̂rr, ĥhh, and t̂tt are along the radial, orbit
normal and transverse directions, respectively. The vectors
with a symbol “ˆ” denotes the unit vectors. Therefore, the
solar radiation pressure force can be written as

FFFSRP = β
μS

r2
cos2 αn̂nn, (2)

where μS is the solar gravitational constant, and r is the he-
liocentric distance of solar sail, and β is the lightness number
of the solar sail..

Fig. 1 Definitions of the cone angle and the clock angle for solar
sails

2.1 Equations of motion

Considering the two-body model with no perturbations, the
forces exerted on the solar sail are solar gravity and the force
due to solar radiation pressure. Then, the solar sail dynamic
equation is given by

ṙrr = vvv,

v̇vv = −μS

r3
rrr + FFFSRP.

(3)

For convenience in calculations, the solar gravitational
constant μS is normalized to 1 when the distance unit is the
non-dimensional astronomical unit (AU). Correspondingly,
the non-dimensional time unit is used, 1 year being equiva-
lent to 2π nondimensional units. Therefore, the nondimen-
sional equations of motion for an ideal solar sail in the helio-
centric ecliptic inertial frame can be given as

ṘRR = VVV ,

V̇VV = − 1
R3

RRR + β
1

R2
cos2 αn̂nn,

(4)

where RRR and VVV are the nondimensional position and velocity
vectors. For an ideal solar sail, the control variable is the unit
sail normal vector n̂nn, which is equivalent to the sail attitude
angles α and δ according to the definition of Eq. (1).

In general, the cone angle can change from 0◦ to 90◦.
In this study, we consider the case in which the cone angle
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range is restricted less than an acute angle. The maximum
cone angle is indicated as αmax. Therefore, the control vari-
ables satisfy the following constraints

n̂nn(t) ∈ {α(t), δ(t)|0◦ � α(t) � αmax < 90◦,

0◦ � δ(t) � 360◦}. (5)

In this case, the sail normal vector n̂nn can change in a cone,
but not in a full half plane.

2.2 Initial and terminal constraints

Consider the interplanetary rendezvous problem of solar sail-
ing, with the solar sail’s departure time from the start launch
planet/asteroid being t0 and the rendezvous time to the target
planet/asteroid being tf . Assume that the solar sail departs
from the heliocentric orbit of the launch planet/asteroid, so
the position RRR(t0) and velocity VVV(t0) of the sail at t0 are the
same as those of the start launch planet/asteroid RRRstart(t0) and
VVVstart(t0); then the initial state constraint can be described as

ΨΨΨ (t0) =

⎡
⎢⎢⎢⎢⎢⎣

RRR(t0) −RRRstart(t0)

VVV(t0) −VVVstart(t0)

⎤
⎥⎥⎥⎥⎥⎦ = 0. (6)

At the final time tf for a rendezvous mission, the
sail craft’s final position RRR(tf) and velocity VVV(tf) should be
the same as those of the target planet/asteroid RRRend(tf) and
VVVend(tf), so the terminal state constraint is

ΨΨΨ (tf) =

⎡
⎢⎢⎢⎢⎢⎣

RRR(tf) −RRRend(tf )

VVV(tf) −VVVend(tf)

⎤
⎥⎥⎥⎥⎥⎦ = 0. (7)

Thus, Eqs. (6) and (7) define the state boundary condi-
tion.

The initial and final time constraints are given by a 4-D
inequality function.

σσσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 min − t0

t0 − t0 max

tf min − tf

tf − tf max

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (8)

where t0 min and t0 max are the minimum and maximum ini-
tial times, and tfmin and tfmax are the minimum and maximum
final times.

2.3 Optimal control law

For a solar sail, no fuel is consumed. As a result, the flight
time is usually used as the optimization index. Thus the op-
timal control problem is to minimize the flight time, and the
objective function is given by

arg
(

min
(

J =
∫ tf

t0

λ0dt
))

, (9)

where t0 and tf denote the initial and the final times, respec-
tively. The positive weight factor λ0 is used for normaliza-
tion, which will be discussed later.

According to the proposed indirect method, the opti-
mal control problem can be transformed into a two-point
boundary-value problem by using Pontryagin’s minimum

principle. By introducing the costate vector λλλ
Δ
= (λλλR;λλλV ),

the Hamiltonian function of the system is defined as

H = λ0 + λλλR ·VVV + λλλV ·
(

− 1
R3

RRR + β
1

R2
n̂nn cos2 α

)

. (10)

Therefore, the costate differential equations can be
given by

λ̇λλR = −∂H
∂R
=

1
R3
λV − 3

R5
(RRR · λλλV )R

−2β
cosα

R3
(λλλV · n̂nn)

(

n̂nn − 2
RRR
R

cosα
)

,

λ̇V = −∂H
∂V
= −λR.

(11)

According to optimal control theory, the initial and ter-
minal costates should satisfy the transversality condition

λλλR(t0) = −∂
TΨΨΨ (t0)
∂RRR(t0)

γγγR0 = −γγγR0 ,

λλλV (t0) = −∂
TΨΨΨ (t0)
∂VVV(t0)

γγγV0 = −γγγV0 ,

(12)

λλλR(tf) = −∂
TΨΨΨ (tf)
∂RRR(tf)

γγγRf = −γγγRf ,

λλλV (tf) = −∂
TΨΨΨ (tf)
∂VVV(tf)

γγγVf = −γγγVf ,

(13)

where γγγ0 = (γγγR0 ;γγγV0) and γγγf = (γγγRf ;γγγVf ) are undetermined
Lagrange multiplier vectors.

In addition, the Hamiltonian function at both the initial
and final times should satisfy the stationarity condition

H(t0) = γγγ0 · ∂ΨΨΨ (t0)
∂t0

= −γγγR0 ·VVVstart(t0) − γγγV0 ·
(

− RRRstart(t0)

R3
start(t0)

)

= λλλR(t0) ·VVVstart(t0) − λλλV (t0) · RRRstart(t0)

R3
start(t0)

, (14)

H(tf) = γγγf · ∂ΨΨΨ(tf )
∂tf

= −γγγRf ·VVVend(tf) − γγγVf ·
(

− RRRend(tf)

R3
end(tf)

)

= λλλR(tf) ·VVVend(tf) − λλλV (tf) · RRRend(tf)

R3
end(tf)

. (15)

Note that in Eqs. (14) and (15), the undetermined La-
grange multiplier vectors γγγ0 and γγγf are replaced by the ini-
tial and the final costate vectors λλλ(t0) and λλλ(tf), respectively,
according to Eqs. (12) and (13).

The extremum condition of the two-point boundary-
value problem according to Pontryagin’s minimum principle
is then given by
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arg(min
n̂nn

(H)) = λ0 +λλλR ·VVV +λλλV ·
(

− 1
R3

RRR+β
1

R2
n̂nn cos2 α

)

.(16)

If the cone angle α is not restricted, i.e., it can be
changed from 0◦ to 90◦, the optimal control law can be ob-
tained by the variational method, and the optimal control law
can be written as

α∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

90◦, α̃ = 0◦,

tan−1
(3 +

√
9 + 8 tan2 α̃

4 tan α̃

)

, 0◦ < α̃ < 90◦,

tan−1
( √2

2

)

, α̃ = 90◦,

tan−1
(3 − √9 + 8 tan2 α̃

4 tan α̃

)

, 90◦ < α̃ < 180◦,

0◦, α̃ = 180◦,

δ∗ = 180◦ + δ̃,

(17)

where α∗ and δ∗ are the optimal control angles of solar sails,
and α̃ and δ̃ are the angles that describe the orientation of
unit vector along the velocity costate vector. The definition
of the angles are given by

λ̂λλV = r̂rr cos α̃ + ĥhh sin α̃ cos δ̃ + t̂tt sin α̃ sin δ̃

(0◦ � α̃ � 180◦, 0◦ � δ̃ < 360◦), (18)

where the unit vectors r̂rr, ĥhh, and t̂tt are the same as those used in
Eq. (1) and shown in Fig. 1. Generally, the velocity costate
vector λλλV is called the “Primer Vector” in low-trust trajec-
tory optimization [13]. For an unrestricted cone angle prob-
lem, the optimal cone angle changes with the cone angle of
the primer vector, and the relationship between them is illus-
trated in Fig. 2.

However, in this study, the cone angle is assumed to be
restricted over a particular acute range. Then, the optimal
control law can not be obtained by the variational method,
and Pontryagin’s minimum principle must be used. There-
fore, to minimize the Hamiltonian function for a cone-angle
range restricted problem, the optimal control law has dif-
ferent forms for different maximum restricted cone angle
ranges. For an unrestricted cone angle problem, the opti-
mal control cone angle has a demarcation point of αcrit =

arctan

√
2

2
(α̃ = 90◦). Thus, for the cone angle range re-

stricted problem, the maximum restricted cone angle should
also take this angle as the cut-off point. Then, for different
maximum restricted cone angles, the optimal control law for
the restricted cone-angle problem can be given by Eqs. (19)
and (20).

if αmax > tan−1

√
2

2
= 35.26◦,

α∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αmax, 0◦ � α̃ � tan−1
( 3 tanαmax

2 tan2 αmax − 1

)

,

tan−1
(3 +

√
9 + 8 tan2 α̃

4 tan α̃

)

, tan−1 3 tanαmax

2 tan2 αmax − 1
< α̃ < 90◦,

tan−1
( √2

2

)

, α̃ = 90◦,

tan−1
(3 − √9 + 8 tan2 α̃

4 tan α̃

)

, 90◦ < α̃ < 180◦,

0◦, α̃ = 180◦,

δ∗ = δ̃ + 180◦,

(19)

if αmax < tan−1

√
2

2
= 35.26◦,

α∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αmax, 0◦ � α̃ � tan−1 3 tanαmax

2 tan2 αmax − 1
+ 180◦,

tan−1
(3 − √9 + 8 tan2 α̃

4 tan α̃

)

, tan−1 3 tanαmax

2 tan2 αmax − 1
+ 180◦ < α̃ < 180◦,

0◦, α̃ = 180◦,

δ∗ = δ̃ + 180◦.

(20)
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The optimal cone angle α versus the cone angle of
primer vector δ̃ is shown in Fig. 2 for different maximum re-
stricted cone angles.

Fig. 2 Optimal sail cone angles α as a function of α̃ for different
αmax values

In addition, according to the definition of the sail nor-
mal vector n̂nn and the primer vector λ̂λλV , namely Eqs. (1) and
(18), and the optimal control angles, namely Eqs. (19) and
(20), the optimal control normal vector can easily be ob-
tained as a function of sail position vector and primer vector
as

n̂nn∗ = r̂rr cosα − sinα
( 1
sin α̃
λ̂λλV − cos α̃

sin α̃
r̂rr
)

=
sin(α̃ + α)

sin α̃
r̂rr − sinα

sin α̃
λ̂λλV . (21)

It can be seen that the optimal control normal vector
n̂nn∗ should be in the same plane spanned by the sail position
vector r̂rr and the primer vector λ̂λλV , as shown in Fig. 3.

Fig. 3 Optimal control normal vector n̂nn∗

It should be noted that the optimal control law dis-
cussed above is applicable to the ideal solar sail model. Al-
though the cone angle range is restricted, essentially the
value of cone angle is always changing continuously with-
out jumping (Fig. 2). For the nonideal solar sail model, the
optimal cone angle may also change in a particular range.
However, it is notable that these two cone angle range re-
stricted cases are quite different: the former is artificially
limited, while the latter restriction is determined by the opti-
mal control law. Especially, the cone angle for nonideal sails
may change discontinuously when the cone angle of primer

vector α̃ is large, and in that case the optimal cone angle
may jump to 90◦ sometimes (it is equivalent to closing the
sail film with zero thrust) [19, 20]. However, for the ideal re-
stricted model in this paper, the zero thrust is excluded in the
optimal control law, so the optimal cone angle will never be
90◦ (or jump to 90◦ from a particular acute angle). Generally,
the nonideal sail is different from the ideal sail in dynamics,
especially for the zero thrust case. It would be valuable and
interesting to solve the optimal problem with the cone an-
gle range restricted artificially for nonideal solar sails, which
will be discussed in future.

2.4 Normalization of the initial costate vector

According to the discussion in the previous sections, the
time-optimal rendezvous problem is transformed into a two-
point boundary-value problem by using an indirect method.
For the 12 dimensions of differential equations, including the
state and costate equations, namely Eqs. (4) and (11), respec-
tively, the key is to find the initial values for the differen-
tial equations to meet the constraints on both the initial and
terminal times, namely Eqs. (6), (7), (14) and (15). How-
ever, for the shooting functions, the solution is quite sensi-
tive to the change of the initial values; thus, estimating the
initial values is difficult. The method of normalization of
the initial costates proposed by Jiang et al. [16] is quite use-
ful for the estimation of the initial costates. According to
Jiang’s method, all the initial costate values can be turned
into bounded ranges, and this normalization method has no
effect on the results but simplifies the estimation of the ini-
tial values. Here, to include the positive weight factor λ0 in-
troduced in the objective function of Eq. (9), the normalized
multiplier vector is written as

λλλ =
λλλ

‖λλλ(t0)‖ =
(λ0;λλλR;λλλV )

‖(λ0;λλλR(t0);λλλV (t0))‖ , (22)

where the positive weight factor λ0 does not vary with time.
So the normalization of the initial costate vector should sat-
isfy the following requirement

‖λλλ(t0)‖ =
√

λ2
0 + λλλR(t0) · λλλR(t0) + λλλV (t0) · λλλV (t0) = 1. (23)

Introducing six angles, the 7-D initial costate values can
be transformed as

λ0 = sinα1,

λλλR(t0) =

cosα1 cosα2(cosα3 cosα4; cosα3 sinα4; sinα3),

λλλV (t0) =

cosα1 sinα2(cosα5 cosα6; cosα5 sinα6; sinα5).

(24)

According to Eq. (24), the normalization condition of
the initial costate is met naturally. To satisfy the positivity
of the weight factor λ0 and the unrestricted nature of other
costates, the value range of the six angles should be
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α1,2 =
π

2
X1,2 ∈

[

0,
π

2

]

,

α3,5 = π
(

X3,5 − 1
2

)

∈
[

− π
2
,
π

2

]

,

α4,6 = 2πX4,6 ∈ [0, 2π].

(25)

Similarly, the initial time t0 and terminal time tf can be
obtained by two values X7,8 with a range of [0, 1] according
to the time constraints of Eq. (8)

t0 = t0 min + X7(t0 max − t0 min) ∈ [t0 min, t0 max],

tf = tfmin + X8(tfmax − tfmin) ∈ [tfmin, tfmax].
(26)

Therefore, to solve the two-point boundary-value prob-
lem, including the initial and terminal time and the indeter-
minate initial costates (λ0; λλλR(t0); λλλV (t0)), the total of nine
unknowns required to be estimated to meet the shooting
functions are transformed to eight values X1−8, each over the
range of [0, 1]. The boundedness of the variables is quite
convenient for numerical calculation. This convenience is
particularly true for the present problem, which is sensitive
to the initial values, so this method of normalization is con-
ducive to obtain convergent solutions faster.

3 Examples

In this section, numerical solutions of example missions
of the minimum transfer time rendezvous problem are de-
scribed. The sail loading parameter is β = 0.08, and the so-
lar sail model is ideal, which involves only the solar gravity
force and radiation pressure force. All the planets/asteroids
are described by two-body motion, and the reference orbital
elements, which are all taken at the time of 1st Jan. 2000
(MJD51544.0), are listed in Table 1.

The initial time range is between 1st Jan. 2015
(MJD57 023.0) and 1st Jan. 2016 (MJD57 388.0), and the
flight time range is between 600 days and 900 days. There-
fore, the initial time and terminal time constraints of Eq. (8)
are given as

t0 min = 57 023.0 (MJD), t0 max = 57 388.0 (MJD),

tfmin = 57 623.0 (MJD), tfmax = 58 288.0 (MJD).
(27)

The example missions all involve departure from Earth,
and rendezvous with Mars or Asteroid No. 68278, whose or-
bital parameters are listed in Table 1. Examples with differ-
ent restricted maximum cone angle conditions are calculated,
and the results are compared and discussed.

3.1 Example of a rendezvous with Mars

The solar sail departs from Earth and has a rendezvous with
Mars. The maximum restricted cone angles considered are
30◦, 40◦, 50◦, and 90◦ (equivalent to being unrestricted), and
the key data of the results are listed in Table 2.

The time-varying optimal control angles for different
conditions are shown in Fig. 4, and all the transfer trajecto-
ries of solar sail are also shown in Fig. 5.

3.2 Example of a rendezvous with Asteroid No. 68278

The solar sail departs from Earth and has a rendezvous with
Asteroid No. 68278. The maximum restricted cone angles
considered are 45◦, 50◦, 55◦, and 90◦ (equivalent to being
unrestricted), and the key data of the results are listed in Ta-
ble 3.

The time-varying optimal control angles for different
conditions are shown in Fig. 6, and all the transfer trajecto-
ries of the solar sail are shown in Fig. 7.

4 Discussions and conclusions

According to the optimal results of the examples in Sect. 3,
the values of the maximum restricted cone angle have ef-
fects on the optimal flight time and the transfer trajecto-
ries. The results indicate that for the condition of a restricted
cone-angle range, the transfer time of an optimal rendezvous
is longer than that of the unrestricted case, and with the
decrease of the maximum restricted cone angle, the opti-
mal rendezvous transfer time will increase correspondingly.
Since the optimal control angles vary with time, excessive
cone angles are seemingly set to the maximum values for the

Table 1 The reference orbital elements of the target planets/asteroids

a/AU e i/(◦) Ω/(◦) ω/(◦) f /(◦)

Earth 1.000 588 177 3 0.016 195 088 5 0.002 123 743 2 139.022 629 133 4 −34.572 476 170 0 2.655 488 898 1

Mars 1.523 677 158 9 0.093 435 242 5 1.849 298 927 3 49.538 447 543 8 −73.438 413 476 7 19.069 275 430 6

Asteroid No. 68278 1.435 718 701 8 0.114 487 026 2 2.620 615 528 6 99.140 785 434 1 −125.665 842 013 7 −39.971 606 409 0

Table 2 The optimal results of a rendezvous with Mars

αmax/(◦) λ0 λλλR(t0) λλλV (t0) Depart date Rendezvous date Flight time/d

30 0.014 1 (−0.555 6;−0.468 6; 0.075 2) (−0.425 4;−0.510 9;−0.154 6) 09/24/2015 10/19/2017 755.81

40 0.013 4 (−0.408 4;−0.639 6; 0.003 6) (−0.227 5;−0.571 4;−0.213 8) 10/13/2015 08/24/2017 681.36

50 0.012 8 (−0.322 8;−0.699 2;−0.046 7) (−0.124 2;−0.568 1;−0.257 6) 10/21/2015 08/16/2017 665.26

90 0.012 2 (0.320 7; 0.689 3; 0.052 3) (0.045 7; 0.577 2; 0.289 6) 10/23/2015 08/14/2017 660.80
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Fig. 4 The optimal control angles of a rendezvous with Mars

Fig. 5 The optimal transfer trajectories of a rendezvous with Mars. a 3-D View; b XY Plane

Table 3 The optimal results of a rendezvous with Asteroid No. 68278

αmax/(◦) λ0 λλλR(t0) λλλV (t0) Depart date Rendezvous date Flight time/d

45 0.002 8 (0.688 8; 0.3304;−0.140 2) (−0.592 5; 0.172 8; 0.113 4) 05/07/2015 03/10/2017 672.84

50 0.002 7 (0.711 2; 0.290 3;−0.167 2) (−0.574 2; 0.191 5; 0.124 8) 05/04/2015 03/01/2017 667.47

55 0.002 7 (0.717 1; 0.277 1;−0.176 3) (−0.565 5; 0.199 6; 0.135 0) 05/02/2015 02/26/2017 665.33

90 0.002 7 (−0.719 7;−0.271 7; 0.181 1) (0.559 0;−0.205 3;−0.144 3) 05/02/2015 02/24/2017 664.71

Fig. 6 The optimal control angles of a rendezvous with Asteroid No. 68278
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Fig. 7 The optimal transfer trajectories of a rendezvous with Asteroid No. 68278. a 3-D View; b XY Plane

restricted conditions. However, it is not a simple replace-
ment, and for different maximum restricted cone angle con-
ditions, the departure time, rendezvous time, and the total
transfer trajectories are different. Note that for different ren-
dezvous target, the relationship between the departure/arrival
time and the value of αmax is irregular. It can be seen that,
for the mission of a rendezvous with Mars mentioned in
Sect. 3.1, with the decrease of the maximum restricted cone
angle, the departure time will advance and the rendezvous
time will delay correspondingly and vice-versa. However,
for the mission of a rendezvous with Asteroid No. 68278,
with the decrease of the maximum restricted cone angle, the
departure time and the rendezvous time will both delay cor-
respondingly. In addition, due to the sensitivity to the initial
values of the indirect method, it is harder to estimate the ini-
tial values and to solve the problem for a smaller restricted
cone angle. Even worse, if the maximum restricted cone
angle is too small (the extreme example is αmax = 0◦), it
may be impossible to achieve a rendezvous with the target
planet/asteroid in a limited time; thus, solutions can not be
obtained for cone angles that are too small. However, the
minimum values of the possible maximum restricted cone
angles are different for different missions, and the existence
of a solution for the restricted conditions will be discussed in
a future study.
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