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Abstract Volterra series is a powerful mathematical tool for
nonlinear system analysis, and there is a wide range of non-
linear engineering systems and structures that can be repre-
sented by a Volterra series model. In the present study, the
random vibration of nonlinear systems is investigated using
Volterra series. Analytical expressions were derived for the
calculation of the output power spectral density (PSD) and
input-output cross-PSD for nonlinear systems subjected to
Gaussian excitation. Based on these expressions, it was re-
vealed that both the output PSD and the input-output cross-
PSD can be expressed as polynomial functions of the nonlin-
ear characteristic parameters or the input intensity. Numer-
ical studies were carried out to verify the theoretical analy-
sis result and to demonstrate the effectiveness of the derived
relationship. The results reached in this study are of signif-
icance to the analysis and design of the nonlinear engineer-
ing systems and structures which can be represented by a
Volterra series model.
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Nomenclature

m, c, k Mass, damping and stiffness coefficients
respectively

k2, k3 Quadratic and cubic nonlinear stiffness
parameters respectively

x, y System input and output respectively
X(·), Y(·) Fourier spectra of system input and

output respectively
S yy(·), S xy(·) Power spectral density (PSD) and cross

PSD of system output respectively
H(·) Frequency response function (FRF)
h(t) Impulse response function
yn(t) The n-th order Volterra output
hn(τ1, τ2, · · · , τn) The n-th order Volterra kernel
E{·} Expected value operator
Hn(Ω1, Ω2, · · · , Ωn) The n-th order generalized frequency

response function
F [·] Fourier transform operator
δ(·) Dirac delta function
⊗ Kronecker product

1 Introduction

It is of great significance for engineering practices to es-
tablish a functional relationship between system input and
output from observations of the in- and out-going signals.
For a linear system, the relationship can be characterized
uniquely by its impulse response function in time domain
or its frequency response function (FRF) in frequency do-
main [1]. Especially, the FRF has greatly facilitated the
analysis and design of linear systems. However, it is well
known that some dynamic behaviors would uniquely hap-
pen to nonlinear systems [2], i.e., frequency distortion, the
generation of sub- and super-harmonic components, the oc-
currence of sub-resonance, limit cycle oscillation, bifurca-
tion, chaos, et al., and all of them can not be explained with
linear system theory. To understand these dynamic behav-
iors of nonlinear systems, various theories and methods have
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been developed. Unfortunately, none of them can encom-
pass all conceivable nonlinear systems. The Volterra se-
ries [3], which is essentially an extension of the standard one-
dimensional convolution operator of linear systems by a se-
ries of multi-dimensional integral operators with increasing
degree of nonlinearity, is among the earliest approaches to
achieve a systematic characterization of nonlinear systems.
In spirit, the Volterra series expansion for nonlinear systems
is similar to the Taylor series expansion [4] for analytic func-
tions and is particularly appropriate for systems with smooth
nonlinearity [5], which can be described by a polynomial
form differential equation. Nevertheless, as the Weierstrass
approximation theorem [6] guarantees that any continuous
function on a closed and bounded interval can be uniformly
approximated on that interval by a polynomial to any degree
of accuracy, and therefore there actually exist a wide class of
nonlinear systems that can be well represented by a Volterra
series, and thereby it is no surprise to see that the applica-
tions of Volterra series range widely from neuroscience [7],
biomedical engineering [8], fluid dynamics [9] and aerody-
namics engineering [10] to ocean engineering [11] and me-
chanical engineering [12–15], et al.

Based on the Volterra series, some concepts have been
developed to facilitate the analysis of nonlinear systems
in frequency domain. The generalized frequency response
functions (GFRFs) [16] that is defined as the Fourier trans-
forms of the Volterra kernels is usually regarded as an ex-
tension of the linear FRF to the nonlinear case. Billings
and his colleagues [17, 18] proposed an algorithm to deter-
mine the GFRFs for the nonlinear systems described by dif-
ferential equations or discrete-time models. However, due
to the multidimensional nature of the GFRFs [19, 20], they
are much more complicated than the FRFs of linear systems
and therefore it is difficult to measure, display and inter-
pret the GFRFs in practice. Feijoo, et al. [21–23] demon-
strated that a Volterra series can be decomposed into a se-
ries of associated linear equations (ALEs) whose FRFs are
one dimensional and so are easier to analyze and interpret
than the GFRFs. Also to overcome the difficulties associ-
ated with the GFRFs, Lang and Billings [24] proposed an-
other concept, the nonlinear output frequency response func-
tions (NOFRFs), which are one-dimensional functions of
frequency. With the NOFRF concept, it is possible to im-
plement the nonlinear systems analysis in a manner similar
to the linear systems analysis. However, neither the GFRFs
nor the NOFRFs can provide a clear explicit relationship for
the system output spectrum and the nonlinear characteris-
tics parameters. To address this problem, Lang and his col-
leagues [25] have recently developed another new concept—
output frequency response function (OFRF), through which
it was revealed that the system output spectrum can be ex-
pressed as a polynomial function of the nonlinear charac-
teristics parameters of the systems. This greatly facilitates
the analysis and design of the output dynamics of nonlinear
systems in frequency domain. Now these frequency domain

concepts are frequently applied to study the nonlinear sys-
tems subjected to deterministic inputs, e.g., the sinusoidal
excitation. On the other hand, the problem of nonlinear sys-
tems subjected to non-deterministic inputs, e.g., random in-
puts, has attracted relatively little attention and relevant anal-
yses are relatively few. For the deterministic input cases, the
frequency spectrum is sufficient to characterize the feature of
the system output; on the contrary, for the non-deterministic
input cases, the power spectrum rather then frequency spec-
trum is needed to specify the system response.

It is well known that, for linear systems, by using the
FRF, the relationship between the output and input power
spectra can be described in a form similar to the relationship
between the output and input frequency spectra. But, for
the nonlinear systems, there are very few analytical works
dedicated to deducing an explicit expression for the output
power spectrum by using the GFRFs. It is mainly because,
as indicated by this study, although the GFRF expression of
the usual output spectrum for nonlinear systems is very com-
plicated, even more so is the GFRF expression of the output
power spectrum.

In this paper, the Volterra nonlinear systems subjected
to random Gaussian inputs are studied, and a general expres-
sion for the power spectrum is derived, through which the ef-
fects of the random Gaussian input intensity and the nonlin-
ear characteristic parameters on the output power spectrum
are investigated.

2 Nonlinear systems

2.1 Volterra series representation

According to the linear system theory, the system output re-
sponse y(t) can be expressed in the following convolution
integral form

y(t) =
∫

h1(τ)x(t − τ)dτ, (1)

where x(t) is the system input and h1(τ) is a linear convo-
lution kernel, also called as impulse response function. The
Volterra series [5] extends this familiar convolution integral
for linear systems to a series of multidimensional convolu-
tion integrals

y(t) = y1(t) + y2(t) + · · · + yn(t), (2)

in which

yn(t) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, τ2, · · · , τn)

×
n∏

i=1

x(t − τi)dτ1 dτ2 · · · dτn. (3)

In the above multidimensional integral, hn (τ1, τ2, · · · ,
τn) are the Volterra kernels. Like the well-known Taylor se-
ries, the Volterra series is in essence a polynomial function
approximation of the nonlinear system. The difference be-
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tween them is that the Taylor series is memoryless but the
Volterra series is of memory. Therefore, the Taylor series can
only represent systems in which the output depends only on
the current input, but the Volterra series [4] can characterize
systems in which the output also depends on past inputs. The
system memory is determined by the support of the Volterra
kernel.

Generally, the Volterra series is particularly appropriate
for systems with smooth nonlinearity, that is, the nonlinear
systems which can be described by a polynomial form dif-
ferential equation model [17, 18] as follows

M∑
m=1

m∑
p=0

p+q=m

Z∑
l1,l2 ,··· ,lp+q=0

cpq

(
l1, l2, · · · , lp+q

)

×
p∏

i=1

Dli y(t)
p+q∏

i=p+1

Dli x(t) = 0, (4)

where the differential operator “D” is defined by Dly(t) =
dly(t)/dtl, and M is the maximum degree of nonlinearity
and Z is the maximum order of derivative. According to
the Weierstrass approximation theorem [6], on a closed and
bounded interval any continuous function can be uniformly
approximated by a polynomial to any degree of accuracy;
therefore, there actually exist a wide class of nonlinear sys-
tems that can be well represented by a Volterra series, for
example, the nonlinear oscillators with bilinear stiffness or
other kinds of piecewise linear stiffness.

As indicated by Eqs. (2) and (3), the Volterra series is
an infinite power series, and this raises convergence problem.
Generally, a Volterra series is convergent only for a limited
region of the input amplitude. However, it is a challenging
problem to determine the convergence region for a Volterra
series representation. Although efforts [26–32] have been
made to address this problem, there are still no general cri-
teria or methods available to determine the convergence re-
gion, or the available criteria are often very conservative and
can only provide a rough estimation for the real convergence
region. The only exception may be for the case of the Duffing
oscillator subjected to a harmonic excitation [26, 28]. When
a Volterra series representation is convergent, a truncated se-
ries can be adopted to approximate a nonlinear system, i.e.

y(t) =
Q∑

n=1

yn(t). (5)

As there is no criteria available to determine the con-
vergence region for the input amplitude, and consequently
the criteria to determine the value of Q and the residual error
is not available as well. However, some applications have
demonstrated that, in the convergent case, a Volterra series
of three order is usually enough to model a nonlinear sys-
tem. For example, Worden and Manson [33] used a three
order Volterra series to model a Duffing oscialltor, and Chat-
terjee [34] adopted a Volterra series of the same order to rep-
resent a bilinear oscillator.

2.2 Generalized frequency response functions (GFRFs)

For the linear system given as Eq. (1), in frequency domain
the relationship between y(t) and x(t) can be expressed by an
FRF, H1(ω), i.e.

Y(ω) = H1(ω)X(ω), (6)

where Y(ω) and X(ω) are the spectra of the system output
and input, respectively, and H1(ω) is the Fourier transform
of the linear convolution kernel, h1(t). Similarly, the output
frequency response of the nonlinear systems to a general in-
put can be expressed in the following form [35]

Y(ω) =
Q∑

n=1

Yn(ω),

Yn(ω) =
n−1/2

(2π)n−1

∫
Rn

ω1+ω2+···+ωn=ω

Hn(ω1, ω2, · · · , ωn)

×
n∏

i=1

X(ωi)dω1→n, (7)

where ω1→n are dummy variables of integrations, and Yn(ω)
is the n-th order output frequency response of the system,
and Hn(•) is the generalized frequency response function
(GFRF), defined as

Hn(ω1, ω2, · · · , ωn)

=

∫
Rn

hn(τ1, τ2, · · · , τn)

× exp[−(ω1τ1 + ω2τ2 + · · · + ωnτn)j]dτ1→n, (8)

where j =
√−1. Equation (7) is a natural extension of the

well-known linear relationship expressed by Eq. (6) to the
nonlinear case.

The concept of the GFRF first appeared in a research
report [16] by George from the MIT in 1959, in which it
was named as the nonlinear frequency response function
(NFRF). Afterwards, this concept has been further developed
by many researchers from different aspects. By using the
GFRF, Bedrosian and Rice [36] have investigated the fre-
quency responses of the Volterra nonlinear systems driven
by harmonic signals and Gaussian noise signals, where a
method named as harmonic probing algorithm was proposed
to determine the GFRF for the nonlinear systems whose dif-
ferential equations of motion are available. Bussgang and his
colleagues [37] have extended this concept for the study of
nonlinear systems subjected to multiple inputs. Victor and
Knight [38] have given a more rigorous formulation to the
Volterra frequency kernel. Billings and his colleague [39]
have extended the harmonic probing method to the discrete
time nonlinear systems. Moreover, Billings and Peyton
Jones [17, 18] have further developed the harmonic probing
method by putting forward an effective method which could
recursively determine the GFRFs from low to high orders.
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Later, Billings and his colleagues [40] have extended this re-
cursive method to multiple inputs case. The algorithm can be
easily implemented by computer using symbolic operation
method and can facilitate the application of the GFRFs to a
certain extent. Using this method the GFRFs of the polyno-
mial nonlinear system (4) can be recursively determined as
follows

Hn (ω1, ω2, · · · , ωn)

= − 1[ Z∑
l1=0

c10(l1)
(
jω1 + jω2 + · · · + jωn

)l1

]

×
[ Z∑

l1,l2,··· ,ln=0

c0n (l1, l2, · · · , ln) (jω1)l1 (jω2)l2 · · · (jωn)ln

+

n−1∑
q=1

n−q∑
p=1

Z∑
l1,l2,··· ,ln=0

cpq (l1, l2, · · · , ln)

×
(
jωn−q+1

)lp+1 · · · (jωn
)ln Hn−q,p

(
ω1, ω2, · · · , ωn−q

)

+

n∑
p=2

Z∑
l1,l2,··· ,lp=0

cp0

(
l1, l2, · · · , lp

)

×Hnp (ω1, ω2, · · · , ωn)

]
, (9)

where

Hnp(·) =
n−p+1∑

i=1

Hi (ω1, ω2, · · · , ωi) Hn−i,p−1 (ωi+1, · · · , ωn)

× (
jω1 + jω2 + · · · + jωi

)lp , (10)

with

Hn1 (ω1, ω2, · · · , ωn) = Hn (ω1, ω2, · · · , ωn)

× (
jω1 + jω2 + · · · + jωn

)l1 . (11)

For example, consider the nonlinear oscillator shown in
Fig. 1, its governing equation of motion is

mÿ + (c1 + c2y2)ẏ + (k1 + k2y2)y = x(t). (12)

Fig. 1 A nonlinear oscillator

It is easy to know that the above oscillator actually
represents a specific instance of polynomial nonlinear sys-
tems expressed by Eq. (4) with c0,1(0) = −1, c1,0(2) = m,
c1,0(0) = k1, c1,0(1) = c1, c3,0(0, 0, 1) = c2, c3,0(0, 0, 0) = k2

else cp,q(•) = 0. The first five order GFRFs of oscillator (12)
can be calculated recursively using algorithm (9) as follows

H1(ω1) =
1

−mω2
1 + jc1ω1 + k1

, (13)

H2 (ω1, ω2) = 0, (14)

H3 (ω1, ω2, ω3) = −
⎛⎜⎜⎜⎜⎜⎜⎝k2 + j

c2

3

3∑
i=1

ωi

⎞⎟⎟⎟⎟⎟⎟⎠ H1 (ω1 + ω2 + ω3)

×H1(ω1)H1 (ω2) H1 (ω3) , (15)

H4 (ω1, ω2, ω3, ω4) = 0, (16)

H5 (ω1, ω2, ω3, ω4, ω5)

= − 3
10

⎛⎜⎜⎜⎜⎜⎜⎝k2 + j
c2

3

5∑
i=1

ωi

⎞⎟⎟⎟⎟⎟⎟⎠ H1 (ω1 + ω2 + ω3 + ω4 + ω5)

×
∑

(i1,i2,··· ,i5) is all
permutations(1,2,··· ,5)

H1 (ωi1) H1 (ωi2) H3 (ωi3, ωi4, ωi5) . (17)

The GFRFs has been used to nonlinear systems sub-
jected to deterministic inputs, e.g., the sinusoidal excitation.
On the other hand, the analysis of nonlinear systems sub-
jected to non-deterministic inputs by the GFRFs has attracted
relatively few attentions. In the following section, using the
GFRFs, we are going to establish an explicit expression for
the power spectra density (PSD) for the nonlinear systems
subjected to random Gaussian excitations.

3 The PSD and cross-PSD of nonlinear systems

The Gaussian input model is perhaps the most commonly
used in random vibration as there are a large number of
random processes can be effectively modeled as joint nor-
mally distributed. With the concept of GFRFs, Bedrosian
and Rice [36] have developed calculational expressions for
the PSD of the nonlinear systems subjected to Gaussian in-
put. In their study, special attention was paid to the case
in which the Volterra series consists of only the linear and
quadratic terms. Later, by making use of the Hermite expan-
sion, Barrett [41] has derived similar formula for the output
spectrum of a time-invariant nonlinear system. Worden and
Manson [42] studied the random vibration of Duffing oscil-
lator and developed respective formula for the calculations
of cross-PSD and coherence [33]. Marzocca and his col-
leagues [43] have studied the random vibration of quadratic
nonlinear systems. In this study, general polynomial nonlin-
ear systems, which consist of arbitrary nonlinear terms and
are modeled as Eq. (4), are considered. The input signal is
assumed to be Gaussian distributed with mean zero and stan-
dard deviation λ, i.e., x(t) ∼ N(0, λ).
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3.1 The PSD of the system output

The auto-covariance of the output y(t) is calculated as

E {y(t)y(t − τ)} = E

⎧⎪⎪⎨⎪⎪⎩
Q∑

z=1

yz(t)

⎡⎢⎢⎢⎢⎢⎢⎣
Q∑

d=1

yd(t − τ)
⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

=

Q∑
z=1

Q∑
d=1

E {yz(t)yd(t − τ)}. (18)

By using Eq. (3), it can be known that

E {yz(t)yd(t − τ)}
=

∫
Rz+d

hz(τ1, τ2, · · · , τz)hd(τz+1, τz+2, · · · , τz+d)

×E

⎧⎪⎪⎨⎪⎪⎩
z∏

i=1

x(t − τi)
z+d∏

l=z+1

x(t − τ − τl)

⎫⎪⎪⎬⎪⎪⎭ dτ1→z+d. (19)

Denote ui = x(t − τi) (i = 1, 2, · · · , z), and ui =

x(t − τ − τi) (i = z + 1, z + 2, · · · , z + d), then expectation
of the production of the input series in Eq. (19) can be writ-
ten as a concise form as follows

E

⎧⎪⎪⎨⎪⎪⎩
z∏

i=1

x(t − τi)
z+d∏

l=z+1

x(t − τ − τl)

⎫⎪⎪⎬⎪⎪⎭ = E

⎧⎪⎪⎨⎪⎪⎩
z+d∏
i=1

ui

⎫⎪⎪⎬⎪⎪⎭ .
Moreover, according to Isserlis’ theorem [44], if the in-

put x(t) is a zero mean Gaussian signal (it does not assume
that the input is spectrally white), when z + d is odd, then

E

⎧⎪⎪⎨⎪⎪⎩
z+d∏
i=1

ui

⎫⎪⎪⎬⎪⎪⎭ = 0, (20)

and when z + d is even, then

E

⎧⎪⎪⎨⎪⎪⎩
z+d∏
i=1

ui

⎫⎪⎪⎬⎪⎪⎭ =
∑ ∏

E
{
upuq

}
, (21)

where the notation
∑ ∏

means summing over all distinct
ways of portioning ui (i = 1, 2, · · · , z + d) into pairs. Equa-
tions (20) and (21) indicate that only if z and d are all odd or
are all even, then E{yz(t)yd(t − τ)} is non-zero.

Consider the case where both z and d are odd. Without
loss of generality, it is assumed that z � d, then all the terms
in Eq. (21) can be classified into (z + 1)/2 categories, i.e., in
Category L (L = 1, 3, · · · , z), there are L elements selected
from {x(t− τi), i = 1, 2, · · · , z} paired with the elements from
{x(t − τ − τi), i = z + 1, z + 2, · · · , z + d}. Denote Category
L as CI{x : z, d, L}, then the production of the input series in
Eq. (19) can be expressed as

E

⎧⎪⎪⎨⎪⎪⎩
z∏

i=1

x(t − τi)
z+d∏

l=z+1

x(t − τ − τl)

⎫⎪⎪⎬⎪⎪⎭

=

(z+1)/2∑
J=1

CI {x : z, d, 2J − 1}. (22)

In addition, it is not difficult to know that the number

of the terms included in Category CI {x : z, d, L} can be cal-
culated as

ΞI(z, d, L) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z!d!
4L![(z − L)/2]![(d − L)/2]!

, if z � L,

d!
2((d − L)/2)!

, if z = L.

(23)

In Category L, there is one term which can be expressed
as

T̂ {x : z, d, L}

=

(z−L)/2∏
i=1

E
{
x(t − τ(2i−1))x(t − τ(2i))

}

×
L∏

p=1

E
{
x(t − τ(z−L+p))x(t − τ(z+p) − τ)

}

×
(z+d)/2∏

r=[(z+L)/2+1]

E{x(t − τ(2r−1) − τ)x(t − τ(2r) − τ)}. (24)

Moreover, the expectation of two random variables can
be calculated by using the power spectrum, i.e.

E {x(t − τa)x(t − τb)} = 1
2π

∫
R

S xx(ω)ejω(τa−τb)dω, (25)

where S xx(ω) is the power spectra density of x(t). Making
use of Eq. (25), Eq. (24) can be rewritten as

T̂ (x : z, d, L)

=
1

(2π)(z+d)/2
×

∫
R(z+d)/2

⎛⎜⎜⎜⎜⎜⎜⎝
(z+d)/2∏

i=1

S xx(ωi)

×
(z−L)/2∏

q=1

exp[jωq(τ(2q−1) − τ2q)]

×
L∏

p=1

exp[jω[(z−L)/2+p](τ(z−L+p) − τ(z+p) − τ)]

×
(z+d)/2∏

r=[(z+L)/2+1]

exp[jωr(τ(2r−1) − τ2r)]

⎞⎟⎟⎟⎟⎟⎟⎠ dω1→(z+d)/2. (26)

Define

E{y, T̂ (x : z, d, L)}

=

∫
Rz+d

hz(τ1, τ2, · · · , τz) × hd(τz+1, τz+2, · · · , τz+d)

×T̂ (x : z, d, L) dτ1→(z+d). (27)

Substituting Eq. (26) into Eq. (27) gives

E{y, T̂ (x : z, d, L)}

=
1

(2π)(z+d)/2

∫
R(z+d)/2

Hz,d,L(ω1, ω2, · · · , ω(z+d)/2)
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×
⎛⎜⎜⎜⎜⎜⎜⎝

(z+d)/2∏
i=1

S xx(ωi)
L∏

p=1

exp(−jτω[(z−L)/2+p])

⎞⎟⎟⎟⎟⎟⎟⎠
×dω1→(z+d)/2, (28)

with

Hz,d,L(ω1, ω2, · · · , ω(z+d)/2)

=

∫
R(z+d)

hz(τ1, τ2, · · · , τz)hd(τ(z+1), τ(z+2), · · · , τ(z+d))

×
⎛⎜⎜⎜⎜⎜⎜⎝

(z−L)/2∏
q=1

exp[jωq(τ(2q−1) − τ2q)]

×
L∏

p=1

exp[(jω[(z−L)/2+p](τ(z−L+p) − τ(z+p))]

×
(z+d)/2∏

r=[(z+L)/2+1]

exp[jωr(τ(2r−1) − τ2r)]

⎞⎟⎟⎟⎟⎟⎟⎠ dτ1→(z+d). (29)

Moreover, from the definition of GFRFs, i.e., Eq. (8),
Hz,d,L(ω1, ω2, · · · , ω(z+d)/2) can be simplified as follows

Hz,d,L(ω1, ω2, · · · , ω(z+d)/2)

= Hz(−ω1, ω1, · · · ,−ω(z−L)/2, ω(z−L)/2,

−ω[(z−L)/2+1], · · · ,−ω[(z+L)/2])

×Hd(ω[(z−L)/2+1], · · · , ω(z+L)/2,−ω[(z+L)/2+1],

ω[(z+L)/2+1], · · · ,−ω(z+d)/2, ω(z+d)/2). (30)

By setting

Hx
z,d,L(ω1, ω2, · · · , ω(z+d)/2)

= Hz,d,L(ω1, ω2, · · · , ω(z+d)/2)
(z+d)/2∏

i=1

S xx(ωi), (31)

E{y, T̂ (x : z, d, L)} can be rewritten in the following concise
form

E{y, T̂ (x : z, d, L)}

=
1

(2π)(z+d)/2

∫
R(z+d)/2

Hx
z,d,L(ω1, ω2, · · · , ω(z+d)/2)

×
L∏

p=1

exp(−jτω[(z−L)/2+p])dω1→(z+d)/2. (32)

Performing the Fourier transform at both sides of
Eq. (32) yields

F [E{y, T̂ (x : z, d, L)}]

=
1

(2π)(z+d)/2

∫
R(z+d)/2

Hx
z,d,L(ω1, ω2, · · · , ω(z+d)/2)

⎡⎢⎢⎢⎢⎢⎢⎣
∫

R
exp

⎡⎢⎢⎢⎢⎢⎢⎣−jτ

⎛⎜⎜⎜⎜⎜⎜⎝ω +
L∑

p=1

ω[(z−L)/2+p]

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ dτ

⎤⎥⎥⎥⎥⎥⎥⎦ dω1→(z+d)/2

=
1

(2π)(z+d−2)/2

[ ∫
R(z+d)/2

Hx
z,d,L(ω1, ω2, · · · , ω(z+d)/2)

×δ
(
ω +

L∑
p=1

ω[(z−L)/2+p]

)
dω1→(z+d)/2

]

=
1

(2π)(z+d−2)/2

∫
R(z+d)/2

L∑
p=1
ω[(z−L)/2+p]=−ω

Hx
z,d,L

×(ω1, ω2, · · · , ω(z+d)/2)dω1→(z+d)/2, (33)

where δ (Δ) is the Dirac delta function.

Define

E {y,CI (x : z, d, L)}

=

∫
Rz+d

hz(τ1, τ2, · · · , τz)hd(τz+1, τz+2, · · · , τz+d)

×CI (x : z, d, L) dτ1→(z+d), (34)

then it can be determined that the Fourier spectrum for all the
terms in E {y,CI (x : z, d, L)} can be expressed in exactly the
same form as Eq. (33) due to the symmetry of the GFRFs.
Therefore, the Fourier spectrum of E {y,CI (x : z, d, L)}, sim-
ply denoted as S CI(z,d,L)

y (ω), can be calculated as

S CI(z,d,L)
y (ω) = ΞI(z, d, L)F [

E {y, T (x : z, d, L)}]

=
ΞI(z, d, L)

(2π)(z+d−2)/2

∫
R(z+d)/2

L∑
p=1
ω[(z−L)/2+p]=−ω

Hx
z,d,L

×(ω1, ω2, · · · , ω(z+d)/2)dω1→(z+d)/2. (35)

From Eqs. (19) and (22), it can be known that

F [
E {yz(t)yd(t − τ)}] =

(z+1)/2∑
J=1

S CI(z,d,2J−1)
y (ω). (36)

Similarly, it can be derived that, when z and d are both
even number, the Fourier spectrum of E {yz(t)yd(t − τ)} can
be calculated as

F [
E {yz(t)yd(t − τ)}] =

z/2+1∑
J=1

S CII(z,d,2J−2)
y (ω), (37)

with

S CII(z,d,L)
y (ω) =

ΞII(z, d, L)
(2π)(z+d−2)/2

∫
R(z+d)/2

L∑
p=1
ω[(z−L)/2+p]=−ω

Hx
z,d,L

×(ω1, ω2, · · · , ω(z+d)/2)dω1→(z+d)/2, (38)

and



Parametric characteristic of the random vibration response of nonlinear systems 273

ΞII(z, d, L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z!d!
4L!((z − L)/2)!((d − L)/2)!

, if z � L,

d!
2((d − L)/2)!

, if z = L,

z!d!
4(z/2)!(d/2)!

, if L = 0.

(39)

Moreover, following the same procedure, it can be eas-
ily derived that

F [
E {yz(t)yd(t − τ)}] = conj

(F [
E {yd(t)yz(t − τ)}]) , (40)

and

F [
E {yz(t)yd(t − τ)} + E {yd(t)yz(t − τ)}]
= 2Re

(F [
E {yz(t)yd(t − τ)}]) . (41)

According to the results described by Eqs. (20)
and (21), the auto-covariance of the output y(t), i.e.,
E {y(t)y(t − τ)} can be calculated as

E {y(t)y(t − τ)}

=

[(Q+1)/2]∑
z=1

[(Q+1)/2]∑
d=1

E
{
y(2z−1)(t)y(2d−1)(t − τ)}

︸�����������������������������������������������︷︷�����������������������������������������������︸
EI{y(t)y(t−τ)}

+

[Q/2]∑
z=1

[Q/2]∑
d=1

E {y2z(t)y2d(t − τ)}
︸������������������������������︷︷������������������������������︸

EII{y(t)y(t−τ)}

, (42)

where [•] means to take the integer part. Carrying out the
Fourier transform at both sides of Eq. (42), then the power
spectra density of the Volterra nonlinear system, y(t) can be
given as

S yy(ω) = S I
yy(ω) + S II

yy(ω), (43)

with

S I
yy(ω) = F [

EI {y(t)y(t − τ)}] ,
S II

yy(ω) = F [
EII {y(t)y(t − τ)}] . (44)

Using the results given by Eqs. (35), (37) and (41),
S I

yy(ω) and S II
yy(ω) can be calculated as

S I
yy(ω) =

[(Q+1)/2]∑
z=1

[(Q+1)/2]∑
d=z+2

z∑
J=1

2Re
(
S CI(2z−1,2d−1,2J−1)

y (ω)
)

+

[(Q+1)/2]∑
z=1

z∑
J=1

Re
(
S CI(2z−1,2z−1,2J−1)

y (ω)
)
, (45)

and

S II
yy(ω) =

[Q/2]∑
z=1

[Q/2]∑
d=z+2

z+1∑
J=1

2Re
(
S CII(2z,2d,2J−2)

y (ω)
)

+

[Q/2]∑
z=1

z+1∑
J=1

Re
(
S CII(2z,2z,2J−2)

y (ω)
)
. (46)

To illustrate the calculation of the PSD, the method is
applied to the nonlinear oscillator (12), and the following re-
sult is obtained,

S yy(ω) = H1(ω)H1(−ω)S xx(ω) +
6
π

Re

( ∫
R2

ω1=ω

H1(−ω1)

×H3(ω1, ω2,−ω2)
2∏

i=1

S xx(ωi)dω1→2

)

+
60
π2

Re

( ∫
R3

ω1=ω

H1(−ω1)H5(ω1, ω2,−ω2, ω3,−ω3)

×
3∏

i=1

S xx(ωi)dω1→3

)

+
9

4π2
Re

( ∫
R3

ω2=ω

H3(−ω1, ω1,−ω2)H3(ω2, ω3,−ω3)

×
3∏

i=1

S xx(ωi)dω1→3

)

+
1

4π2
Re

( ∫
R3

ω1+ω2+ω3=ω

H3(−ω1,−ω2,−ω3)

×H3(ω1, ω2, ω3)
3∏

i=1

S xx(ωi)dω1→3

)

+
45
π3

Re

( ∫
R4

ω2=ω

H3(−ω1, ω1,−ω2)

×H5(ω2, ω3,−ω3, ω4,−ω4)
4∏

i=1

S xx(ωi)dω1→4

)

+
15
π3

Re

( ∫
R4

ω1+ω2+ω3=ω

H3(−ω1,−ω2,−ω3)

×H5(ω1, ω2, ω3, ω4,−ω4)
4∏

i=1

S xx(ωi)dω1→4

)

+ · · · . (47)

3.2 The cross-PSD of the system input and output

The cross-covariance of the output and the input is

E {y(t)x(t − τ)} = E

⎧⎪⎪⎨⎪⎪⎩x(t − τ)
Q∑

z=1

yz(t)

⎫⎪⎪⎬⎪⎪⎭

=

Q∑
z=1

E {yz(t)x(t − τ)}. (48)

Substituting Eq. (3) into Eq. (48) makes
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E {y(t)x(t − τ)} =
Q∑

z=1

∫
Rz

hz(τ1, τ2, · · · , τz)E

×
⎧⎪⎪⎨⎪⎪⎩x(t − τ)

z∏
i=1

x(t − τi)

⎫⎪⎪⎬⎪⎪⎭ dτ1→z. (49)

From the Isserlis’ theorem described as Eqs. (20)
and (21), it can be known that when z is even number,

E

⎧⎪⎪⎨⎪⎪⎩x(t − τ)
z∏

i=1

x(t − τi)

⎫⎪⎪⎬⎪⎪⎭ = 0, then the cross-covariance of

the output and the input for Volterra nonlinear systems can
be calculated as

E {y(t)x(t − τ)} =
[(Q+1)/2]∑

z=1

E
{
y(2z−1)(t)x(t − τ)}

=

[(Q+1)/2]∑
z=1

∫
R2z−1

h2z−1(τ1, τ2, · · · , τ2z−1)E

×
⎧⎪⎪⎨⎪⎪⎩x(t − τ)

2z−1∏
i=1

x(t − τi)

⎫⎪⎪⎬⎪⎪⎭ dτ1→2z−1. (50)

The cross-PSD of the input and output is defined as the
Fourier spectrum of the cross-covariance. Using Eq. (50)
and following a similar procedure used to calculate the PSD
of the system output in the above section, we can easily de-
rive the cross-PSD of the input and output as

S xy(ω) =
[(Q+1)/2]∑

z=1

S xy(2z−1) (ω), (51)

with

S xy(2z−1) (ω) =
(2z − 1)!S xx(ω)
2!(z − 1)!(2π)z−1

∫
Rz−1

H(2z−1)

×(−ω1, ω1, · · · ,−ω(z−1), ω(z−1), ω)

×
z−1∏
i=1

S xx(ωi)dω1→(z−1). (52)

Equation (51) indicates that, for nonlinear systems,
only the nonlinearities with odd number order could make
contribution to the cross-PSD, and so the cross-PSD does not
possess any information about the even number order nonlin-
earity.

Applying Eqs. (51) and (52) to the nonlinear oscillator
(12), it can be derived that the cross-PSD could be approxi-
mately calculated as

S xy(ω) ≈ S xx(ω)

(
H1(ω) +

3
2π

∫
R1

H3(−ω1, ω1, ω)

×S xx(ω1)dω1 +
15
4π2

∫
R2

H5(−ω1, ω1,−ω2, ω2, ω)

×
2∏

i=1

S xx(ωi)dω1→2 + · · ·
)
. (53)

3.3 Parametric characteristic analysis of the PSD and the
cross-PSD

In the above two sections, two expressions have been de-
rived to calculate respectively the PSD and the cross-PSD
for nonlinear systems. However, these expressions are very
complicated so that it is very difficult to be implemented in
practices. An immediate difficulty is that the results gener-
ated by the expressions can not be readily used to explicitly
reveal how the nonlinear characteristic parameters in the sys-
tem (4) and the input intensity affect the PSD. To solve this
problem, two different new formulations are devised for the
expressions of the PSDs, through which analytical explicit
relationships between the PSD and the input intensity and
between the PSD and the nonlinear characteristic parameters
of system (4) can be established. Particularly, in this study
the input auto-spectrum is considered to be constant over all
frequencies for the Gaussian white input, i.e., S xx(ω) = P.

Proposition 1: When the nonlinear systems are subjected
to a Gaussian white noise input with constant spectrum, i.e.,
S xx(ω) = P, the PSD of the system outputs can be expressed
as a polynomial function of the input intensity such that

S yy(ω) =
Q∑

i=1

PiΛ(i)(ω), (54)

where Λ(i)(ω) (i = 1, 2, · · · ,Q) is a function that is related to
the system parameters only, and is independent of the system
input [45].

The proof of the proposition is quite straightforward
and the details are omitted here. Obviously, by setting

Λ(1)(ω) = H1(ω)H1(−ω),

Λ(2)(ω) =
3
π

Re

( ∫
R2

ω1=ω

H1(−ω1)H3(ω1, ω2,−ω2)dω1→2

)
,

Λ(3)(ω) =
30
π2

Re

( ∫
R3

ω1=ω

H1(−ω1)H5

×(ω1, ω2,−ω2, ω2,−ω2)dω1→3

)

+
9

4π2
Re

( ∫
R3

ω2=ω

H3(−ω1, ω1,−ω2)H3

×(ω2, ω3,−ω3)dω1→3

)

+
1

4π2
Re

( ∫
R3

ω1+ω2+ω3=ω

H3(−ω1,−ω2,−ω3)H3

×(ω1, ω2, ω3)dω1→3

)
,
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Λ4(ω) =
45
2π3

Re

( ∫
R4

ω2=ω

H3(−ω1, ω1,−ω2)

×H5(ω2, ω3,−ω3, ω4,−ω4)dω1→4

)

+
15
π3

Re

( ∫
R4

ω1+ω2+ω3=ω

H3(−ω1,−ω2,−ω3)

×H5(ω1, ω2, ω3, ω4,−ω4)dω1→4

)
,

then Eq. (47) can be reformulated as a polynomial form de-
scribed by Eq. (54).

Expression (54) reveals a distinct difference between
the nonlinear and the linear systems, that is, the output in-
tensity of the nonlinear systems is a polynomial function of
the input intensity while the output intensity is a linear func-
tion of the input intensity, i.e., S yy(ω) = PΛ(1)(ω) for linear
systems. In addition, expression (54) indicates that, if Λ(i)(ω)
(i = 1, 2, · · · ,Q) can be known a priori, then given a specific
input intensity, the PSD of the nonlinear system output can
be determined. Then the remaining problem becomes how
to evaluateΛ(i)(ω). Given the nonlinear differential equation
and the values of all system parameters, obviously the val-
ues of Λ(i)(ω) can be straightforwardly calculated from their
definitions. However, the highly complex forms of Λ(i)(ω)
and GFRFs imply that it would be not easy (though straight-
forward) to implement the calculation procedure in practice.
As in linear system analysis people usually prefer to estimat-
ing the FRFs from the system input and output responses, an
algorithm is proposed here to directly estimate the values of
Λ(i)(ω) using the input and output responses of the nonlinear
systems.

From Eq. (54), the calculation of the PSD can be rewrit-
ten in the following form

S yy(ω) = (P1 P2 · · · PQ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ(1)(ω)

Λ(2)(ω)

...

Λ(Q)(ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (55)

Excite the system under study U (U � Q) times by the
Gaussian white noise inputs with different intensities, i.e.,
P(1), P(2), · · · , P(U), to generate the output responses, y(1),
y(2), · · · , y(U). Without loss of generality, it is assumed that
P(1)>P(2)> · · ·>P(U), then the PSDs of the output responses
can be related to Λ(i)(ω) (i = 1, 2, · · · ,Q) as below

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S y(1)y(1) (ω)

...

S y(U)y(U) (ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(1) · · · PQ
(1)

...
. . .

...

P(U) · · · PQ
(U)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ(1)(ω)

...

Λ(Q)(ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (56)

Consequently, the values of Λ(i)(ω) (i = 1, 2, · · · ,Q)

can be determined using a least square based approach as
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ(1)(ω)

...

Λ(Q)(ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

[
PPP′(U×Q)PPP(U×Q)

]−1
PPP′(U×Q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S y(1)y(1) (ω)

...

S y(U)y(U) (ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (57)

where

PPP(U×Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(1) · · · PQ
(1)

...
. . .

...

P(U) · · · PQ
(U)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It can be seen that, to determine Λ(i)(ω) (i =

1, 2, · · · ,Q), this algorithm requires experimental or simula-
tion results for the nonlinear system under U different Gaus-
sian white noise signal excitations.

To achieve an explicit expression for the relationship
between the PSD and the nonlinear characteristic param-
eters, another formulation is proposed here, described as
proposition 2.

Proposition 2: When the nonlinear systems are subjected
to a Gaussian white noise input with constant spectrum, i.e.,
S xx(ω) = P, the PSD of the system outputs can be expressed
as a polynomial function of the nonlinear characteristic pa-
rameters in nonlinear systems such that

S yy(ω) =
Q∑

n=1

Pn
∑

( j1 , j2,··· , jsn )∈Jn

Φ
(2n: j1 j2 ··· jsn )
λ1 λ2 ··· λsn

(ω)

×λ j1
1 λ

j2
2 · · · λ jsn

sn
, (58)

where λ1, λ2, · · · , λsn are the nonlinear characteristic param-
eters of the nonlinear system, Φ(2n: j1 j2 ··· jsn )

λ1 λ2 ··· λsn
(ω) is a function

of ω and H1(·) and depends only on the linear characteristic
parameters of the system. Jn is a set of sn dimensional in-
teger vectors, which contains the exponents of all the mono-
mials λ j1

1 λ
j2
2 · · · λ jsn

sn
in the polynomial representation (58).

Proof of the proposition is very straightforward and
needs an important result about the GFRFs derived by Lang
et al. [25], which states that the GFRFs of nonlinear systems
can be expressed as a polynomial function of the nonlinear-
ity characteristic parameters in a form similar to expression
(58). The details of the proof are omitted here. To demon-
strate Proposition 2, the nonlinear oscillator (12) is consid-
ered again. It is easy to known that there are two nonlinear
characteristic parameters in the nonlinear oscillator, c2 and
k2. By substituting Eqs. (14)–(17) into Eq. (47), the output
PSD for the Volterra nonlinear systems can be expressed as

S yy(ω) = PΦ(2:0,0)
c2,k2

(ω) + c2P2Φ(4:1,0)
c2,k2

(ω) + k2P2Φ(4:0,1)
c2,k2

(ω)

+c2k2P3Φ(6:1,1)
c2,k2

(ω) + c2
2P3Φ(6:2,0)

c2,k2
(ω)

+k2
2P3Φ(6:0,2)

c2,k2
(ω) + c3

2P4Φ(8:3,0)
c2,k2

(ω)
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+k3
2P4Φ(8:0,3)

c2,k2
(ω) + c2

2P4k2Φ
(8:2,1)
c2,k2

(ω)

+c2k2
2P4Φ(8:1,2)

c2,k2
(ω) + · · · , (59)

where the expressions of Φ(2:0,0)
c2,k2

(ω), Φ(4:1,0)
c2,k2

(ω), Φ(4:0,1)
c2,k2

(ω),

Φ(6:1,1)
c2,k2

(ω), Φ(6:2,0)
c2,k2

(ω), Φ(6:0,2)
c2,k2

(ω), Φ(8:3,0)
c2,k2

(ω), Φ(8:0,3)
c2,k2

(ω),

Φ(8:2,1)
c2,k2

(ω) and Φ(8:1,2)
c2,k2

(ω) are given in Appendix A as
Eqs. (A1)–(A10) respectively.

The dependence ofΦ(2n: j1 j2 ··· jsn )
λ1 λ2 ··· λsn

(jω) in Eq. (58) on the
parameters in H1(·) implies that the system linear character-
istic parameters play an important role in the system output
behavior. Moreover, when the linear characteristic param-
eters are fixed, the system output PSD can be determined
through the polynomial function of the nonlinear charac-
teristic parameters, which is an explicit analytical relation-
ship between the nonlinear characteristic parameters and
the system output PSD. Clearly, to know how the nonlin-
ear characteristic parameters affect the system output PSD,
Φ

(2n: j1 j2 ··· jsn )
λ1 λ2 ··· λsn

(jω) must be determined a priori, for example

the values of Φ(2:0,0)
c2,k2

(ω), Φ(4:1,0)
c2,k2

(ω), Φ(4:0,1)
c2,k2

(ω), Φ(6:1,1)
c2,k2

(ω),

Φ(6:2,0)
c2,k2

(ω), Φ(6:0,2)
c2,k2

(ω), Φ(8:3,0)
c2,k2

(ω), Φ(8:0,3)
c2,k2

(ω), Φ(8:2,1)
c2,k2

(ω) and

Φ(8:1,2)
c2,k2

(ω) for the nonlinear oscillator (12). Of course, these
functions can be determined directly using numerical inte-
grations from their definitions, i.e., from Eqs. (A1)–(A10).
However, as indicated by their expressions, such a numerical
method would be very complex and so may not be applicable
in some practices. To resolve this problem and ensure that

the new expression of the system output PSD can be used
practically to perform nonlinear system analysis, an algo-
rithm is proposed to evaluate the values ofΦ(2n: j1 j2 ··· jsn )

λ1 λ2 ··· λsn
(jω)

directly from the output response data. Here, the algorithm is
introduced using the nonlinear oscillator (12) as an example.

DenoteΦΦΦ10×1(ω) =
(
Φ(2:0,0)

c2,k2
(ω) , Φ(4:1,0)

c2,k2
(ω), Φ(4:0,1)

c2,k2
(ω),

Φ(6:1,1)
c2,k2

(ω), Φ(6:2,0)
c2,k2

(ω), Φ(6:0,2)
c2,k2

(ω), Φ(8:3,0)
c2,k2

(ω), Φ(8:0,3)
c2,k2

(ω),

Φ(8:2,1)
c2,k2

(ω), Φ(8:1,2)
c2,k2

(ω)
)′

. Equation (59) can be written as

S yy(ω) =
(
P, c2P2, k2P2, c2k2P3, c2

2P3, k2
2P3, c3

2P4,

k3
2P4, c2

2k2P4, c2k2
2P4

)
Φ10×1(ω). (60)

Equation (60) indicates that the values of Φ10×1(ω) can
be evaluated and, to achieve this objective, at least 10 simu-
lation studies or experimental tests are needed, and the non-
linear characteristic parameters c2 and k2 should take dif-
ferent values in the simulations or experimental tests. As-
sume U � 10 testes are conducted by taking (c2, k2) =(
c2(1), k2(1)

)
, · · · , (c2(U), k2(U)

)
respectively, then the system

responses of the U tests can be written as
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S y(1)y(1) (ω)

...

S y(U)y(U) (ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ΘΘΘU×10ΦΦΦ10×1(ω), (61)

where

ΘΘΘU×10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P, c2(1)P2, k2(1)P2, c2(1)k2(1)P3, c2
2(1)P

3, k2
2(1)P

3, c3
2(1)P

4, k3
2(1)P

4, c2
2(1)k2(1)P4, c2(1)k2

2(1)P
4

...

P, c2(U)P2, k2(U)P2, c2(U)k2(U)P3, c2
2(U)P

3, k2
2(U)P

3, c3
2(U)P

4, k3
2(U)P

4, c2
2(U)k2(U)P4, c2(U)k2

2(U)P
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (62)

then the values ofΦΦΦ10×1(ω) can be determined from Eq. (62)
using the least square (LS) based approach as

ΦΦΦ10×1(ω) =
[
ΘΘΘ′(U×10)ΘΘΘ(U×10)

]−1
ΘΘΘ′(U×10)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S y(1)y(1) (ω)

...

S y(U)y(U) (ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (63)

Obviously, to use the method (63) to estimate the values
of Φ(2n: j1 j2 ··· jsn )

λ1 λ2 ··· λsn
(jω), the information about what and how

many monomials, λ j1
1 λ

j2
2 · · · λ jsn

sn
, are included in Eq. (58)

should be known a prior. To achieve this, a recursive algo-
rithm is derived from Eqs. (9)–(11) and Eqs. (45) and (46)
to determine what and how many monomials involved in
Eq. (58), and it is given as Appendix B.

The results of Proposition 1 and Proposition 2 provide
us two methods to analyze the nonlinear systems from dif-
ferent perspectives, so as to achieve a comprehensive obser-
vation on the effects of the input intensity and the nonlinear

characteristic parameters on the random vibration of the non-
linear systems. However, as stated above, to utilize the two
propositions in practice, one may need to resort to numerical
simulation method and LS-based regression technique, but it
can be seen that by using the two propositions one can depict
a comprehensive pattern about the effectiveness of the non-
linear characteristic parameter or the input intensity on the
output PSD through much less set of numerical simulation
signals.

It is worth noting here that although the two proposi-
tions are concerned only with the output PSD, similar con-
clusions also hold for the cross-PSD.

4 Numerical simulations

In this section, numerical simulation studies are provided to
demonstrate the theoretical results above. The nonlinear os-
cillator (12) is considered, taking the system linear charac-
teristic parameters m, c and k to be 1 kg, 31.582 7 s·N/m and
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15 791 N/m, respectively.

4.1 Case 1: The effect of the input intensity P

It is assumed that the PSD of the system output can be ap-
proximated as

S yy(ω) =
4∑

i=1

PiΛ(i)(ω) + O(P5), (64)

where O(P5) represents the ignorable contribution of other
higher order terms.

To estimate Λ(i)(ω), (i=1, 2, 3, 4), four sets of responses
of the oscillator (12) were calculated using the fourth-order
Runge–Kutta method under c2 = 656.31 Ms·N/m3 and k2 =

15.751 GN/m3 with the intensity of the Gaussian white noise
input, P, taken as 0.319 1, 0.459 5, 0.625 4 and 0.816 9,
respectively. The sampling frequency is considered to be
200 Hz.

From the numerical simulation responses, the output
PSDs are first estimated via the Welch’s method which is ex-
ecuted with the pwelch routine in the mathematic software
Matlab 14.0, and then the least square based method de-
scribed as Eq. (57) is used to estimate the values of Λ(i)(ω),
(i = 1, 2, 3, 4). The estimated results are shown in Fig. 2.
With the estimated Λ(i)(ω), (i = 1, 2, 3, 4), the PSDs are pre-
dicted using Eq. (64) for P = 0.003 2–2.871 9. The pre-
dicted results are shown in Fig. 3a. For comparison, the sys-
tem responses are also numerically calculated by using the
Runge–Kutta method for P = 0.003 2–2.871 9, and the PSDs
which are estimated directly using the simulation responses
are given in Fig. 3b; the difference between the two PSDs are

presented in Fig. 3c. It can be seen that there is an excellent
agreement between the two output PSDs. This agreement
verifies that the output PSDs of nonlinear systems subjected
to a Gaussian white noise input can be expressed as a polyno-
mial function of the input intensity, i.e., Eq. (54). In addition,
Fig. 3c indicates that the differences between the predicted
PSDs and the estimated PSDs increase with the increase of
the input intensity P. It is mainly because that, when the
input intensity increases, the contribution, O(P5), of the ig-
nored higher order terms to the output PSDs will increase
accordingly.

From the expression of Λ(1)(ω), i.e., Λ(1)(ω) = |H1(ω)|2,
it is known that Λ(1)(ω) is actually the power of the linear sys-
tems’ FRF, which can be directly estimated from the output
PSD and input PSD, i.e.

|H1(ω)|2 = S yy(ω)

S xx(ω)
. (65)

Therefore, Λ(1)(ω) of a nonlinear system would be
equal to the power of the FRF of its associated linear sys-
tem, which is generated by keeping the linear characteristic
parameters unchanged and setting all the nonlinear charac-
teristic parameters to be zero. To validate this, the power of
the FRF of the associated linear system of the oscillator (12)
under consideration is estimated from the numerical simula-
tion response generated using the fourth-order Runge–Kutta
method. The estimated Λ(1)(ω) of the oscillator (12) and the
estimated |H1(ω)|2 of its associated linear system are shown
in Fig. 4. In addition, the ratio between the output PSD and
the input PSD of the oscillator (12) is also presented in Fig. 4

Fig. 2 a Λ(1)(ω); b Λ(2)(ω); c Λ(3)(ω); d Λ(4)(ω) (estimated from numerical simulation data)



278 X.-J. Dong, et al.

Fig. 3 The effect of P on PSD. a The predicted PSDs; b The estimated PSDs; c The difference between a and b

Fig. 4 Comparison among the estimated Λ(1)(ω),
∣∣∣H1(jω)

∣∣∣2 and the
ROI of system (13)

as the ROI curve. It can be seen that the estimated Λ(1)(ω)
matches the estimated |H1(ω)|2 very well, however, sig-
nificant difference can be observed between the estimated
|H1(ω)|2 and the ROI curve around the resonance region, and

the difference comes from the nonlinear terms in Eq. (54). To
a certain extent, this confirms that, as stated by Proposition
1, there is a polynomial relationship between the output PSD
of nonlinear systems and the input intensity.

4.2 Case 2: The effect of the nonlinear characteristic param-
eters

In this case, it is assumed that the output PSD can be approx-
imated as

S yy(ω) = PΦ(2:0,0)
c2,k2

(ω) + c2P2Φ(4:1,0)
c2,k2

(ω) + k2P2Φ(4:0,1)
c2,k2

(ω)

+c2k2P3Φ(6:1,1)
c2,k2

(ω) + c2
2P3Φ(6:2,0)

c2,k2
(ω)

+k2
2P3Φ(6:0,2)

c2,k2
(ω) + O(P4). (66)

To estimateΦ(2:0,0)
c2,k2

(ω),Φ(4:1,0)
c2,k2

(ω),Φ(4:0,1)
c2,k2

(ω),Φ(6:1,1)
c2,k2

(ω),

Φ(6:2,0)
c2,k2

(ω), Φ(6:0,2)
c2,k2

(ω), nine sets of simulation responses are
generated using the fourth-order Runge–Kutta method with
the nonlinear characteristic parameters c2 and k2 taking the
values listed in Table 1.

Table 1 Values of the nonlinear characteristic parameters

c2/(Gs·N·m−3) 6.826 6.826 6.826 9.188 9.188 9.188 10.763 10.763 10.763

k2/(GN·m−3) 216.58 287.46 334.72 216.58 287.46 334.72 216.58 287.46 334.72

Following the same procedure used in the above
case study, the values of Φ(2:0,0)

c2,k2
(ω), Φ(4:1,0)

c2,k2
(ω), Φ(4:0,1)

c2,k2
(ω),

Φ(6:1,1)
c2,k2

(ω), Φ(6:2,0)
c2,k2

(ω), Φ(6:0,2)
c2,k2

(ω) are estimated by using the

algorithm described as Eq. (63); the estimated results are
shown in Figs. 5a–5f respectively. Comparing Fig. 5a with
Fig. 2a, we can see that the two estimated results match
each other very well; it is no surprising since Λ(1)(ω) and
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Φ(2:0,0)
c2,k2

(ω) actually have the same expression, i.e., |H1 (ω)|2.
In addition, from Eq. (A2) it can be expected that, theoret-
ically, the estimated Φ(4:1,0)

c2,k2
(ω) and Re

(
jωH1(−ω)

)
should

have similar waveforms, as well as the estimated Φ(4:0,1)
c2,k2

(ω)
and Re (−H1(−ω)). The values of Re

(
jωH1(−ω)

)
and

Re (−H1(−ω)) can be readily calculated directly from their
analytic expressions, and the results are given in Figs. 6a

and 6b, respectively. Obviously, just as expected, the esti-
mated Φ(4:1,0)

c2,k2
(ω) and Re

(
jωH1(−ω)

)
, as well as Φ(4:0,1)

c2,k2
(ω)

and Re (−H1(−ω)), have similar waveforms. To a certain
extent, the consistencies between the estimated Λ(1)(ω) and
Φ(2:0,0)

c2,k2
(ω) and between the waveforms validate the theoreti-

cal result expressed as Proposition 2.

Fig. 5 a Φ(2:0,0)
c2 ,k2

(ω); b Φ(4:1,0)
c2 ,k2

(ω); c Φ(4:0,1)
c2 ,k2

(ω); d Φ(6:1,1)
c2 ,k2

(ω); e Φ(6:2,0)
c2 ,k2

(ω); f Φ(6:0,2)
c2 ,k2

(ω) (estimated from numerical simulation data)

Fig. 6 a Re(jωH1(−jω)); b Re(−H1(−jω))
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With the estimated Φ(2:0,0)
c2,k2

(ω), Φ(4:1,0)
c2,k2

(ω), Φ(4:0,1)
c2,k2

(ω),

Φ(6:1,1)
c2,k2

(ω), Φ(6:2,0)
c2,k2

(ω), Φ(6:0,2)
c2,k2

(ω), the effects of the nonlin-
ear characteristic parameters c2 and k2 on the output PSD
are investigated. The PSD shown in Fig. 7a is predicted us-
ing Eq. (66) with c2 taken as 2.887 8 Gs·N/m3 and k2 varying
from 3.937 9 to 476.48 GN/m3. For comparison, the PSDs,
which are estimated using the system responses numeri-
cally calculated with the Runge–Kutta method, are given as
Fig. 7b. The difference between the two PSDs is presented
in Fig. 7c. From both the predicted and estimated PSDs, it
can be seen that around the resonance region the increase
of the nonlinear stiffness characteristic parameter k2 will re-
duce the output PSD of the Volterra nonlinear system; but in
the non-resonance region the effect of k2 on the output PSD

is very weak and ignorable. The same procedure is used to
investigate the effect of the nonlinear damping characteris-
tic parameter c2 on the output PSD. The value of k2 is taken
as 98.446 GN/m3; the value of c2 varies from 0.131 26 to
15.883 Gs·N/m3. The results are shown in Fig. 8. Similarly,
only around the resonance region is the effect of c2 signifi-
cant; increasing c2 will effectively reduce the output PSD. In
addition, from both Figs. 7 and 8 it can be seen that there is an
excellent agreement between the output PSD predicted using
Eq. (66) and the PSD estimated from the numerical simula-
tion responses. This confirms that, as stated by Proposition
2, the PSDs of nonlinear systems subjected to a Gaussian
white noise input can be expressed as a polynomial function
of the nonlinear characteristic parameters, i.e., Eq. (58).

Fig. 7 The effects of k2 on the PSD. a The predicted PSDs; b The estimated PSDs; c The difference between a and b

Overall, the results in Case 1 and Case 2 verify the the-
oretical analysis in the previous sections and demonstrate the
effectiveness of the analytical descriptions Eqs. (54) and (58)
for the PSD of the nonlinear systems. It is worthy noting
here that similar numerical experiments could be designed to
verify that the input-output cross-PSD of the nonlinear sys-
tems subjected to Gaussian white noise signal could also be
expressed as a polynomial function of the nonlinear char-
acteristic parameters or a polynomial function of the input
intensity.

5 Conclusions

Analytical expressions for the calculation of output PSD and
input-output cross-PSD of nonlinear systems subjected to a

Gaussian white noise excitation have been derived using the
Volterra series. Based on these expressions, the relationship
between the output PSD and the nonlinear characteristic pa-
rameters and the relationship between the PSD and the in-
put intensity have been investigated. The results show that
the output PSD as well as the input-output cross-PSD of the
nonlinear systems can be expressed as a polynomial function
of the input intensity or a polynomial function of the nonlin-
ear characteristic parameters. Results from simulation stud-
ies have been used to verify the theoretical analysis and to
demonstrate the effectiveness of the derived relationship. As
demonstrated in the present study, this analytical relationship
is of significance to the analysis and design of a wide range
of nonlinear engineering systems and structures which can
be well represented by a Volterra series model.



Parametric characteristic of the random vibration response of nonlinear systems 281

Fig. 8 The effects of c2 on the PSD. a The predicted PSDs; b The estimated PSDs; c The difference between a and b

Appendix I

Φ(2:0,0)
c2 ,k2

(ω) =
∣∣∣H1(jω)

∣∣∣2, (A1)

Φ(4:1,0)
c2 ,k2

(ω) = Re
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j2ω
π

H1(−jω)
∣∣∣H1(jω)

∣∣∣2
∫ ∣∣∣H1
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jω2

)∣∣∣2 dω2

)
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jωi

)∣∣∣2

×
∑

(i1,i2,··· ,i5) is all per−
mutations(2,3,−3,4,−4)

( 5∑
l=3

ωil

)
H1

[
j(ωi3 + ωi4 + ωi5)

]
dω1→4

}

+Re

{
27jω2

8π3

∫
R4

ω1+ω2+ω3=ω

∣∣∣H1(jω)
∣∣∣2

4∏
i=1

∣∣∣H1
(
jωi

)∣∣∣2

×
∑

(i1,i2,··· ,i5) is all per−
mutations(2,3,−3,4,−4)

( 5∑
l=3

ωil

)
H1

× [
j(ωi3 + ωi4 + ωi5)

]
dω1→4

}
. (A10)

Appendix II

Denote the set of all monomials involved in Eq. (58) as Γ, then Γ
can be determined as follows

Γ =

(
[(Q+1)/2]⋃

z=1

[(Q+1)/2]⋃
d=1

Γ(2z−1) ⊗ Γ(2d−1)

)

⋃ (
[Q/2]⋃
z=1

[Q/2]⋃
d=1
Γ2z ⊗ Γ2d

)
, (A11)

where ⊗ is the Kronecker product, Γ1 = {1} and Γn is determined as

Γn =

[
Z⋃

l1 ,l2 ,··· ,ln=0
[c0n (l1, l2, · · · , ln)]

]

⋃ [
n−1⋃
q=1

n−q⋃
p=1

Z⋃
l1 ,l2 ,··· ,ln=0

([
cpq (l1, l2, · · · , ln)

]
⊗ Γn−q,p

)]

⋃ ⎡⎢⎢⎢⎢⎣ n⋃
p=2

Z⋃
l1 ,l2 ,··· ,lp=0

([
cp0

(
l1, l2, · · · , lp

)]
⊗ Γnp

)⎤⎥⎥⎥⎥⎦, (A12)

with

Γnp =
n−p+1⋃

i=1

(
Γi ⊗ Γn−i,p−1

)
, Γn1 = Γn. (A13)

To demonstrate the algorithm, it is applied to the oscillator (12)
up to the 5th order, and the results are given below

Γ1 = {1}
Γ2 = Null

Γ3 = {{c2} ⊗ {1}} ∪ {{k2} ⊗ {1}} = {c2, k2}
Γ4 = Null

Γ5 = {{c2} ⊗ Γ3} ∪ {{k2} ⊗ Γ3} =
{

c2
2 c2k2 k2

}
and

Γ = (Γ1 ⊗ Γ1)
⋃

(Γ1 ⊗ Γ3)
⋃

(Γ1 ⊗ Γ5)
⋃

(Γ3 ⊗ Γ3)
⋃

(Γ3 ⊗ Γ5)
⋃

(Γ5 ⊗ Γ5)

= {1, c2, k2, c2
2, c2k2, k2

2, c3
2, c2

2k2, c2k2
2, k3

2, c4
2,

c3
2k2, c2

2k2
2, c2k3

2, k4
2}.

Obviously, the first 10 elements in Γ are those elements of the
vector used in Eq. (59). The algorithm can be readily implemented
with symbolic operation method, providing a convenient way to
determine the monomials involved in Eq. (58). This simplifies the
procedure of implementing the result expressed as Proposition 2 to
analyze the Volterra nonlinear system subjected to a Gaussian white
noise input.
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