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Abstract Flying and marine animals often use flapping
wings or tails to generate thrust. In this paper, we will use
the simplest flapping model with a sinusoidal pitching mo-
tion over a range of frequency and amplitude to investigate
the mechanism of thrust generation. Previous work focuses
on the Karman vortex street and the reversed Karman vor-
tex street but the transition between two states remains un-
known. The present numerical simulation provides a com-
plete scenario of flow patterns from the Karman vortex street
to reversed Karman vortex street via aligned vortices and the
ultimate state is the deflected Karman vortex street, as the
parameters of flapping motions change. The results are in
agreement with the previous experiment. We make further
discussion on the relationship of the observed states with
drag and thrust coefficients and explore the mechanism of
enhanced thrust generation using flapping motions.
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1 Introduction

Flapping motion is a common mode for animal flying
and swimming. Especially, vertical flapping including both
pitching and plunging could generate a horizontal thrust by
the interaction of moving foils with surrounding flows. Since
the flapping motion is critically important to the design of
micro-air-vehicles (MAVs), there exist various experimental
studies and numerical simulations for exploring the mech-
anism of thrust generation [1–6]. A simple model to un-
derstand the mechanism of flapping-generated-thrust is the
Karman vortex streets (KVS) and the reversed Karman vor-
tex streets (RKVS). Both KVS and RKVS can be observed
in the wake behind flapping foils, where the former is as-
sociated with drag and latter with thrust. In fact, as either
amplitudes or frequencies increase in pitching motions, the
transition from the KVS to the RKVS can be observed. The
present paper is devoted to the study of transition of flow pat-
terns and the parameters in flapping motions associated with
thrust generation.

It was first observed by Knoller [7] and Betz [8] that
a flapping wing could generate thrust. Karman and Burg-
ers [9] offered the first theoretical explanation of drag or
thrust production based on the wake vortices, where the wake
of the flow past bluff bodies is modeled by an infinite row
of alternating vortices, commonly known as KVS. Bohl and
Koochesfahani [10] experimentally studied the RKVS with
various reduced frequencies. Ellenrieder et al. [11] ex-
plained the Strouhal number dependency of the wake vortex
structure behind a translating airfoil. Meanwhile, many re-
searchers investigated the RKVS in different situations, such
as the wakes of fishes [12, 13] in both experiments [14–16]
and numerical simulations [16–21]. However, a clearly un-
derstanding of the transition mechanism between KVS and
RKVS in the wake behind flapping foils was not available.
Recently, Godoy-Diana et al. [22] experimentally investi-
gated the transition mechanism from KVS to RKVS and dis-
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cussed the relation of the transition process with thrust gener-
ation. In this paper, we will numerically study the transition
of flow patterns in the wake of flapping foils and investigate
their relation with thrust generations.

We will use the immersed boundary method [23–27] to
numerically simulate Godoy-Diana et al.’s experiment and
investigate the transition process from the KVS to the RKVS
and its relation with thrust generation. Moreover, the numer-
ical simulation offers some details of flow patterns, which
are not available in experiments, so that the complete scenar-
ios on flow patterns can be observed. The rest of this paper
is organized as follows: Section 2 describes the mathemat-
ical models for the flows around the flapping foils and the
numerical method. Section 3 presents the numerical simula-
tion results on thrust or drag under different Strouhal num-
bers and their relation to the flow patterns. Finally, we will
summarize the results of the present study in Sect. 4.

2 Mathematical model and numerical method

2.1 A simple model for flapping foil

The present numerical configuration is set up to simulate the
experiment by Godoy-Diana et al. [22]. The geometry of
flapping foil is shown in Fig. 1, the diameter of the semi-
circle D is 5 mm and its chord length c is 23 mm. The foil
oscillates in pitching with respective to the center of the
semicircle. The control parameters are the oncoming uni-
form velocity U, the flapping frequency f and the peak to
peak amplitude A. The main non-dimensional parameters
are the Reynolds number Re, the pitching amplitude AD and
the Strouhal number St, defined as Re = UD/v, AD = A/D
and St = f D/U. The pitching motion of foils is set as a
sinusoidal function of time

Af (t) = −AD sin(2π f t), (1)

where Af (t) is the flapping amplitude varying with time.

Fig. 1 Schematic views of the foil

2.2 Governing equations

The Navier–Stokes (N–S) equations for a 2-D incompress-
ible flow are written as

∂uuu
∂t
+ ∇ (uuuuuu) = −∇p +

1
Re
∇2uuu + fff , (2)

∇ · uuu = 0, (3)

where uuu is the velocity, p is the pressure, and fff is the exter-
nal force. The boundary conditions are given as follows: At
the inlet boundary, a uniform flow with velocity U = 1, and
the normal gradient of the pressure is set to be zero; At the
outlet, the velocities are extrapolated from the interior and
the normal gradient of the pressure is also zero; At the lat-
eral boundaries, the gradient of tangential velocity is zero,
the normal velocity is zero and the normal gradient of the
pressure is also zero. The non-slip boundary conditions are
applied to the surfaces of the foil where the fluid velocity is
the same as that of the foil.

The computational region ranges from −3D to 19D in
the horizontal (or streamwise) direction (x direction), and
from −8D to 8D in the vertical direction with the origin at
the centre of the semicircle. The number of uniform grids is
240× 120 with Δx = Δy = 0.025 in the rectangular region
of −D < x < 5D and −1.5D < y < 1.5D, the grids are then
stretched towards the boundary with the size growth ratio of
1.04 (see Fig. 2). The time step is 0.002.

Fig. 2 Grid used for the present computation

2.3 Numerical simulation

We use the immersed boundary method to simulate the flow
field around flapping foils, and force fff in Eq. (2) will be cal-
culated using the volume-of-fluid (VOF) method [28], The
VOF method is an Eulerian scheme and uses the volume
fraction Φ: The coefficient Φ is unity in the regions occu-
pied entirely by solid phase and zero in regions occupied by
fluid phase, and 0 < Φ < 1 in the regions partially occupied
by either fluid and solid. Utilizing the VOF method, the so-
lution procedure in the immersed boundary method can be
summarized as follows:

(1) Solve the N–S equations to obtain the intermediate ve-
locity component ũuu

ũuu − uuun

Δt
= −3

2
∇h(uuuuuu)n +

1
2
∇h(uuu)n−1

−∇∇∇h pn +
1

2Re
∇2

h(uuun + ũuu). (4)
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(2) Calculate the volume forces by VOF

fff = Φ[uuun+1
rig − ũuu]/Δt, (5)

where uuurig is the velocity of the foil.

(3) Correct the intermediate velocity using the volume
forces

uuu∗ − ũuu
Δt

= fff . (6)

(4) Calculate the intermediate velocity uuu∗∗, compute the
pressure and update the fluid velocity uuun+1

uuu∗∗ − uuu∗

Δt
= ∇h pn, (7)

∇2
h pn+1 =

∇h · uuu∗∗
Δt

, (8)

uuun+1 − uuu∗∗

Δt
= −∇h pn+1. (9)

Here, the projection method is used to decouple the solu-
tion of velocity and that of pressure. In time advancing,
the Adams–Bashford and the Crank–Nicholson schemes are
used for the convective and the diffusive term, respectively.
The spatial discretization is based on the finite volume ap-
proach.

The immersed boundary code has been developed by
our research group. To validate the code, one testing case is
implemented. In this numerical example, we investigate the
laminar flow induced by the harmonic in-line oscillation of
a circular cylinder. According to Ref. [28], the key param-
eters are Re = UmaxD/ν = 100, KC = Umax/( f D), where
Umax is the maximum velocity of the cylinder motion; D de-
notes the diameter of the cylinder and f is the frequency of
the oscillation. The translational motion is given by the har-
monic oscillation of x(t) = −Ac sin(2π f t), where Ac denotes
the amplitude of the cylinder motion. Figure 3 shows the
time history of the in-line force. From this figure, it is seen
that the present numerical result is in agreement with that of
Ref. [29].

For studying the propulsive performance of flapping

Fig. 3 Time history of the in-line force

airfoils, we will calculate the drag coefficient defined as

Cd =
2
ρU2L

∫
F1ds, (10)

where F1 is the force acting on the airfoil surface in the
streamwise direction.

We performed simulations of the case with Re = 255,
St= 0.22 and AD = 1.07, using different time steps and grid
resolutions. For the time step of 0.002 and 0.001, the drag
coefficients equal to 0.552 and 0.563, respectively. For the
grid width of 0.025 and 0.01, the drag coefficients equal to
0.552 and 0.549, respectively. The differences in the results
obtained by using different time steps and mesh resolutions
are sufficiently small.

3 Numerical results

The parameters in the present simulation are taken from the
experiment by Godoy-Diana et al. [22]: the Reynolds num-
ber Re = 255, the uniform oncoming flow U = 1 and fluid
density ρ = 1. We will take different Strouhal numbers St
and flapping amplitudes AD to study how the flow patterns
are dependent on these parameters and compare the results
obtained with the previous experiments of Godoy-Diana et
al. [22].

Figure 4 is plotted for a fixed St= 0.22 and different
values of AD, equal to 0.36, 0.71, 1.07, 1.77 and 2.80, respec-
tively. The left column is for vorticity contours, the middle
one for time averaged streamwise velocity contours and the
right one for the time averaged streamwise velocity compo-
nent in the near wake. The first row at AD = 0.36 is the typ-
ical case of low-amplitude pitching which produces a KVS,
and the mean flow is a typical wake profile which character-
izes drag. By increasing the amplitude AD to 0.71, the vor-
tices of alternating signs are aligned with the symmetry line
of the wake. When the amplitude increases to AD = 1.07,
the rotation direction of vortices changes and the flows in
wakes transit from KVS to RKVS, and the mean flow is a
typical jet profile which characterizes thrust. By further in-
creasing amplitude to 1.77, the vortex streets start to become
deflected and asymmetric to the center line. As the ampli-
tude increases to 2.8, a symmetry breaking is observed in the
RKVS. These plots clearly demonstrate that as the flapping
amplitude increases, the flow patterns transit from KVS to
RKVS and finally become deflected RKVS with symmetry-
breaking.

Similar scenarios can be found by fixing the ampli-
tude to AD = 1.07 and taking different Strouhal numbers,
St= 0.10, 0.22, 0.30, 0.40 (see Fig. 5). It is also observed
that the transition from RKVS to the deflected RKVS oc-
curs when the Strouhal number St or flapping frequency f is
higher than a critical value.

The bifurcation diagram for parameters St and AD is
plotted in Fig. 6, which indicates different regimes of flow
patterns: The KVS is located in the lower area, while the
RKVS is located in the upper-right area. The regime of
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aligned vortices is in between and the deflected RKVS is in
the region of largest St and A/D. These parameter regimes
are qualitatively in agreement with the experimental results.

The bifurcation diagram offers transition paths for different
Strouhal numbers and flapping amplitudes.

Fig. 4 Instantaneous vorticity contours (left column), time-averaged streamwise velocity contours (middle column) and time-averaged
streamwise velocity component in the near wake (right column) for fixed Re = 255 and St= 0.22, from top to bottom. a AD = 0.36;
b AD = 0.71; c AD = 1.07; d AD = 1.77 and e AD = 2.8

Figure 7 shows the dependency of the drag coefficient
on the flapping amplitude AD for different Strouhal numbers.
For the smallest St, there is no thrust generation even for
large AD. As soon as St is larger than a threshold value, the

flapping amplitude could affect thrust generation. For larger
St, the increase in flapping amplitude could significantly im-
prove the thrust generation.
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Fig. 5 Instantaneous vorticity contours for fixed Re = 255 and AD = 1.07. a St= 0.10; b St= 0.22; c St= 0.30; d St= 0.40

Fig. 6 The bifurcation diagram of St and AD for different flow
patterns. Real line: transition between Karman vortex streets and
reversed Karman vortex streets; Dotted line: transition between re-
versed Karman vortex streets and deflected reversed Karman vortex
streets

4 Conclusions

In summary, the present numerical simulation shows com-
plete transition scenarios of the wake behind a flapping foil:
As either Strouhal number or flapping amplitude increases,
the flow patterns can transit from KVS to RKVS via the
aligned-vortices regime and finally become deflected RKVS
when the Strouhal number and flapping amplitude are rel-
atively large. The previous work has focused on KVS and
RKVS. However, there is little work on the intermediate
state (the aligned-vortices regime) and the ultimate state (de-

flected RKVS). Godoy-Diana et al.’s experiment [22] first
showed such scenarios and the present numerical simulations
confirm the physical process with detailed observations. It is
observed from the bifurcation diagram that there exist inter-
mediate states and an ultimate state. The complete scenarios
from KVS to RKVS offer an essential understanding of the
thrust generation using flapping motions.

Fig. 7 The drag coefficients versus the flapping amplitudes AD for
different St. Cd0 denotes the drag coefficient of non-flapping foil at
zero angle of attack, Cd0 = 0.861
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