
Acta Mechanica Sinica (2013) 29(1):99–109
DOI 10.1007/s10409-013-0001-x

RESEARCH PAPER

A new insertion sequence for incremental Delaunay triangulation

Jian-Fei Liu ··· Jin-Hui Yan ··· S. H. Lo

Received: 11 June 2012 / Revised: 19 July 2012 / Accepted: 5 November 2012
©The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag Berlin Heidelberg 2013

Abstract Incremental algorithm is one of the most popular
procedures for constructing Delaunay triangulations (DTs).
However, the point insertion sequence has a great impact on
the amount of work needed for the construction of DTs. It
affects the time for both point location and structure update,
and hence the overall computational time of the triangula-
tion algorithm. In this paper, a simple deterministic inser-
tion sequence is proposed based on the breadth-first-search
on a Kd-tree with some minor modifications for better per-
formance. Using parent nodes as search-hints, the proposed
insertion sequence proves to be faster and more stable than
the Hilbert curve order and biased randomized insertion or-
der (BRIO), especially for non-uniform point distributions
over a wide range of benchmark examples.

Keywords Incremental Delaunay triangulation algorithms ·
Insertion sequences · Kd-tree

1 Introduction

The Delaunay triangulations (DTs) and their dual Voronoi
diagrams are often used in many applications, such as sur-
face reconstruction, molecular modeling, geographical in-
formation systems and finite element mesh generation. They
have been extensively studied and many different construc-
tion techniques have been devised. Among these construc-
tion schemes, incremental algorithm is most popular for
its easy implementation and ability to be generalized over
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higher dimensions.
Throughout the construction process, incremental algo-

rithm operates by maintaining a DT into which points are
inserted one by one, and the triangulation is completed when
all the points have been inserted. A formal procedure of the
incremental DT algorithm is shown in Procedure 1.

Procedure 1 —– incremental DT
Input: A point set P.
Output: A DT of P.

0. Rearrange the order of input points.
for each point p ∈ P,

1. Locate point p in the current DT, i.e., find the ele-
ment containing p. It is also called base location and
the element found is called the base.

2. Create a cavity, starting from the base by adding
all the elements conflicting with p. An element is
conflicting (non-Delaunay) with p if its circumsphere
contains p.

3. Fill in the cavity, i.e., construct elements by con-
necting p with the facets on the boundary of the cav-
ity.

end for
end procedure

Although very simple, it has been studied in every as-
pect [1–11]. To create a cavity was once an error-prone step
and now can be done robustly utilizing Shewchuck’s pre-
cision predicates [1]. A lot of efforts focus on improving
its computational efficiency [2]. Borouchaki and Lo [3] de-
vised some techniques to speed up cavity filling. Yet more
researchers paid attention to the base location and cavity cre-
ating.

Base location is usually a walking procedure: pick a
starting element, walk step by step towards p, until the target
element containing p is reached. The starting element often
determines the walking time to the base. To decide on a start-
ing element, one usually finds a starting point (also called a



100 J.-F. Liu, et al.

search-hint) and then determines the starting element in the
triangulation associated with the search-hint in O(1) time.
Hence, the base location time can be decomposed into two
parts, the time for getting a search-hint and the time for the
walk to the base. If one can get a search-hint in O(1), which
is usually the case for most of the recent schemes, then the
base location time will be equal to the walking time. A walk-
ing procedure can be evaluated in terms of the number of
orientation operations, and orientation is an operation to de-
termine on which side of a triangle (or edge in a 2D case) a
point is.

Upon inserting a new point, cavity creating time (as well
as cavity filling time) depends on the size of a cavity and the
number of existing elements conflicting with the new point.
It is well known that the efficiency of the incremental DT al-
gorithm would be affected by the sequence of insertion, as
both the number of orientation operations and the number
of conflicting elements are sensitive to the order that points
are inserted. As a result, the sequence of insertion has been
rigorously studied by researchers to improve the overall effi-
ciency of incremental DT [4–11].

1.1 Four insertion sequences

In the earlier algorithms, points were taken by the natural
order (the order as they were input) or sorted by a lexical
axis-order [4]. This scheme had a tendency to produce in-
termediate triangulations of higher complexity than the fi-
nal triangulation. The widely used random order was then
devised to overcome the shortcomings of natural or lexical
axis-order; it simply states: shuffle the points and then insert
them one by one [5]. There are several robust and efficient
implementations of the incremental DT construction based
on random order point insertion and that contained in the α-
shapes software.

Amenta et al. [6] presented a biased randomized inser-
tion order (BRIO) in 2003. Their argument was: Since mod-
ern memory architecture is hierarchical and the paging poli-
cies favor programs that observe locality of reference, a ma-
jor concern is cache coherence: a sequence of recent memory
references should be clustered locally rather than randomly

in the address space. A program implementing a randomized
algorithm does not observe this rule and can be dramatically
slowed down when its address space no longer fits in the
main memory.

The BRIO preserves enough randomness in the input
points so that the performance of a randomized incremen-
tal algorithm is unchanged but points are ordered by spatial
locality to improve cache coherence. However, from the re-
ports of other researchers [7, 8], the practical performance of
BRIO is not promising. Indeed, Amenta et al. [6] considered
BRIO a concept rather than a specific order, and BRIO could
be implemented by merging with various insertion orders in
a number of ways.

Recently, the pendulum seems swinging back to the de-
terministic order. Due to the work by Liu and Snoeyink [7],
Zhou and Jones [8], Boissonnat et al. [9], Buchin [10,11],
the space-filling curve orders are now widely used for con-
structing DTs. Among them, the Hilbert curve order is con-
sidered to be the most efficient order because of its locality-
preserving behavior. In 2005, Liu and Snoeyink [7] used
the Hilbert curve order in their program tess3 for 3D De-
launay tessellation and compared it with qhull, CGAL2.4,
pyramid and hull. In their empirical comparisons, tess3 was
the fastest for both uniform and non-uniform point distribu-
tions. Now the Hilbert curve order is also employed in the
latest version of CGAL–CGAL4.0 [12], though mixed with
the idea of BRIO in its implementation.

As a variant of the space-filling curve discovered by
Peano [13], the Hilbert curve is a fractal continuous space-
filling curve first described by Hilbert [14] in 1891. Its con-
struction rule for a 2D case is shown in Fig. 1. A square
with an arrow is subdivided into four sub-squares. The or-
dering of the sub-squares is indicated by a bold curve which
connects the centers of neighboring sub-squares. For each
square, there is an arrow indicating its orientation. Repeat
subdividing each sub-square, the bold curve becomes longer
and longer; it is called a Hilbert curve. Figure 2a shows a 2D
Hilbert curve after 5 subdivision steps generated by MAT-
LAB. Figure 2b shows a 3D Hilbert curve after 3 subdivision
steps generated by MATLAB.

Fig. 1 The construction rule of the 2D Hilbert curve
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a

b

Fig. 2 The Hilbert curves in 2D and 3D

To order a set of points along a 3D Hilbert curve, one
usually subdivides the bounding cube of the points into (2k)3

boxes and sorts the points using the index of the box on the
Hilbert curve that contains each point. Parameter k is chosen
large enough so that the number of points each box contains
is small.

1.2 Two factors to evaluate the insertion sequence

The overall efficiency of the incremental algorithm is of
course the ultimate judge of an insertion sequence. As men-
tioned before, there are two factors to be considered, namely,
the efficiency of base location and the efficiency of triangu-
lation update in cavity creating and filling. Base location
is dominated by the orientation test which determinates on
which side of a triangle a point is. Cavity creating and filling
mainly involves identifying and deleting elements conflict-
ing with the inserting point. To a great extent, the cost of
triangulation may be measured more objectively by count-
ing the number of orientation operations and conflicting ele-
ments rather than by the raw program running time [8].

Researchers are always interested in the theoretical com-
plexity of an algorithm. The theoretical estimate of point

location efficiency is possible and we refer the interesting
readers to Sect. 2.1 where some existed 2D results are pre-
sented. However, the theoretical analysis for triangulation
update is rather difficult as it depends also on the structural
layout of the points, i.e., point distribution and patterns. The
estimation techniques used in random order suggesting that
the expected number of structural changes for n randomly
inserted points is O(n) simply could not be applied to de-
terministic orders [15]. Experimental tests thus have to be
used to evaluate and to compare the performance of random
and deterministic orders [8]. Following this idea, we will
take note of the number of conflicting element to evaluate
the structure update efficiency and the number of orientation
tests to evaluate the base location efficiency.

1.3 Summary of our work and the organization of this paper

We will present a new deterministic nodal insertion sequence
for the construction of incremental DT and then evaluate its
constructing time and the associated base location time in
Sect. 2. The experimental results for a wide range of exam-
ples are presented and compared with the sequence given by
BRIO and Hilbert curve in Sect. 3. Results will be assessed
by the computer time taken and the counts of orientation op-
erations and conflicting elements. Finally, in Sect. 4, we will
give some conclusions and discussions.

2 A new order from breadth-first travel of a Kd-tree

We propose a simple and intuitive insertion order without
randomness. Our idea is quite simple, we build a Kd-tree to
store points, then a new sequence is established by a breadth
first travel across the Kd-tree of points. Kd-tree is a use-
ful data structure for a lot of geometrical problems [16] for
which various rules can be adopted for its construction. Our
scheme has only a minor modification compared to the stan-
dard form. Hence, we will first show the standard way to
build a Kd-tree, and then we will introduce the modifications
and highlight the differences between the two schemes.

A standard Kd-tree is built following a so called alter-
native rule. Figure 3 shows the entire building process for a
set of 15 points in the 2D case by means of a recursive pro-
cedure. Given a point set, we find its median, store the point
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Fig. 3 Steps to build a Kd-tree following the alternative rule
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Fig. 3 Steps to build a Kd-tree following the alternative rule (continued)

on the median in the root of a tree and divide the remaining
points into two sets which will contribute respectively to the
left and the right subtrees of the root. By the alternative rule,
we first divide points along the x-median, then the y-median,
making alternative rotations about the three axes on the way
of construction.

In Fig. 3d, a relabeling of the points is shown corre-
sponding to the breadth-first travel of the Kd-tree in Fig. 3c.
We apply a similar procedure to build a Kd-tree, with a mi-
nor modification. We use a slightly different rule, cutting-
longest-edge rule, to divide the points as shown in Fig. 4.
Given a set of points, its bounding box is determined. There
are two ways in 2D (and 3 ways in 3D) to divide the set into
two subsets. Our rule is to cut the longest edge of the bound-
ing box so as to create regions of more homogeneous size
along different dimensions. Using the cut-longest-edge rule
to build the Kd-tree for the same set of points in Fig. 3 is
shown in Fig. 5.

From the final result in Fig. 5c, we can get the new in-
sertion sequence for this point set by the breadth first travel
across the Kd-tree. That is: p8, p4, p12, p2, p6, p10, p14,
p1, p3, p5, p7, p9, p11, p13, p15 and they are relabeled in
a new insertion sequence as shown in Fig. 5d. The pseudo
code for the above procedure is shown in Appendix I, which
is almost the same as given by de Berg et al. [16].

L >H
L

H

H >L

H

L
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b

Fig. 4 Cut-longest-edge rule. a A vertical split line used as L > H;
b A horizontal split line used as H > L

To get a median for a set of points is an operation needed
for each recursive step, which, in our program, is done by in-
voking a C++ STL function named nth element().

The nodes of the Kd-tree are stored in an array in the
breadth-first manner, from top to bottom and from left to
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right. When a new point is to be inserted, the parent node on
the Kd-tree, which should have already been inserted in the
triangulation, will serve as the starting point (or search-hint).
The reason for using the median point as the search-hint is
that the median point is usually a close neighbor of the in-
serting point. In general, the closer the inserting point is to
its search-hint, the fewer the elements that will be walked
through on the way to the base.

As we will show later, the proposed sequence from the
modified Kd-tree is superior to the other orders currently
used. A 2D version theoretical analysis on the base loca-

tion efficiency is presented in Sect. 2.1. As for the conflict-
ing elements, we have a conjecture: inserting points with an
even separation (distance apart) in space would reduce the
conflicting elements. From earlier experiences, it is known
that adding points from one end towards the other end of the
point space directly will result in relatively large numbers
of conflicting elements, and this can be avoided by adding
nodes randomly. We postulate that incremental DT algo-
rithm prefers processing points with reasonable separation
in space in a balanced manner. Random or not actually has
no direct consequence on the efficiency.
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Fig. 5 Steps of building a Kd-tree following the cut-longest-edge rule

2.1 Some theoretical discussion about the time complexi-
ties of the new sequence

There are three parts about its time complexity, namely
building time of the new order, locating time and structure
updating time when a point is inserted. We can give an ex-

act time complexity for building a new order. However, for
the locating we have only some relevant results for 2D cases
borrowed from others; for structure updating we can not give
any theoretical results and can only refer our readers to the
experiment tests in Sect. 3.2.
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The construction of the new sequence is based on the
building of a Kd-tree with a modification in the way the
point set is divided. It is well known that this process takes
O(n lg n) time [16]. Tests were conducted to verify this and
experimental results are presented in Sect. 3.2.

Point location depends on the search-hint. Obviously
if the search-hint is proximal to the target, fewer elements
will be walked through and fewer orientation tests will be
performed. Devroye et al. [17–19] considered point loca-
tion in DTs in the 2D cases and analyzed several methods in
which simple data structures were employed to first locate a
point close to the query point. The following is their con-
clusion: For points uniformly distributed on a unit square,
the expected point location complexities are O(n1/2) for the
Green–Sibson rectilinear search, O(n1/3) for Jump and Walk,
O(n1/4) for BinSearch and Walk (1D search tree is used),
O(n0.056) for search based on a random 2D tree, and O(lg n)
for search aided by a 2D median tree.

From their study, the point location time is O(lg n) aided
by a two dimension Kd-tree. This is actually the time to
search for a starting point from a Kd-tree. If, for an inserting
point, its position on the 2D Kd-tree is already known in re-
lation to its parent node, then walking from the parent point
to the inserting point takes only O(1) time [19]. Although
Devroye analyzed the problem of point location and estab-
lished the conclusion only in the 2D case, our tests showed
that it is also true in the 3D case. Point location costs only
O(1) time taking the parent node as a search-hint.

3 Performance of BRIO, Hilbert curve order and the
new sequence

Buchin [10, 11] proved that the incremental construction
along space-filling curves (with no additional point data
structure) computes the DT of uniformly distributed points
in a bounded convex region in linear expected time when
mixed with BRIO, apparently not including the O(n lg n)
time for preparing the order. Amenta et al. [6] also gave a
rigorous proof that with incremental construction using the

BRIO, the expected running time is O(n2) in the worst case
and O(n lg n) in the realistic cases. We do not know how
to apply such an analysis to our new sequence because it
is deterministic. Therefore in the next section, a number of
experimental tests are conducted in three dimensions to see
how the three orders BRIO, Hilbert curve order and the new
sequence perform under the framework of CGAL.

3.1 Empirical comparison of the node sequencing schemes

The comparison is focused on the insertion sequences in such
a way that other factors must be kept unchanged. There is a
function called insert() in the DT in CGAL, this function can
take as input either a single point or a set of points. If points
are fed to the function one by one, the order is determined by
the input in its natural order. As an option, an extra parame-
ter of insert() could be used to take any point which has been
inserted before as a search-hint for the inserting point.

If a point set is used as input, the points will be sorted
along the Hilbert curve automatically and then inserted into
the DT following the Hilbert curve order. In the comparison,
we build the new sequence and BRIO first, then let insert()
take one point at a time following the established orders. As
for Hilbert curve order, we just feed insert() all the points as
a single set. In this way, other factors are fixed and the only
difference in the process is the insertion sequence. Differ-
ent sequences are evaluated by the DT time (including the
time for order building), the number of orientation tests and
conflicting elements encountered.

We have inspected the related code of CGAL. It should
be pointed out that, though CGAL is mainly a Hilbert curve
order, its current implementation is mixed with some idea of
BRIO.

Seven different point distributions for the three se-
quences are tested as shown in Fig. 6.

Points are all disturbed a little away from their geometry
model. Times are recorded in seconds on a common PC. The
results of the comparison are showed in Tables 1–14.

Fig. 6 Seven point distributions. a Points in a cube; b Points around three planes; c Points around a paraboloid; d Points around a spiral; e
Around a disk; f On a cylinder; g Along three axes
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3.2 The results for seven scholastic models

From Tables 1–7, computation times of the three sequences
for the seven examples with various data size are presented.
It is noted that the time for order building are included.
The test platform is a Pentium®Dual-Core CPU E53000
@2.6GHz+Windows XP system with 2G EMS memory.

Table 1 Cube, CPU time in seconds

Datasize Kd-tree BRIO Hilbert

100 000 5 5 5

200 000 10 12 10

300 000 14 16 16

400 000 19 21 21

500 000 25 29 27

600 000 31 32 32

Table 2 Plane, CPU time in seconds

Datasize Kd-tree BRIO Hilbert

300 000 13 20 17

450 000 20 29 26

600 000 27 41 35

750 000 35 59 44

900 000 41 63 54

1 050 000 48 87 63

Table 3 Paraboloid, CPU time in seconds

Datasize Kd-tree BRIO Hilbert

180 000 8 14 11

360 000 17 30 24

540 000 26 45 33

720 000 36 51 44

900 000 42 61 58

1 050 000 50 79 72

Table 4 Spiral, CPU time in seconds

Datasize Kd-tree BRIO Hilbert

360 000 15 18 18

720 000 30 38 36

1 080 000 44 55 54

1 440 000 56 75 71

1 800 000 69 92 89

2 160 000 83 115 107

Table 5 Disc, CPU time in seconds

Datasize Kd-tree BRIO Hilbert

360 000 17 30 23

720 000 31 58 51

1 080 000 48 88 81

1 440 000 63 125 113

1 800 000 83 191 147

2 160 000 100 248 182

Table 6 Cylinder, CPU time in seconds

Datasize Kd-tree BRIO Hilbert

360 000 17 26 21

720 000 33 67 46

1 080 000 50 94 75

1 440 000 68 146 112

1 800 000 86 201 145

2 160 000 101 267 201

Table 7 Axes, CPU time in seconds

Datasize Kd-tree BRIO Hilbert

300 000 14 215 148

450 000 22 317 259

600 000 25 496 397

750 000 32 786 557

900 000 40 1 079 743

1 050 000 45 1 385 938

Test results showed that the Hilbert curve order is faster
than the BRIO, and this observation is in agreement with
the experiments of Liu et al. [7] and Zhou et al. [8]. The
new sequence is the fastest among the three for all the test-
ing cases. While the improvement is marginal for uniform
point distributions, it is significant for non-uniform distribu-
tions. A merit of the proposed sequence is that it is very
stable while the others vary considerably with point distribu-
tions in a trend that the performance deteriorates drastically
with non-uniform distributions. In the extreme case, when
the points are distributed along coordinate axes, the program
run with Hilbert order and BRIO were extremely slow; yet
the program run with the proposed Kd-tree sequence was not
slowed down compared to the uniform distribution cases.

From Tables 8–14, the orientation and conflict element
counts are listed. We found two functions namely orienta-
tion() and find conflicts() in CGAL and have put a counter in
each function. The counts are divided by n, the data size, and
the average numbers of orientations and conflicts for each
point are thus obtained. In almost all the examples, the new
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sequence is the best with the smallest counts. The only ex-
ception is that Hilbert order has a slightly smaller number of
conflicting elements for the cylinder case. However, in this

case, the orientation count for Hilbert order is much larger
and the overall time is thus much longer than that of the Kd-
tree sequence.

Table 8 Cube: the number of orientation and conflicting elements

Data size 100 000 200 000 300 000 400 000 500 000 600 000

Cube

Kd-tree
Orientation 11.787 11.675 11.776 11.7 11.672 11.765

Conflicts 17.000 17.035 17.229 17.133 17.143 17.276

BRIO
Orientation 16.383 15.735 17.776 16.977 16.592 20.106

Conflicts 17.103 17.619 21.006 17.988 19.722 20.847

Hilbert curve
Orientation 12.716 12.852 13.208 12.78 12.656 12.600

Conflicts 18.686 18.930 19.023 18.725 18.798 18.821

Table 9 Plane: the number of orientation and conflicting elements

Data size 300 000 500 000 600 000 750 000 900 000 1 050 000

Plane

Kd-tree
Orientation 11.738 12.037 12.192 12.204 11.741 12.151

Conflicts 15.738 15.807 15.942 15.902 15.782 15.978

BRIO
Orientation 33.741 39.254 40.121 35.223 42.091 36.455

Conflicts 18.547 17.222 19.043 17.947 23.589 17.954

Hilbert curve
Orientation 22.966 23.031 23.337 23.626 23.931 24.412

Conflicts 18.837 18.748 18.772 18.767 18.803 18.779

Table 10 Paraboloid: the number of orientation and conflicting elements

Data size 80 000 360 000 540 000 720 000 900 000 1 050 000

Paraboloid

Kd-tree
Orientation 12.024 12.029 12.015 12.026 11.910 12.002

Conflicts 16.494 16.415 16.486 16.362 16.288 16.417

BRIO
Orientation 34.920 41.203 40.449 41.612 49.853 47.911

Conflicts 17.015 17.317 22.212 17.731 19.834 17.900

Hilbert curve
Orientation 23.285 26.649 28.025 29.137 30.181 31.140

Conflicts 17.754 17.678 17.666 17.692 17.668 17.675

Table 11 Spiral: the number of orientation and conflicting elements

Data size 360 000 720 000 1 080 000 1 440 000 1 800 000 2 160 000

Spiral

Kd-tree
Orientation 11.347 11.077 10.836 10.789 10.589 10.527

Conflicts 14.587 13.978 13.506 13.156 12.782 12.562

BRIO
Orientation 16.920 17.801 21.199 20.381 15.947 18.256

Conflicts 16.696 16.667 17.758 16.579 18.102 16.316

Hilbert curve
Orientation 14.703 14.450 14.498 14.641 14.824 15.007

Conflicts 17.082 17.047 17.052 17.063 17.033 16.996
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Table 12 Disc: the number of orientation and conflicting elements

Data size 360 000 720 000 1 080 000 1 440 000 1 800 000 2 160 000

Disc

Kd-tree
Orientation 12.376 12.593 12.388 12.695 12.491 12.426

Conflicts 15.403 15.607 15.716 15.748 15.776 15.826

BRIO
Orientation 43.863 75.440 78.536 79.689 91.278 87.655

Conflicts 19.253 25.219 24.317 24.633 29.626 21.459

Hilbert curve
Orientation 34.980 42.088 48.379 54.091 59.411 64.467

Conflicts 18.886 19.244 19.422 19.460 19.561 19.572

Table 13 Cylinder: the number of orientation and conflicting elements

Data size 360 000 720 000 1 080 000 1 440 000 1 800 000 2 160 000

Cylinder

The new order
Orientation 11.892 11.984 11.907 12.063 11.958 11.976

Conflicts 15.971 16.098 16.182 16.213 16.160 16.269

BRIO
Orientation 47.798 75.891 89.370 111.29 100.86 92.376

Conflicts 20.574 17.705 17.483 23.390 23.696 19.205

Hilbert curve
Orientation 27.241 35.823 43.954 51.756 59.360 66.942

Conflicts 11.892 11.984 11.907 12.063 11.958 11.976

Table 14 Axes: the number of orientation and conflicting elements

Data size 300 000 450 000 600 000 750 000 900 000 1 050 000

Axis

Kd-tree
Orientation 14.239 14.868 14.783 14.775 15.129 13.811

Conflicts 15.109 15.302 15.348 15.361 15.517 15.318

BRIO
Orientation 884.11 1 317.2 1 213.7 1 511.3 1 982.1 1 803.3

Conflicts 17.650 22.323 18.884 18.259 22.504 26.999

Hilbert curve
Orientation 667.35 826.76 954.80 1 077.4 1 189.8 1 288

Conflicts 18.977 19.012 19.040 19.031 19.033 19.033

We have also tested the time to build a sequence. Since
it is relatively small, only large data sets show meaningful
building time statistics. As shown in Table 15, Hilbert order
seems cost less time to build. Yet, this is not altogether a bad
news for the Kd-tree sequence. Since it has been included in
the CPU times of Tables 1–7, the overall performance of the
Kd-tree sequence is still superior to Hilbert curve order.

Table 15 Sequence building time for Kd-tree and Hilbert orders
in seconds

Cube Cylinder

Datasize Kd-tree Hilbert order Kd-tree Hilbert order

500 000 1 1 1 1

1 000 000 2 1 1 1

1 500 000 2 2 1 2

2 000 000 3 2 2 2

2 500 000 4 2 3 2

3 000 000 5 2 4 3

3 500 000 6 3 5 3

3.3 The results for three practical models.

We have tested three practical examples, the happy Buddha,
a constrained block, and a gear box.

The happy Buddha, Fig. 7, is downloaded from
http://graphics.stanford.edu/data/3Dscanrep. There are two
kinds of information in the downloaded data file, namely ver-
tices and triangles; only its vertices are used as input points
in our test.

The constrained block, Fig. 8, is in the form of a cube.
Three of its six edges are constrained in a wireframe struc-
ture in its real environment and thus causing high stress along
the edges. We are going to generate a finite element (FE)
mesh for the analysis and a large number of nodes are placed
near the constrained edges to capture regions of high stress
variation.

The gear box, Fig. 9, is a rather complex mechanical
model. We would like to generate a FE mesh for engineering
analysis. We know, somehow, its failure zone is on two cross
sections and around a line segment at the bottom, and these
areas are refined in the mesh generation.
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Fig. 7 The happy Buddha

Fig. 8 A constrained cube meshed with element of different sizes

Fig. 9 A gear box meshed with elements of smaller size at specific
locations

In the mesh generation, nodes are generated first and
they are then inserted by the DT based method to create tetra-
hedral elements. The mesh generation procedure has been
applied to the three models, cube, gear box and happy Bud-
dha so as to compare with CGAL on some practical exam-
ples, and the results are listed in Table 16.

Since in random order quasi-uniformly distributed
points we can generate a DT in expected linear time, one
may question why we bother to use a different order scheme
especially when building time for such a scheme is O(n lg n).
The reason is that the building time is only very small for

practical n values and the total cost is still much less than that
of the random order. Indeed random order can be improved
significantly if coupled with jump and walk. However, we
have observed the updating time in random order alone is
already longer than the total time needed for the new order.

Table 16 Statistics for the four orders (CPU time in seconds),
abort means longer than 30 min

New order Hilbert BRIO Random

Happy Buddha
(543 652 points)

30 33 36 223

Constrained cube
(4 386 533 points)

237 384 467 abort.

Gear box
(3 204 652 points)

175 211 295 abort.

The threshold is 30 min adopted for aborting triangula-
tion of the examples shown in Table 16, in which the largest
size tested is less than 5 × 106 points. We would like to
compare the performances of the four methods for models
of larger size, however, for n > 5 × 106, CGAL gets slower
in our machine because of the memory requirement. Hence,
we could only test one more example with 5.5 × 106 points,
which is built by adding some nodes on element edges of the
tet-mesh of the constrained cube. The results of this exam-
ple of 5.5× 106 points are listed in Table 17. We noticed that
the Hilbert order failed in this situation; it seems that Hilbert
order needs more space to run than the other schemes. Nev-
ertheless, the performance of the new order is still very stable
and is much faster than the other schemes tested.

Table 17 Statistics for larger size of points, timing in seconds,
abort means longer than 30 min

New order Hilbert BRIO Random

Refined constrained cube
(5 500 000 points)

454 fail 1 139 abort.

4 Conclusions and discussions

In this paper, a deterministic nodal sequence for the con-
struction of incremental DT is proposed. The modified Kd-
tree sequence advocated is easy to implement in any dimen-
sions and its performance is superior to Hilbert curve order
and BRIO, especially for non-uniformly distributed points.
However, the exact analysis of the time complexity is not
trivial, which depends not only on the method used but also
the pattern of the point distribution. As a result, the proposed
insertion sequence was rigorously tested and compared with
existing insertion orders through a wide range of point distri-
butions of variable data size. The Kd-tree sequence is more
efficient as it guarantees an almost uniform separation be-
tween insertion points, which seems to be effective in reduc-
ing the conflicting (non-Delaunay) elements during triangu-
lation. Employing the parent node as the search hint would
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also help a great deal in reducing the walking time of an in-
sertion point towards its base.

While the complexity for node relabeling is O(n lg n),
theoretical analysis for computing a DT following the Kd-
tree insertion sequence is rather difficult. However, the tests
showed that its expected time is of order O(n) for random
point sets. Moreover, we found that the performance dete-
riorated upon switching split rule for building Kd-tree from
the cut-longest-edge rule to the commonly adopted alterna-
tive rule. Furthermore, the efficiency of the new sequence is
almost the same for taking either parent or sibling points as
a search hint, since the two points are pretty close indeed.
Finally, it is interesting to extend the Kd-tree sequence to
higher dimensions and we have confidence that it will still
be more efficient than the existing insertion sequences, espe-
cially for non-uniform point distributions.

Acknowledgement The authors would like to thank the
anonymous reviewers for their helpful suggestions to im-
prove the paper.

Appendix I

Procedure 2 —– Build Kd-tree(P)
Input: A set of points P.
Output: The root of a Kd-tree storing P.

If P contains only one point then return a leaf storing this
point
else

Choose a median plane, say h, which cuts the longest edge
of the bounding box of P at median point v to split P into
two subsets. Let P1 be the set of points on the negative side
of h and P2 be the set of points on positive side of h.
Tleft = buildkdTree(P1);
Tright = buildkdTree(P2);
Create a node T storing v, make Tleft the left child of T and
make Tright the right child of T
return T
end procedure
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17 Devroye, L., Mücke, E., Zhu, B.: A note on point location in
Delaunay triangulations of random points. Algorithmica 22,
477–482(1998)

18 Devroye, L., Lemaire, C., Moreau, J. M.: Fast Delaunay point
location with search structures. In: Eleventh Canadian Confer-
ence on Computational Geometry, 15–18 (1999)

19 Devroye, L., Lemaire, C., Moreau, J. M.: Expected time anal-
ysis for Delaunay point location. Computational Geometry 29,
61–89 (2004)


