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Abstract The paper addresses a contact problem of the the-
ory of elasticity, i.e., the penetration of a circular indenter
with a flat base into a soft functionally graded elastic layer.
The elastic properties of a functionally graded layer arbitrar-
ily vary with depth, and the foundation is assumed to be
elastic, yet much harder than a layer. Approximated ana-
lytical solution is constructed, and it is shown that the solu-
tions are asymptotically exact both for large and small val-
ues of characteristic dimensionless geometrical parameter of
the problem. Numerical examples are analyzed for the cases
of monotonic and nonmonotonic variations of elastic prop-
erties. Numerical results for the case of homogeneous layer
are compared with the results for nondeformable foundation.
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1 Introduction

The method described in the paper allows obtaining solu-
tions of the contact problem of indentation of a circular in-
denter into a soft multilayered or functionally graded elastic
layer. The substrate is assumed to be elastic, yet much harder
than the layer (cases of 100 and 1 000 times harder substrates
are considered). The solution is asymptotically exact for
small and large values of the relative layer thickness (the ra-
tio of indenter radius to layer thickness). Implementation of
the method is based on analytical approximations of high ac-
curacy of kernel transforms by specific expressions [1–4].

In classical models, elastic properties of the substrate
are not taken into account. First results on the contact prob-
lems for homogeneous layers were obtained by Lebedev et
al. [5] and Vorovich et al. [6]. In Ref. [6] the solution was
given in the form of series expansion with respect to λ, where
λ is the retio of the punch radius to the thickness of the
layer. This solution was constructed using regular asymptot-
ical method and is effective for λ > 1. Singular asymptotical
method was used for the solution of axisymmetric contact
problems for an elastic layer of small thickness (λ < 0.5)
by Alexandrov et al. [7, 8]. For construction of approximate
analytical solution of the contact problems, Popov [9] and
Alexandrov [10] used expansion of main part of the kernel
of integral equation in orthogonal polynomials. It was tradi-
tionally used for constructing solutions in the neighborhood
of λ = 1.

One of the disadvantages of these solutions is that it is
necessary to use different mathematical models to construct
the solution for different layer thickness and radius of the
contact area between indenter and layer.

Most of the known solutions to the contact problems
for inhomogeneous materials are obtained under specific as-
sumptions about the variation of elastic properties (exponen-
tial or power law, for example).

Gibson and Sills [11] studied the elastic layer, the elas-
tic modulus of which grows linearly with depth. In the work
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of Awojobi [12], the shear modulus of the elastic layer var-
ied by hyperbolic law. Kassir [13] considered inhomoge-
neous media with a power law of elastic properties varia-
tion. Aizikovich et al. [1, 14, 15] constructed mathematical
model of a contact between a stamp and an elastic half-space
with inhomogeneous coating for the entire range of values
of characteristic geometric parameters of the problem and
for arbitrary variation of elastic modulus of coating with the
depth, in absence of any jump at the layer-substrate bound-
ary.

Axisymmetric and plane contact problems for an inho-
mogeneous layer on an elastic half-space and/or a half-plane
for arbitrary variation of elastic properties were considered
in Refs. [16–19]. Wang et al. [17, 18] used piecewise linear
approximation of elastic moduli to reduce the problem to the
solution of an integral equation, which was then solved by
Krenk’s method [20].

In the solution of axisymmetric contact problems for an
inhomogeneously varied elastic half-space in contact with
a layer (with exponential variation of elastic properties)
in Ref. [20], a modified method of collocation (Multhopp–
Kalandiya method) was used.

2 Problem statement

Nondeformable circular indenter is pressed into the upper
bound Γ of an elastic half-space with force P. Cylindrical
coordinate system r, ϕ, z is associated with the half-space.
Friction between the indenter and the half-space is assumed
to be absent. The half-space is not loaded outside the in-
denter. The indenter is an axisymmetric body with a cross
section Ω (r � a) and a flat base (Fig. 1).

Fig. 1 Statement of the problem

Lame coefficients Λ and M of the half-space vary with
depth according to the following rule (a substarte with a
coating layer) (1) Λ = ΛC(z), M = MC(z), −H � z � 0;

(2) Λ = ΛS, M = MS, −∞ < z < −H.

Under the action of a central applied force P the inden-
ter will move a distance δ. The boundary conditions are

z = 0 : τzr = τzϕ = 0,

⎧
⎪⎪⎨
⎪⎪⎩

σz = 0, r > a,

w = −δ, r � a.

The coating and the substrate are assumed to be cou-
pled without sliding, so that the continuity conditions

z = −H :

⎧
⎪⎪⎨
⎪⎪⎩

τC
zr = τ

S
zr, σC

z = σ
S
z ,

wC = wS, uC = uS

are satisfied. Hereafter, superscripts “C” and “S” correspond
to the coating and the substrate, respectively. The stresses
vanish as r → ∞ or z→ −∞.

It is required to determine the contact normal stresses
under the indenter

σC
z |z=0 = −qa(r), r � a,

as well as the relation between the applied force P and move-
ment of the indenter δ.

3 Solution of the problem

Using integral transformation technique, the problem is re-
duced to the solution of the following integral equation
∫ 1

0
q(ρ)ρdρ

∫ ∞

0
L(u)J0(urλ−1)J0(uρλ−1)du

= λΘC(0) f (r), r � 1, (1)

where r = r′a; q(ρ′a) = qa(a); λ = H/a is the geometric pa-
rameter of the problem indicating the relative thickness of
the layer, L(u) is the kernel transform of the integral equa-
tion, ΘC(z) = 2MC(z)(ΛC(z)+MC(z))/(ΛC(z)+2MC(z)), J0 is
the Bessel function.

Kernel transform L(u) is constructed numerically using
the method of modeling functions [21]. It is shown [22] that
the kernel transform has the following properties

L(u) = ΘC(0)/ΘS + βu + χu2 + O(u3), u→ 0, (2)

L(u) = 1 + ηu−1 + φu−2 + O(u−3), u→ ∞, (3)

where ΘS = 2MS(ΛS +MS)/(ΛS + 2MS); β, χ, η, φ are some
constants; O(u3) is infinitesimal of order 3.

Due to the assumption of deformability of the substrate
the kernel transform is not equal to zero for all non negative
values of argument that allows to use bilateral asymptotical
method [1–3] to construct the solution.

Function L(u) with properties (2) and (3) can be repre-
sented [22] in the form of

L(u) = LN
Π

(u) + L∞
Σ

(u),

where
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LN
Π

(u) =
N∏

i=1

u2 + A2
i

u2 + B2
i

,

L∞
Σ

(u) =
∞∑

k=1

pk |u|
u2 + D2

k

,

(4)

where Ai, Bi, Dk ∈ C; pk ∈ R; Ai � Aj, Bi � Bj are some
constants.

For the kernel transform L(u) of the form of Eq. (4), an-
alytical solution of the integral equation (1) is obtained as [1]

q(r) =
2
π
ΘC(0)δ

[
1

LN(0)
√

1 − r2
+

N∑

i=1

CiΨ (r, Aiλ
−1)

]

, (5)

where the constants Ci can be determined from the system of
linear algebraic equations of

N∑

i=1

Ciα
(Ai

λ
,

Bk

λ

)

+
B−1

k λ

LN(0)
= 0, k = 1, 2, · · · ,N.

Here

α(x, y) =
xchy + yshy

x2 − y2
,

Ψ (r, y) =
chy√
1 − r2

− y
∫ 1

r

shytdt√
t2 − r2

.

Relation between the applied force and the movement of the
indenter has the form

P = 4aδΘC(0)

(

L−1(0) +
N∑

i=1

CiA
−1
i λshAiλ

−1

)

.

It is proved [1] that the solution is asymptotically exact
for both large and small values of the λ. Error of the solution
depends on the error in approximating the kernel transform
of the integral equation L(u) by expression (4).

4 Numerical examples for homogeneous layer

Let us consider a soft homogeneous layer lying on a hard
elastic foundation and compare the results with previously
ones. We assume that the Young modulus of the layer dif-
fer in 2, 5, 10, 100, 1 000 times from the Young moduli of
the substrate, the Poisson ratio of both the substrate and the
coating is 0.3. We denote Young’s moduli of the coating and
the substrate as EC and ES respectively.

Table 1 makes comparison between the expression
q(r)
ΘC(0)δ

√
1 − r2 for the cases of ES/EC = 2, 5, 10, 100,

1 000 and nondeformable substrate [10]. Results for nonde-
formable substrate were obtained earlier for λ = 0.25 using
singular asymptotic method [8], for λ = 1 using expansion
in orthogonal polynomials [9], and for λ = 4 using regular
asymptotic method [6].

From analysis of these results, it can be concluded that
in the case ES/EC = 1 000 the values of contact stresses are
close to the values obtained by other methods for nonde-
formable rigid foundation. The maximum difference is ob-
served in the case of λ = 0.25 and does not exceed 3%. For
λ = 1 and λ = 4 the difference is less than 0.8%.

Table 1 Contact stresses for elastic and nondeformable substrates

EC/ES 2 5 10 100 1 000 Nondeformable substrate [10]

λ = 0.25

r = 0 1.357 3.150 5.026 9.254 10.051 9.780

r = 0.2 1.384 3.182 5.047 9.233 10.021 9.756

r = 0.4 1.469 3.282 5.107 9.162 9.918 9.704

r = 0.6 1.634 3.461 5.197 9.007 9.717 9.600

r = 0.8 1.970 3.781 5.361 8.764 9.444 9.492

r = 0.95 3.117 5.061 6.674 10.069 10.738 11.043

λ = 1

r =0 1.029 1.533 1.796 2.113 2.177 2.183

r = 0.2 1.042 1.542 1.804 2.119 2.183 2.185

r = 0.4 1.085 1.578 1.837 2.144 2.207 2.204

r = 0.6 1.190 1.673 1.932 2.229 2.288 2.285

r = 0.8 1.490 1.994 2.268 2.577 2.624 2.643

r = 0.95 2.702 3.459 3.871 4.339 4.391 4.432

λ = 4

r =0 0.717 0.775 0.801 0.819 0.821 0.821

r = 0.2 0.732 0.790 0.817 0.835 0.837 0.837

r = 0.4 0.781 0.842 0.870 0.890 0.892 0.892

r = 0.6 0.891 0.961 0.991 1.014 1.016 1.018

r = 0.8 1.183 1.274 1.313 1.343 1.347 1.347

r = 0.95 2.265 2.439 2.510 2.569 2.582 2.572
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It should be noted that all given numerical results, both
obtained in this work and those taken for comparison, are
obtained using approximate methods and have calculation
errors less than 3%.

Table 2 expresses the correlation between the applied
force P and the movement of the indenter δ. The maximum
difference in the results does not exceed 1%.

Table 2 Correlation between the applied force and the movement of the indenter

EC/ES 2 5 10 100 1 000 Nondeformable substrate [10]

λ = 0.25 6.98 13.09 18.66 30.75 33.08 32.86

λ = 1 5.60 7.50 8.52 9.70 9.88 9.93

λ = 4 4.46 4.80 4.95 5.06 5.08 5.07

5 Numerical results for soft functionally graded layer

We consider that the Young moduli of the soft functionally-
gradient layer varies with depth as

E(z) =
1

100
ES f j(z), −H � z � 0,

where f j are given by one of the following relations (see
Fig. 2)

(1) f1(z) = f0 + ( f0 − 1)z/H;

(2) f2(z) =
1
f0
− f0 − 1

f0

z
H

;

(3) f3(z) =
f0 + 1
2 f0

+
f0 − 1
2 f0

cos
(

2π
z
H

)

;

(4) f4(z) =
f0 + 1

2
− f0 − 1

2
cos

(

2π
z
H

)

.

Fig. 2 Variation of Young’s modulus with depth in layers 1–4

Functions f j describe the variation of elastic properties
with depth in the layer. In materials 1, 2, Young’s modulus
vary linearly, while materials 3, 4 correspond to the materi-
als with nonmonotonic (trigonometric) variation of Young’s
modulus. Parameter f0 is the maximum ratio of elastic prop-
erties in the layer.

Value of f0 is considered to be 3.5, which refers to the
case of coating-substrate metal combinations used in engi-
neering practice. For example, when the coating is a soft
metal (Ag, E = 80 GPa or Al, E = 72 GPa), and the substrate
is a hard metal (Fe, E = 217 GPa or Cr, E = 240 GPa or Mo,
E=340 GPa), f0 changes from 2.7 to 4.7.

The Young modulus of a hard elastic foundation is

E(z) = ES, z � −H.

It is 100 times greater than Young’s modulus on the lower

boundary of the layer.

Kernel transforms corresponding to coating 1–4 are il-
lustrated in Fig. 3 (both axes are of logarithmic scale). The
maximum error in approximating the kernel transforms with
expressions (4) does not exceed 3%.

Figure 3 illustrate the validity of properties (2), (3) of
kernel transform: L(0) = ΘC(0)/ΘS = E(0)/ES (3.5/100 for
materials 1, 1/100 for materials 3, 4, and 1/350 for materials
2).

Figures 4–7 show relative contact stresses

qrel(r, λ) = q(r, λ)/qhom(r, λ),

where qhom(r, λ) are contact stresses for a homogeneous
layer, constructed for ES/EC = 100 and Θhom

C (0) = ΘC(0).
In all figures r ∈ [0, 0.98], λ ∈ [0.05, 1 000].
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Fig. 3 Kernel transforms of coatings 1–4

Fig. 4 Relative contact stresses for coating 1 (linear law)

Fig. 5 Relative contact stresses for coating 2 (linear law)

It can be concluded that the inhomogeneity of a layer
significantly changes the distribution of contact stresses un-
der the indenter. Only for λ > 32 (big layer thickness)
the contact stresses of coatings 1–4 are close to the contact
stresses of a homogeneous layer.

Fig. 6 Relative contact stresses for coating 3 (trigonometric law)

Fig. 7 Relative contact stresses for coating 4 (trigonometric law)

6 Conclusion

Mathematical model of a contact problem is developed for
penetration of circular indenter into a soft elastic functionally
graded layer, in which elastic properties of the foundation
are taken into account. Numerical examples are analyzed for
monotonic and nonmonotonic (trigonometric) variations of
elastic properties.

Bilateral asymptotically exact solution is constructed
for layers of complicated structure which is effective for any
layer thickness. High accuracy of the constructed solution
follows from high accuracy of kernel transform approxima-
tion for inhomogeneous layers, and the numerical results for
homogeneous layer are compared with the results for nonde-
formable foundation obtained by other methods [10].

The method presented in this work allows obtaining an
approximate solution of the contact problem in single form
for arbitrary variation of elastic properties in the coating and
for all range of applicable values of λ, in which the jump of
elastic properties on the boundary between coating and sub-
strate is taken into account.
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