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Abstract In this work, the stability of a flexible thin cylin-
drical workpiece in turning is analyzed. A process model is
derived based on a finite element representation of the work-
piece flexibility and a nonlinear cutting force law. Repeated
cutting of the same surface due to overlapping cuts is mod-
eled with the help of a time delay. The stability of the so
obtained system of periodic delay differential equations is
then determined using an approximation as a time-discrete
system and Floquet theory. The time-discrete system is ob-
tained using the semi-discretization method. The method is
implemented to analyze the stability of two different work-
piece models of different thicknesses for different tool posi-
tions with respect to the jaw end. It is shown that the stability
chart depends on the tool position as well as on the thickness.

Keywords Machine tools · Stability · Chatter

1 Introduction

In manufacturing science, chatter is a well known subject of
research. The term chatter is used to refer to self-excited vi-
brations that deteriorate the precision of the machining oper-
ation. Generally, chatter leads to large amplitude vibrations
which cause poor surface finish, increase tool wear, mini-
mize the tool life and ultimately damage the machine tool.
At the beginning of the nineteenth century, Taylor [1], iden-
tified the chatter phenomenon during machining process as
greatly limiting the productivity.

From that till today, Arnold [2], Tobias [3], Merrit [4],
Tlusty and Polacek [5] and many others have proposed mod-
els to explain the chatter. Clancy and Shin [6] have deter-
mined the stability boundaries for three dimensional face
turning processes considering the frequency domain chatter
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model with process damping. Ozlu and Budak [7] have pro-
posed an analytical model for the stability limit prediction
of the multi-dimensional model with three dimensional ge-
ometry of the process to observe the effect of the tool tip
nose radius and tool angle on the stability limit. Later, Ozlu
and Budak [8] made a comparative study between the one-
dimensional and multi-dimensional stability model in turn-
ing operations. Zhongqun and Qing [9] demonstrated a time
domain simulation to study the dynamics of end milling
considering the regenerative chatter using a special chatter
detection criterion applying synthetically the simulated sig-
nals. Srinivas and Kotaiah [10] analyzed the linear stability
in turning process using the non-linear force feed dynamic
model by considering the three dimensional cutting tool ge-
ometry. Mehdi et al. [11, 12] investigated the chatter vibra-
tion problem for turning of a thin walled cylinder using FEM.

Very often, it is considered that the cutting tool is flex-
ible and the workpiece is rigid. In this work, the workpiece
model is thin-walled and thus elastically deformable. Fur-
thermore, with the workpiece rotation, the relative position
of the tool with respect to the workpiece changes with time.
This makes the input and output behavior of the system time
variant and periodic. Consecutive cuts on the same surface
generate a time delay system. All these lead to a time-variant
periodic delayed system.

Stability analysis of this time variant periodic system
of delay differential equations is a difficult task that can only
be solved using time-domain simulations or approximating
methods. Two approximating methods have been suggested
in recent time that receive a lot of interest. Bayly and
Davis [13] analyzed the stability of interrupted milling and
other cutting operations using the temporal finite element
analysis (TFEA) method. Insperger and Stépán [14] have in-
troduced a special kind of discretization technique, the Semi-
Discretization Method, where only the past is discretized to
analyze the stability. The stability of the system is deter-
mined with the help of the eigenvalues of the monodromy
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matrix of the approximated discrete system. Insperger and
Stépán [15] further established a modified version of the
semi-discretization method especially for periodic systems
with single discrete time delay. The delayed term is approx-
imated as a weighted linear combination of two neighboring
delayed discrete state values. Henninger and Eberhard [16]
proposed different measures to increase the computational
efficiency of the semi-discretization method.

2 System modeling

Figure 1 shows a photograph of the inside turning process
of a thin walled cylinder clamped at one end by a three jaw
chuck. In contrast to most of the machine tool chatter mod-
els found in literature, the workpiece flexibility can not be
neglected here. Hence the tool is considered to be rigid and
the workpiece modeled as a flexible body undergoing defor-
mation.

Fig. 1 Cylindrical workpiece on lathe

To study the dynamic behavior and the deformation of
the flexible workpiece model, the finite element analysis has
been carried out using the commercial software ANSYS. As
the high number of nodal degrees of freedom makes it dif-
ficult to analyze the dynamics of a finite-degree of freedom
workpiece model in nodal coordinates, model order reduc-
tion using a limited number of vibration modes is used to re-
duce the system dimension and uncouple the equations from
each other. The workpiece model is transformed from the
nodal coordinate system to the modal coordinate system us-
ing the modal matrix which is obtained by solving the gen-
eralized eigenvalue problem of the system for free vibration.

Thus, after performing the necessary operations, the
equation of motion of the system can be written in modal
form by the second order differential equation. But, the
implemented stability analysis procedure needs a system in
state space form. Therefore, the second order equation of
motion of the workpiece model is constructed in state space
form, see Ref. [17]

q̇qq = AAA · qqq + BBB(t) · fff (t), (1)

q̃qq = CCC(t) · qqq. (2)

In Eqs. (1) and (2), qqq(t) ∈ Rnm×1 is the displacement

vector in modal coordinates, AAA ∈ R2nm×2nm is called the sys-
tem matrix, fff (t) ∈ Rni×1 is the input force vector, BBB(t) ∈
R

2nm×ni the input matrix and CCC(t) ∈ Rno×2nm the output ma-
trix. Here, nm is the reduced number of modes, ni is the
dimension of the external force, no is the dimension of the
output displacement vector. Note that the input and output
matrices are time-varying due to workpiece rotation and tool
feed.

In the present stability analysis, three dimensional
oblique cutting is considered. The tool cutting force con-
sists of three components: cutting force Fc, feed force Ff and
thrust force Ft as illustrated in Fig. 2. Therefore, the three di-
mensional cutting force fff (t) at the contact point of the tool
tip and the workpiece surface in Eq. (1) can be written as

fff (t) = [Ft(t) Fc(t) Ff(t)]T. (3)

Fig. 2 Three dimensional cutting forces in turning

The material removal operation is a complex process
where the cutting forces are mainly affected by the chip and
tool geometry and workpiece material. According to most
cutting force laws, the forces are modeled as functions of
chip thickness and chip width using specific force compo-
nents, see Ozlu and Budak [7], Srinivas and Kotaiha [10].
For unit cross sectional area of the chip at given workpiece
materials and process conditions, the values of these specific
force components can be determined here with the help of
the experimental results of König et al. [18]. The three cut-
ting force components can be written as

Fc(t) = Kcb(t)h(t)
(href

h(t)

)my

= Kcb(t)h
my

refh(t)(1−my), (4)

Ff(t) = Kfb(t)hmz

refh(t)(1−mz), (5)

Ft(t) = Ktb(t)hmx

refh(t)(1−mx), (6)

where h(t) is the chip thickness, b(t) is the chip width, href is
the basis of chip thickness as taken in the experiment [18].
The parameter Kc is the specific cutting force, Kf the spe-
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cific feed force and Kt the specific thrust force. The numeri-
cal values for the coefficients are taken from literature, e.g.,
from Ref. [19].

To analyze the stability, a small variation of chip width
and thickness around their nominal values b0 and h0 has been
considered. The expression of the parametric cutting force
can then be obtained using the Taylor series expansion

Fc(t) = Fc,0 + ΔFc(t) = Fc,0 +
∂ΔFc

∂b
Δb +

∂ΔFc

∂h
Δh. (7)

Here, only the linear terms are considered. As the nominal
cutting force Fc,0 does not contribute to the dynamic behav-
ior, we consider only the variation of the cutting force from
its nominal value

ΔFc(t) = Kch
my

ref[h
(1−my)
0 Δb + (1 − my)b0h

−my

0 Δh]. (8)

In similar way, the expression for ΔFt(t) and ΔFf(t) can be
evaluated. In Fig. 3, it is shown that the tool is moving along
the z-direction with feed f towards the jaw. The depth of cut
ap is defined along the x-direction, κ is the tool cutting edge
angle.

Fig. 3 Schematic view of metal cutting of the hollow cylinder

Using Fig. 4, the instantaneous chip thickness and
width can be expressed by the workpiece deformation in z-
and x-direction as

h(t) = h0 − Δx cos κ + Δz sin κ, (9)

b(t) = b0 − Δx
sin κ
. (10)

Fig. 4 Chip size variation due to deformation

Here, the solid line shows the deformed position of the
workpiece surface and the dotted line shows the initial posi-
tion of the workpiece surface, Δx and Δz are the variations
of the depth of cut a0p and longitudinal feed f0 of the tool.
The expressions in Eqs. (9) and (10) clearly depict that work-
piece deformation in tool feed direction varies the nominal
chip thickness h, whereas workpiece deformation in depth
of cut direction contributes to both the chip thickness h and
chip width b.

Using Eqs. (9) and (10), the expressions for the varia-
tion of cutting force components are obtained from Eq. (8)
and expressions for ΔFt(t) and ΔFf (t) in terms of directional
specific cutting forces, feed and depth of cut

Δ fff = GGG · [−Δx Δz]T, (11)

where

Δ fff = [ΔFt ΔFc ΔFf]T, GGG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ktx Ktz

Kcx Kcz

Kfx Kfz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the coefficients of GGG read

Kcx = Kch
my

ref

[h(1−my)
0

sin κ
+ (1 − my)b0h

−my

0 cos κ
]
,

Kcz = Kch
my

ref[(1 − my)b0h
−my

0 sin κ],

Kfx = Kfh
mz

ref

[h(1−mz)
0

sin κ
+ (1 − mz)b0h−mz

0 cos κ
]
,

Kfz = Kfh
mz

ref

[
(1 − mz)b0h−mz

0 sin κ
]
,

Ktx = Kth
mx

ref

[h(1−mx)
0

sin κ
+ (1 − mx)b0h−mx

0 cos κ
]
,

Ktz = Kth
mx

ref

[
(1 − mx)b0h−mx

0 sin κ
]
.

Due to the deformation of the workpiece, a wavy surface is
cut. Because of the overlapping of successive cuts, this wavy
surface will cause a variation of tool feed and depth of cut af-
ter one rotation. The expression for the actual chip geometry
depends thus not only on the current movements of tool and
workpiece, but also on the past movements of the workpiece,
see Fig. 5.

In Fig. 5, the thick line shows the surface created by the
previous cut, a0p is the nominal depth of cut and the work-
piece displacement at the tool tip contact point along the pos-
itive x-direction is x(t). The variation of tool depth of cut
along the x-direction is then Δx(t) = ap(t) − a0p. Further, the
actual depth of cut becomes

ap(t) = a0p − x(t) + μx(t − τ)⇒ Δx = μx(t − τ) − x(t). (12)

The time delay τ in x(t − τ) depends on the rotational
speed N of the cylindrical workpiece. The factor μ is used
to describe the overlapping of successive cuts. We consider
here an overlap of μ = 1. In the considered inside turning



Stability analysis of a thin-walled cylinder in turning operation using the semi-discretization method 217

Fig. 5 Depth of cut variation due to deformation

operation, the actual overlap is smaller than 1 due to the tool
feed. However, as the tool moves only a small fraction of the
blade length during one rotation, the actual overlapping is
close to one. Taking μ = 1 represents a worst-case scenario.

In a similar way, the tool feed variation is Δz = f (t) −
f0(t), with the actual tool feed

f (t) = f0 + z(t) − z(t − τ), (13)

⇒ Δz = f (t) − f0(t) = z(t) − z(t − τ). (14)

Inserting Δx and Δz in Eq. (11) and then replacing the
displacement (x(t) z(t))T at the contact point with help of the
output displacement matrix from Eq. (2), the cutting force
variation can be expressed as

Δ fff (t) =GGG ·
⎛⎜⎜⎜⎜⎜⎝

(x(t) − x(t − τ))
(z(t) − z(t − τ))

⎞⎟⎟⎟⎟⎟⎠
= GGG ·CCC(t) · (qqq − qqq(t − τ)). (15)

As the tool contact point changes with time, the out-
put matrix CCC is also time-variant. Expressing the variation
of cutting force Δ fff (t) in terms of GGG, CCC(t) and the present
and past output displacement vectors, Eqs. (1) and (2) give
the model of the considered turning operation in state space
form

q̇qq = ÃAA(t) · qqq − B̃BB(t) · qqq(t − τ), (16)

with time varying coefficient matrices ÃAA(t) and B̃BB(t), where
ÃAA(t) = AAA+BBB(t) ·GGG ·CCC(t) and B̃BB(t) = BBB(t) ·GGG ·CCC(t). The system
(16) is time-variant because of the changing input and output
behaviour due to workpiece rotation and tool feed. It is to be
noted that, as the tool feed is comparably small, it can be
neglected. Neglecting the tool feed leads to a periodic sys-
tem, i.e., ÃAA(t) = ÃAA(t + T ) and B̃BB(t) = B̃BB(t + T ). Periodicity is
an important prerequisite for the stability analysis procedure
presented in the following section. The interesting part of
the system equation is, that it includes the effect of both tool
feed and depth of cut variation. It also incorporates the three
dimensional cutting force.

3 Stability analysis using the semi-discretization method

Consecutive cuts on the same surface, modeled in Eq. (16) as
an interaction of the time-delay of the system and the system
dynamics, can lead to instability. The equations of motion
of the considered turning process form a system of periodic
delay differential equations. Analysis of its stability is a dif-
ficult task that has received and still receives a lot of interest
in the scientific community. Although Floquet-Theory, see
Hale and Lunel [22], can be applied to systems with time de-
lay, practical application is not straight-forward. One reason
is that the introduction of the time delay in the time periodic
dynamical system causes the phase space to grow from finite
dimension to infinite dimension, which leads to an infinite
dimensional monodromy matrix.

To solve this problem, the semi-discretization method,
proposed by Insperger and Stépán [14], is followed to an-
alyze the time-periodic DDE with discrete delay. The infi-
nite dimensional system is hereby approximated by a finite
dimensional one by finite discretization of the time coordi-
nates. Here, this method is briefly described.

The first step is to divide the delay time part into small
time intervals [ti, ti+1] of length Δt, as shown in Fig. 6. The
number of time intervals k is chosen such that T = kΔt, k can
be considered as an approximation parameter regarding the
periodicity of the system. An integer m is introduced for the
approximation of the time delay term, i.e., τ = mΔt. It is to
be noted that the periodicity of the system and the time delay
are here equal, i.e., T = τ. Thus, the integers k and m will
also be equal.

Fig. 6 Approximation of the delay term by discrete time steps

If the notation x(t j) = x j is used, then for the i-th inter-
val, the delay equation (16) can be approximated as

q̇qq(t) = ÃAAi · qqq(t) − B̃BBi · (ωαqqqi−m+1 + ωβqqqi−m), (17)

where the time dependent matrices ÃAAi(t) and B̃BBi(t) are ap-
proximated by their mean values in the interval [ti, ti+1]. As
in Ref. [15], the delay term qqq(t − τ) is approximated as a
weighted linear sum of the discrete states qqqi−m and qqqi−m+1



218 A. Chanda, et al.

where ωα and ωβ are the weighting factors for constant in-
terpolation.

The state qqqi+1 at the end of the interval i is obtained by
integrating the piece-wise autonomous ODE (17) over the
interval Δt with the initial condition qqq(ti) = qqqi

qqqi+1 = PPPi · qqqi + SSS i · qqqi−m+1 + TTT i · qqqi−m (18)

with

PPPi = exp (ÃAAi(ti+1 − ti)) ∈ R2n×2n,

SSS i = wα ·RRRi ∈ R2n×2n,
(19)

TTT i = wβ · RRRi ∈ R2n×2n,

RRRi = [exp(ÃAAi(ti+1 − ti) − III] · ÃAA−1
i · B̃BBi.

(20)

Defining the state zzz of a time-discrete system as

zzzi = [qqqi qqqi−1 qqqi−2 · · · qqqi−m]T, (21)

the new state vector can be written as a discrete map, given
by

zzzi+1 = VVVi · zzzi (22)

with the coefficient matrix

VVVi =

⎡⎢⎢⎢⎢⎢⎢⎣
PPP(2n,2n)

i 000(2n,2n(m−2)) SSS (2n,2n)
i TTT (2n,2n)

i

III(2mn,2mn) 000(2n,2n)

⎤⎥⎥⎥⎥⎥⎥⎦ . (23)

The parentheses indicate the dimensions of the specific ma-
trices, III is the identity matrix. The final transition matrix or
monodromy matrixΦΦΦ between two successive periods of the
system, i.e., one complete rotation of the workpiece, can now
be calculated by multiplication of the local transition matrix
for each time increment. Thus,

ΦΦΦ = VVVτ · VVVτ−1 ·VVVτ−2 · · ·VVVi+1 · VVVi, zzzi+τ = ΦΦΦ · zzzi. (24)

In this way, a finite-dimensional approximation of the
transition matrix is constructed. The stability of the time-

discrete system can be deduced my means of the largest
eigenvalue λmax of the transition matrixΦΦΦ. The system is sta-
ble when |λmax| < 1 and unstable when |λmax| > 1. The transi-
tion curve or boundary of stability corresponds to |λmax| = 1.

Since semi-discretization preserves asymptotic stabil-
ity of the original system, see Hartung et al. [21], the ap-
proximation as a time discrete system can be used to draw
approximate stability charts.

4 Implementation

Calculation of the transition matrixΦΦΦ using Eq. (24) involves
a high number of matrix multiplications and is thus compu-
tationally intensive. Therefore, a good approach to improve
the efficiency of the stability analysis is to avoid or reduce
the cost for these multiplications.

One interesting thing can be observed looking at
Eqs. (1) and (18). From the delay term, only the displace-
ment states are needed. So, taking this into consideration,
the transition matrix can be constructed more efficiently. In-
sperger and Stépán [15] excluded the velocity part of the
past states. This greatly reduces the size of the state space
vector. As a consequence, the size of the transition matrix
will also be reduced from 2n(m + 1) to n(m + 2). Further,
Henninger et al. [16, 20] kept only a reduced state qqqr ∈ Rd

for the past that consisted of the d displacements at the tool
contact point needed to calculate the process force. Thus,
the size of the transition matrix can be further reduced to
(2n + md) × (2n + md).

Henninger [20] also introduced a direct method which
helps to avoid the matrix multiplications entirely. Following
that, the equations for all the time increments of one com-
plete rotation are written in matrix form, giving

ΦΦΦl · zzzi+m = ΦΦΦr · zzzi, ΦΦΦl,ΦΦΦr ∈ R2n(m+1)×,2n(m+1), (25)

where

ΦΦΦl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

III −PPPi+m−1 0 0 · · · 0 0 0

0 III −PPPi+m−2 0 · · · 0 0 0

...
. . .

. . .
. . . · · · . . .

. . .
...

0 0 0 0 · · · 0 III −PPPi

0 0 0 0 · · · 0 0 EEE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΦΦΦr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SSS i+m−1 TTT i+m−1 0 0 · · · 0 0 0

0 SSS i+m−2 TTT i+m−2 0 · · · 0 0 0

...
. . .

. . .
. . . · · · . . . . . .

...

0 0 0 0 · · · 0 SSS i TTT i

0 0 0 0 · · · 0 0 III

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)
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In order to calculate the largest eigenvalue of the tran-
sition matrixΦΦΦ = ΦΦΦ−1

l ·ΦΦΦr, the eigenvalue problem needs to
be solved. To avoid the costly calculation of the inverse, the
equivalent generalized eigenvalue problem

(ΦΦΦr − λΦΦΦl) ·UUU = 000 (27)

is considered. The largest eigenvalue of Eq. (27) can be ef-
ficiently determined using the eigs function that is readily
available in MATLAB.

For the considered case the direct construction of the
transition matrix and solving Eq. (27) is much faster than the
successive multiplication using Eq. (24). The direct method
will therefore be used in the following investigations.

It is noticed that, though the direct method reduces
arithmetic operations, it takes significant time to build the
transition matrices ΦΦΦl and ΦΦΦr step by step from the PPPi, SSS i

and TTT i. Repeated indexing into the large sparse matrices is
slow in MATLAB, even when enough memory has been pre-
allocated. To avoid that, a different approach is applied that
builds the transition matrices in one step from three vectors
pppcol, ppprow and vvv. The entries pppcol,i and ppprow,i of the index vec-
tors pppcol and ppprow indicate hereby the column and row index
of a given entry vvvi of the value vector vvv in the sparse matrix
to be build.

Algorithm 1 outlines the procedure to construct the in-
dex and value vectors for ΦΦΦr using pseudocode. For each
time increment, matrices SSS i and TTT i are constructed and then
decomposed into local index and value vectors using the find
command. The position in the global matrix of the local val-
ues is then calculated by adding an offset to the local row
and column position. The so-obtained index and value vec-
tors are a part of pppcol, ppprow and vvv and stored as a three col-
umn matrix zzzi in a cell array. After completion of the loop,
the cell2mat is used to assemble a matrix ZZZ from the zzzi. The
transition matrix is then build in one step from the columns
of ZZZ, which are the global index and value vectors.

Constructing the transition matricesΦΦΦl and ΦΦΦr follow-
ing the above approach, reduces the computation time sig-
nificantly. In the examples given in the following section,
the computation time could be reduced by a factor of 100
compared to the approach using sparse indexing.

The semi-discretization method preserves asymptotic
stability of the continuous system. With increasing number
m of discretization intervals, the largest eigenvalue λmax of
the time-discrete system will converge towards λ∞, the true
value of the largest eigenvalue of the infinite-dimensional
transition matrix of the original system. On the one hand,
we need m large enough to ensure that λmax ≈ λ∞, and on
the other hand, we want m to be small to reduce the compu-
tational cost.

Algorithm 1: ComputeΦΦΦr

Require: m, n

Output: ΦΦΦr

a← m

y← 2 ∗ n ∗ (m + 1)

for i := 1 to m do

SSS i,TTT i ← calculateS TcalculateS TcalculateS T(i)

[ggg,hhh,kkk]← f indf indf ind [SSS i TTT i] % returns the nonzero entries
kkk, and local row and column indices ggg and hhh

{rrr} ← {ggg}+ (a− 1) ∗ 2 ∗ n % calculate the row position
in the global matrix

{uuu} ← {hhh} + (a − 1) ∗ 2 ∗ n % calculate the column
position in the global matrix

[zzz]← [rrr,uuu,www]; % store the three vectors into a matrix
with 3 columns

YYY{a, 1} ← [zzz] % store the zzz matrix in the cell YYY where
cell row “a” will vary at each loop

a← a − 1

end for

[ZZZ]← cell2matcell2matcell2mat{YYY} % it converts “YYY” cell in “ZZZ” matrix
format

ΦΦΦr ← sparsesparsesparse(ZZZ(:, 1),ZZZ(:, 2),ZZZ(:, 3), y, y, 4 ∗ n ∗ y)

ΦΦΦr(m ∗ n + 1 : y,m ∗ n + 1 : y)← EEE

Here, an efficient method is used to search the suitable
discretization parameter to obtain the satisfactory stability
chart of the workpiece models. For quantitative assessment
of the convergence behavior, the error rate of the eigenvalue
value with respect to the reference eigenvalue λ∞ is com-
puted for an increasing number of discretization points

εr = lg
λ(m) − λ∞
λ∞

. (28)

From a practical point of view, it is not possible to im-
plement that. So, the eigenvalue λ̃∞ for a comparatively large
number of discretization points m is set as the reference in-
stead of the true eigenvalue λ∞.

5 Numerical results and discussion

The semi-discretization method is now implemented to study
the stability of the turning of thin-walled cylindrical work-
pieces. To get a clearer idea about the effect of the workpiece
thickness on its dynamic stability, two workpiece models of
different thickness are chosen for the analysis. It is consid-
ered that the single point cutting tool with carbide cutting tip
is used in turning. The cutting tool geometry following stan-
dard nomenclature according to the DIN standard 4 971 are
γ = 6◦, α = 5◦, λ = 0◦, κ = 70◦, ε = 90◦, and r = 0.8 mm.

The workpiece material is steel (E295GC). The thick-
nesses of the models are 6 mm and 3 mm which are referred
to as model 1 and model 2. The length of the workpiece has a
length of 0.2 m and an inner diameter of 0.06 m. The work-
piece is clamped in a three jaw chuck, each jaw is 20 mm
wide and 10 mm high. To study the effect of the tool posi-
tioning with respect to the jaw on the stability chart, the anal-
ysis is done for three different tool positions, 0.2 m, 0.15 m,
and 0.05 m.
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The Finite Element Model (FEM) of the workpiece con-
sists of 3 280 nodes and 3 200 elements. It was obtained us-
ing the Shell 181 element in ANSYS. The mass and stiffness
matrices of the FE model are extracted and used to build the
system equations in state space form. A model order reduc-
tion using the first five modes of vibration is done to reduce
the size of the transition matrix as well as the overall compu-
tation time. As chatter happens in the vicinity of one of the
first eigenmodes, adding higher modes did not contribute in
a significant way. A light modal damping of 0.02 is consid-
ered.

The general formulation is made for three dimensional
cutting forces. The coefficients for the three dimensional cut-
ting force law given by Eqs. (4)–(6) are taken from Paucksch
et al. [19]. The specific thrust, cutting and feed forces
are thus Kt1.1 = 274 N/mm2, Kc1.1 = 1 500 N/mm2 and Kf1.1 =

351 N/mm2. The exponents were determined to mx = 0.5,
my = 0.29 and mz = 0.7.

As we know that the cutting force parameters are de-
pendent on the process parameters tool feed and depth of cut,
there are two options to draw the stability plot. First, the lon-
gitudinal tool feed f can be fixed and the tool depth of cut ap

varied with the rotational speed N. Second, the tool depth of
cut can be fixed and the longitudinal tool feed varied. In all
cases, the rotational speed range is kept between 600 min−1

and 1 000 min−1. It should be noted that higher rotational
speeds are not feasible due to cutting speed limitations of the
equipment.

The convergence of λmax towards λ̃∞ is evaluated for six
different combinations of speed and feed (or depth of cut) for
stable and unstable configurations. Convergence is analyzed
separately for all workpiece models and all four positions of
the tool. As expected, it is found that the error decreases with
the number of discretization intervals. It is interesting to note
that the same m leads to different accuracies for different ro-
tational velocities. Consequently, it is concluded that fixing
Δt seems to be the best way to ensure the same accuracy in-
dependently of the rotational velocity. Note that by doing
so, the number of discretization intervals and thus the cost of
computation decreases with increasing rotational velocity.

The convergence of the algorithm is analyzed for all
three workpiece models and different tool positions. The pa-
rameter Δt is then determined such that εr � 10−2. For model
1, it was found that a discrete time step of 3.6× 10−5 ensures
the desired accuracy. For models 2 and 3, the step size was
6.4×10−5 and 5.7×10−5. It was also found that the time step
varies only slightly with the tool position.

The presented stability analysis procedure allows only
to deduce stability of one given system. The domain of stable
cutting is thus implicitly defined. Inumerable system config-
urations need to be analyzed in order to determine the do-
main of stable operation. To limit the number of tested sys-
tem configurations, an adaptive mesh refinement is used to
obtain the boundary of stability.

Figures 7 and 8 show the stability charts for model 1

Fig. 7 Stability charts for model 1 with varying depth of cut and varying feed. a Fixed feed, position 0.2 mm; b Fixed depth of cut, position
0.2 mm; c Fixed feed, position 0.15 mm; d Fixed depth of cut, position 0.15 mm; e Fixed feed, position 0.05 mm; f Fixed depth of cut,
position 0.05 mm
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Fig. 8 Stability charts for model 2 with varying depth of cut and varying feed. a Fixed feed, position 0.2 mm; b Fixed depth of cut, position
0.2 mm; c Fixed feed, position 0.15 mm; d Fixed depth of cut, position 0.15 mm; e Fixed feed, position 0.05 mm; f Fixed depth of cut,
position 0.05 mm

and model 2. The charts have been obtained for either a fixed
feed per rotation of f = 0.1 mm or a fixed depth of cut of
ap = 0.1 mm. The boundary of stability is then parametrized
using the rotational velocity and depth of cut or feed. It
should be noted that model 1 will not become unstable un-
der the assumptions made in this work using feasible process
parameters, i.e., a depth of cut below 6 mm and a feed below
2 mm per rotation. The interest, however, is to observe the
influence of different parameters on the stability.

From the stability charts of model 1 and model 2, it may
be said that the domain of stable operation is the largest when
the tool is close to the jaw end. For realistic process parame-
ters, no unstable machinig would occur this close to the jaw.
Machining is therefore most critical when the process starts,
e.g., when the tool is farthest from the jaw. As machining
progresses, the parameters could therefore be modified to re-
duce cycle time, e.g., by increasing the feed.

Interesting is the influence of the spindle speed. Stabil-
ity charts for different tool positions exhibit different char-
acteristics. For model 1 and fixed feed, with the increase of
speed, the stability starts to increase initially and then de-
creases when the tool position is at 0.2 m and 0.15 m. When
the tool is at 0.1 m, the stability decreases sharply with the
increase of rotational speed. When the tool position is at
0.05 m, close to the jaw, stability increases with the increase
of speed. For fixed depth of cut, with the increase of speed,
the stability boundary increases when the tool position is
0.2 m, 0.15 m, and 0.1 m. When the tool is at 0.05 m, the sta-
bility boundary goes down sharply. For model 2, i.e., lower

wall thicknesses, an increase of rotational speed seems to
slightly increase stability.

6 Conclusions

From the implementation point of view, the semi-
discretization method is successfully applied to analyze sta-
bility of the time-variant periodic turning operation for thin-
walled cylinder. The successive method and the direct
method: Two different ways to construct the transition ma-
trix of the system are available. But, as the successive
method multiplies a number of local transition matrices, it
does not reduce computation time that much in spite of the
reduced past state vector.

On the other hand, the size of the obtained matrix is
larger using the direct method, as the state vector can not
be reduced for past states. But, the final transition matrix
is generated at once. Hence, the computational cost for the
matrix multiplication in the direct method is avoided. There-
fore, finally, the direct method, used by Henninger and Eber-
hard [20], is adopted to generate the transition matrix in this
semi-discretization method. To constitute the transition ma-
trix, a different approach is implemented in MATLAB code
which reduces the computation time significantly.

The mass and stiffness matrices, obtained from ANSYS
are used to present the thin walled turning operation as a time
variant periodic delay system in state space form. The three
dimensional cutting force vector is also incorporated in the
system equation. Before stability charts were drawn, the pre-
cision of the eigenvalue calculation is analyzed for different



222 A. Chanda, et al.

system configurations and system discretization. In order to
have results of similar quality throughout the chart, the size
of the discretization intervals instead of the number of inter-
vals is chosen as parameter. Stability charts for two different
workpiece models and three different tool positions are then
calculated. Form the stability charts, it can be concluded
that the zone of stable cutting increases when the tool comes
closer to the jaw end.

It is very interesting to see that the stability boundary
sometimes increases or decreases with increasing rotational
speed, depending on the thickness of the workpiece model
and the position of the tool. However, the machining is sta-
ble when the fixed parameter, i.e., feed or depth of cut, is
lowered. So, it may be concluded that the ratio of the longi-
tudinal feed and depth of cut of the tool can be controlled to
obtain stable turning.
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