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Abstract In the last decade, three dimensional discontin-
uous deformation analyses (3D DDA) has attracted more
and more attention of researchers and geotechnical engineers
worldwide. The original DDA formulation utilizes a linear
displacement function to describe the block movement and
deformation, which would cause block expansion under rigid
body rotation and thus limit its capability to model block de-
formation. In this paper, 3D DDA is coupled with tetrahe-
dron finite elements to tackle these two problems. Tetrahe-
dron is the simplest in the 3D domain and makes it easy to
implement automatic discretization, even for complex topol-
ogy shape. Furthermore, element faces will remain planar
and element edges will remain straight after deformation for
tetrahedron finite elements and polyhedral contact detection
schemes can be used directly. The matrices of equilibrium
equations for this coupled method are given in detail and an
effective contact searching algorithm is suggested. Valida-
tion is conducted by comparing the results of the proposed
coupled method with that of physical model tests using one
of the most common failure modes, i.e., wedge failure. Most
of the failure modes predicted by the coupled method agree
with the physical model results except for 4 cases out of the
total 65 cases. Finally, a complex rockslide example demon-
strates the robustness and versatility of the coupled method.
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1 Introduction

Discontinuous deformation analysis (DDA) proposed by
Shi [1, 2] in the late 1980s is an alternative to the commonly
used discontinuity based discrete element method (DEM).
However, unlike force based DEM, DDA is based on the
minimization of total potential energy of the block assem-
bly and shares many common features with finite element
method (FEM). DDA incorporates dynamics, kinematics,
and elastic deformability of the block, and models actual dis-
placements of individual blocks using a time-step marching
scheme. A review of validation studies on the DDA approach
is provided by MacLaughlin and Doolin [3].

The original DDA formulation utilizes a linear dis-
placement function to describe the block movement and de-
formation, and the stress and strain within any given block
are constant across the whole region of the block. These
constant values can be viewed as the average values of the
actual stress and strain within a block. If the size of a block
is small enough, this approach is acceptable, but for a large
block where the variation of stress and strain within the block
may be significant, it is definitely a poor representation. This
limitation can be overcome by:

(1) The use of relatively exact displacement function
with high order terms;

(2) Internal discretization by constant stress/strain DDA
block with the introduction of internal springs to ensure con-
tinuity within each block;

(3) Finite element internal discretization of a block.
For the first approach, the early researches utilized

second-order displacement function [4], third-order dis-
placement function [5] and any order polynomial displace-
ment function [6]. But the integration of potential energy



Validation and application of three-dimensional discontinuous deformation analysis with tetrahedron finite element meshed block 1603

becomes so complicated that it is almost impossible to in-
clude many high order terms, and furthermore, even high
order displacement functions may still be inadequate for a
large block. For the second approach, Ke [7] glued small
blocks together to form a larger block using artificial joints.
Cheng and Zhang [8] used an automatic internal discretiza-
tion scheme which generated triangular sub-blocks within a
block and Ning et al. [9] adopted an advanced discretisa-
tion method to simulate rock failure problems. For the third
approach, Shyu [10] reformulated DDA based on four-node
isoparametric finite elements and Chang [11] analyzed non-
linear dynamic DDA using a finite element meshed block
system. Jing et al. [12] modeled fractured rocks by DDA
with internal discretization of deformable blocks using trian-
gle or quadrilateral elements and Grayeli and Mortazavi [13]
modified DDA using the second-order six-node triangular fi-
nite elements.

There is another limitation in the original DDA for-
mulation related to the linear displacement function, which
arises from the free expansion of block due to rotation. The
change of block size would then result in contact detec-
tion difficulties because wrong vertex co-ordinates are de-
termined. It is said that the block expansion can be more
than 50% if the time-step is relatively large [8]. If a small
time-step is used to control the amount of rotation, it will
be prohibitively time consuming. In the literatures, two ap-
proaches have been proposed to solve the problem of block
expansion:

(1) The use of relatively exact displacement function
with nonlinear terms [8];

(2) The use of linear displacement function and post-
correction or post-adjustment [14].

Although the previous work is mostly based on two di-
mensional (2D) DDA, there is an obvious need for a three
dimensional (3D) model because the highly directional na-
ture of jointed rock mass behavior makes the application of
2D DDA to many practical problems inappropriate. There-
fore in the last decade, 3D DDA has attracted more and more
attention of researchers and geotechnical engineers world-
wide. Shi [15] and Liu et al. [16] provided basic formu-
lations of matrices for different potential terms. Yeung et
al. [17] and Moosavi et al. [18] highlighted the application
of 3D DDA. Because the block contact detection is a very
difficult and computationally demanding task in 3D models,
many researches have been devoted to searching and cal-
culating geometrical contacts in the 3D discontinuity-based
problems [19–24].

In these researches, a 3D linear displacement function
is still used. Similar to 2D DDA, 3D linear displacement
function may also cause block expansion under rigid body
rotation and thus its capability of modeling block deforma-
tion is limited. To overcome these limitations, some ap-
proaches have been attempted. Beyabanaki et al. [25] used
second- and third-order displacement function to describe
nonlinear distributions of stresses and strains within a dis-

crete block. Liu and Kong [26] added trilinear (8-node) fi-
nite elements into 3D DDA and Beyabanaki et al. [27] added
both trilinear and serendipity (20-node) hexahedron finite el-
ements into 3D DDA. Although the post-contact adjustment
technique [28] has also been proposed to tackle the free ex-
pansion problem in 3D DDA, it is actually suitable only for
2D DDA. The reason is that there is only one rotation degree
of freedom (DOF) in 2D DDA however in 3D DDA, three
coupled rotation DOFs exist. The Eulerian angle method is
the appropriate method to describe rigid rotation in three di-
mensional spaces. But then the displacement function be-
comes a highly nonlinear function, which will also cause
computation difficulties.

In this paper, 3D DDA is coupled with the tetrahedron
finite element to tackle the problem of block expansion and
to enhance DDA block’s deformation ability. The tetrahe-
dron element and hexahedron element are the basic three
dimensional elements in FEM [29]. Although the hexahe-
dron element is more accurate and the strain is not constant
throughout the element [30], the tetrahedron element has the
advantages of simplicity and adaptability to complex topol-
ogy shape. Tetrahedron is the simplest in the 3D domain
and it is easy to implement automatic discretization using
the tetrahedron element. Furthermore, block faces may not
remain planar for hexahedron finite elements or high order
displacement functions after deformation, which will cause
contact detection difficulties using existing 3D contact detec-
tion schemes. For tetrahedron finite elements, however, ele-
ment faces will remain planar and element edges will remain
straight after deformation and 3D polyhedral contact detec-
tion schemes can be used directly. Therefore, tetrahedron
finite elements are appropriate for being meshed into 3D
DDA blocks and Grayeli and Hatami [31] once did related
research. In this paper the matrices of equilibrium equations
for this coupled method are given in detail and an effective
contact searching algorithm is suggested. The program code
has been developed using Visual C++ with easily used pre-
processor and post-processor. For validation, one of the most
common failure modes, i.e., wedge failure, is analyzed by
the coupled method and its results are compared with that of
physical model tests (Yeung et al. [17]). Most of the fail-
ure modes predicted by the coupled method agree with the
physical model results except for 4 cases out of the total 65
cases. Finally, a complex rockslide example demonstrates
the robustness and versatility of the coupled method.

2 Combination of 3D DDA with tetrahedron finite
element meshes

DDA shares many common features with FEM for stress and
deformation analysis of a deformable continuum body and
it is easy and natural to merge finite element mesh into a
block. In the process of mesh generation, the meshes of the
elements and boundaries of the blocks need to be formed
separately, and then both are merged together with the same
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nodal number between the elements, but with different nodal
numbers between the boundaries of the blocks. Within every
block, the displacement is continuous and between blocks,
rigid rotation, sliding, fracture opening and complete detach-
ments could occur. Figure 1 shows a two-blocks system with
tetrahedron elements mesh.

Fig. 1 Mesh of elements and blocks

By adding finite element mesh into each block, it is
possible to take advantage of both the continuous proper-
ties of 3D FEM and the discontinuous characteristics of 3D
DDA, thereby being able to address engineering problems
more flexibly. The coupled method also uses time steps for
both static and dynamic analyses. The large displacements of
blocks and the large relative movements between blocks are
accumulated over many time steps. At the end of each time
step, the block system satisfies equilibrium conditions and
contact conditions, i.e., the no-penetration and no-tension
criteria and the Coulomb–Mohr failure criterion.

2.1 Simultaneous equation

DDA conforms to the principle of minimum total potential
energy and the total potential energy is the summation of all
potential energy sources for each block, including the strain
energy of the induced and initial stresses, the external work
of inertia force, point loading, body force, and the displace-
ment constraint, as well as the potential interaction between
two blocks such as normal and shear contacts. The nodal
matrices of stiffness and force are then formed by taking the
derivatives with respect to the displacement variables from
the corresponding potential energy. Taking the direct sum-
mation of these individual submatrices to form the global
stiffness matrix KKK and the global force vector FFF, the simul-
taneous equations of equilibrium are then established in the
following form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KKK11 KKK12 · · · KKK1n

KKK21 KKK22 · · · KKK2n

...
...
. . .

...

KKKn1 KKKn2 · · · KKKnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DDD1

DDD2

...

DDDn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FFF1

FFF2

...

FFFn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

where n is the number of nodes, DDDi is the unknown displace-
ment vector of the i-th node and is a 3× 1 submatrix for the
three dimensional case. KKKi j is a 3× 3 stiffness submatrix and
FFFi is a 3× 1 submatrix of resultant general forces acting on
the i-th node.

2.2 Displacement approximation of a tetrahedron element

Figure 2 shows a 3D tetrahedron element with vertices i, j, k
and m. Each vertex or node has three displacement compo-
nents dddr = {ur, vr, wr}T (r = i, j, k, m). So for the element,
DDDe = {di, dj, dk, dm}T is a 12× 1 vector. The displacement
field {u v w}T of the tetrahedron element can be described as
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u

v

w

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni 0 0 Nj 0 0 Nk 0 0 Nm 0 0

0 Ni 0 0 Nj 0 0 Nk 0 0 Nm 0

0 0 Ni 0 0 Nj 0 0 Nk 0 0 Nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dddi

ddd j

dddk

dddm

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= NNNeDDDe, (2)

where Nr (x, y, z) (r = i, j, k, m) is the shape function of a
tetrahedron element [29] and NNNe is a 3× 12 matrix.

Fig. 2 Geometry of a tetrahedron element

2.3 Stiffness submatrix

From the displacement field, the strain field of a tetrahedron
element is

εεεe =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γxy

γyz

γzx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭



Validation and application of three-dimensional discontinuous deformation analysis with tetrahedron finite element meshed block 1605

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂w
∂z

∂u
∂y
+
∂v
∂x

∂v
∂z
+
∂w
∂y

∂w
∂x
+
∂u
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= BBBeDDDe, (3)

where BBBe is the geometrical matrix of the element and has
the following form

BBBe = [BBBi BBBj BBBk BBBm]6×12, (4)

where

BBBr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Nr

∂x
0 0

0
∂Nr

∂y
0

0 0
∂Nr

∂z
∂Nr

∂y
∂Nr

∂x
0

0
∂Nr

∂z
∂Nr

∂y

∂Nr

∂z
0
∂Nr

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r = i, j, k, m. (5)

The stress–strain relationship is assumed to be linear at each
time step and the stress field of the element is written as

σσσe =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τxy

τyz

τzx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= EEEeεεεe, (6)

where EEEe is the elastic matrix of the element and has the fol-
lowing form for isotropic elastic material

EEEe =
E

2(1 + μ)(1 − 2μ)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(1 − μ) 2μ 2μ 0 0 0

2μ 2(1 − μ) 2μ 0 0 0

2μ 2μ 2(1 − μ) 0 0 0

0 0 0 1 − 2μ 0 0

0 0 0 0 1 − 2μ 0

0 0 0 0 0 1 − 2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where E and μ are Young’s modulus and Poisson’s ratio, re-
spectively.

At each time step, the elastic strain energy stored by the
stresses of the element is

Πe =
1
2

∫∫∫

ve

εεεT
eσσσe dx dy dz

=
1
2

DDDT
e

∫∫∫

ve

BBBT
e EEEeBBBe dx dy dz ·DDDe. (8)

After taking derivatives with respect to displacement
variables from the strain energyΠe, the 12× 12 element stiff-
ness matrix KKKe with the following form is added to the global
stiffness matrix in the simultaneous equations

KKKe =
∂2Πe

∂DDD2
e
=

∫∫∫

ve

BBBT
e EEEeBBBe dx dy dz . (9)

2.4 Initial stress submatrix

In DDA, the computed stresses at the previous time step will
be transferred to the next step as the initial stress loading.
For an initial stress field σσσ0e = {σ0

x, σ
0
y , σ

0
z , τ

0
xy, τ

0
yz, τ

0
zx}Te ,

the potential energy of the element is described as

Πσ =

∫∫∫

ve

εεεT
eσσσ0e dx dy dz

= DDDT
e

∫∫∫

ve

BBBT
eσσσ0e dx dy dz . (10)

By taking the derivatives from the potential energy Πσ,
the 12× 1 element force matrix FFFe with the following form
is added to the global force matrix in the simultaneous equa-
tions

FFFe = −∂Πσ
∂DDDe

= −
∫∫∫

ve

BBBT
eσσσ0e dx dy dz . (11)

2.5 Inertia force submatrix

Denote {u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)}T as the time-
dependent displacements of any point (x, y, z) of the element.
The inertia force per unit volume is
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fx

fy

fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= −ρ ∂
2

∂t2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x, y, z, t)

v(x, y, z, t)

w(x, y, z, t)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (12)

where ρ is the mass per unit volume. The potential energy of
the inertia force of the element is
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Πi = −
∫∫∫

ve

{u v w}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fx

fy

fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

dx dy dz . (13)

The acceleration is assumed to be constant at each time
step. DDD(0)e = 0 and DDD(Δ)e = DDDe are the displacements at the
beginning and the end of the time step, respectively, and Δ is
the time interval, then

DDDe = DDD(Δ)e

= DDD(0)e + Δ
∂DDD(0)e

∂t
+
Δ2

2
∂2DDD(0)e

∂t2

= Δ
∂DDD(0)e

∂t
+
Δ2

2
∂2DDD(0)e

∂t2
, (14)

∂2DDD(0)e

∂t2
=
∂2DDDe

∂t2

=
2
Δ2

DDDe − 2
Δ

∂DDD(0)e

∂t

=
2
Δ2

DDDe − 2
Δ

VVV(0)e, (15)

in which

VVV(0)e =
∂DDD(0)e

∂t
(16)

is the velocity at the beginning of the time step. Therefore,
the potential energy of the inertia force of the element at the
end of the time step can be rewritten as

Πi = ρDDDT
e

(∫∫∫

ve

NNNT
e NNNe dx dy dz

)
∂2DDDe

∂t2

= DDDT
e

(∫∫∫

vvve

NNNT
e NNNe dx dy dz

) (
2ρ
Δ2

DDDe − 2ρ
Δ

VVV(0)e

)

. (17)

Because of the principle of minimum potential energy,
the first-order derivatives of the potential energy is calculated
as

∂Πi

∂DDDe
=

(∫∫∫

ve

NNNT
e NNNe dx dy dz

) (
2ρ
Δ2

DDDe − 2ρ
Δ

VVV(0)e

)

. (18)

In Eq. (18), there is an unknown variable vector DDDe and
the expression can be transformed into two parts. The first
part

2ρ
Δ2

(∫∫∫

ve

NNNT
e NNNe dx dy dz

)

= KKKe (19)

is added to the global stiffness matrix in the simultaneous
equations. The second part

2ρ
Δ

(∫∫∫

ve

NNNT
e NNNe dx dy dz

)

VVV(0)e = FFFe (20)

is added to the global force matrix in the simultaneous equa-
tions. The initial velocity of the next time step is the velocity
at the end of this time step and can be calculated as

VVV(Δ)e =
2
Δ

DDDe −VVV(0)e. (21)

2.6 Displacement constraint submatrix

Assuming the point (x, y, z) of the element is constrained
with the displacement vector of (uc, vc, wc), one may use
three very stiff springs with stiffness k along the x, y and z
directions to compel the calculated displacement (u, v, w) to
be (uc, vc, wc). The corresponding displacement vector of
the spring is (uc − u, vc − v, wc −w). Therefore, the potential
energy related to the constrained spring is

Πc =
k
2
{uc − u vc − v wc − w}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc − u

vc − v

wc − w

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
k
2
{uc vc wc}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc

vc

wc

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

− k {u v w}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc

vc

wc

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+
k
2
{u v w}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u

v

w

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (22)

Substituting Eq. (2) into Eq. (22), we have

Πc =
k
2
{uc vc wc}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc

vc

wc

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

− kDDDT
e NNNT

e

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc

vc

wc

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+
k
2

DDDT
e NNNT

e NNNeDDDe. (23)

The 12× 12 element stiffness matrix KKKe and the 12× 1 el-
ement force matrix FFFe are obtained after taking the deriva-
tives of displacement variables from the potential energy Πc

as follows

KKKe =
∂2Πc

∂DDD2
e
= kNNNT

e NNNe, (24a)

FFFe = −∂Πc

∂DDDe
= kNNNT

e

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc

vc

wc

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (24b)

These matrices are then added to the simultaneous equilib-
rium equations.

2.7 Point loading submatrix

For DDA, a point loading force (Fx, Fy, Fz) can act on any
point (x, y, z) of the element. The potential energy of the
point loading is

Πp = −(Fxu + Fyv + Fzw)

= − {u v w}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fx

Fy

Fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= −DDDT
e NNNT

e

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fx

Fy

Fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (25)



Validation and application of three-dimensional discontinuous deformation analysis with tetrahedron finite element meshed block 1607

By taking the derivatives from the potential energy Πp, the
12× 1 element force matrix FFFe with the following form is
added to the global force matrix in the simultaneous equa-
tions

FFFe = −∂Πp

∂DDDe
= NNNT

e

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fx

Fy

Fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (26)

2.8 Body force submatrix

When a constant body force ( fx, fy, fz) acts on the material
volume of the element, the corresponding potential energy is

Πv = −
∫∫∫

ve

{u v w}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fx

fy

fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

dx dy dz

= −DDDT
e

∫∫∫

ve

NNNT
e dx dy dz

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fx

fy

fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (27)

By taking the derivatives from the potential energy Πv, the
12× 1 element force matrix FFFe with the following form is
added to the global force matrix in the simultaneous equa-
tions,

FFFe = −∂Πv

∂DDDe
=

∫∫∫

ve

NNNT
e dx dy dz

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fx

fy

fz

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (28)

3 Contact analysis and contact submatrix

In the previous section, the displacement and deformation of
a single block or element and its contribution to the simulta-
neous equations are discussed. However, the blocks are not
isolated. They are related with neighbouring blocks through
contacting and separating and their movement must obey the
contact criterion, i.e., “no penetration, no tension”. The ef-
fect of the contact can be represented by applying two stiff
contact springs in the normal and shear directions. The con-
tact spring will be added if the blocks are in contact with
each other and be deleted if the blocks are separated or the
normal contact force is tensile. Open-close iteration is ap-
plied to identify the contact and arrange the correct locations
of contact springs for each time step. It should be pointed out
that Zheng and Jiang [32, 33] reformulate the 2D DDA as a
mixed complementary problem (MiCP) or a variational in-
equality problem and then choose the path Newton method
(PNM) to solve the problem and avoid the penalty factors
and the open-close iteration.

After the contact points and the associated contact
forces are determined, the normal contact and shear con-
tact submatrices or friction force submatrices are then calcu-
lated and added to the global simultaneous equations. There-

fore contact analysis is a critically important process in DDA
and other discontinuity based numerical methods, and is just
the prominent difference from continuum-based numerical
methods. Meanwhile contact analysis is also a very difficult
and computationally demanding calculation. A contact may
appear between any two neighboring blocks, and may exist
in any combination of vertices, edges and faces. Discrete ele-
ments, or blocks, may undergo large motions, causing open-
ing and closing of joints, as well as sliding along the joint
surfaces. Consequently, contacts among blocks need to be
identified and continuously updated during the entire com-
putation process. It is said that contact detection subroutines
for 3D polyhedrons can easily take up to 80% of the total
analysis time [20].

Contact analysis involves contact detection and contact
interaction. The former is to find out the potential contacts
and their possible types and positions so that proper phys-
ical laws can be applied to determine the contact forces in
the latter. Contact detection begins with identifying neigh-
boring blocks. Afterwards further examination would be im-
plemented to determine if the blocks are indeed interfering
or contacting. In the original 2D DDA, the direct testing ap-
proach is used and a completed block system kinematics is
established [32]. For simply shaped 3D particles, such as
spheres and ellipsoids, the contact detection is also easy. But
for 3D polyhedrons, the contact detection can be quite cum-
bersome, to which many researches have been devoted [35–
38].

3.1 Contact detection scheme

A preliminary effort to detect contact between discrete par-
ticles was made by Cundall [19], who proposed the com-
mon plane (CP) algorithm to detect and represent contacts
in 2D polygonal and 3D polyhedral blocks system. A CP
is a supposititious rigid plane that is hanged between two
neighboring blocks by a string. When the two blocks are
approaching to each other, the CP will rotate and translate
and finally locate between the two blocks at an appropri-
ate position (Fig. 3). If the two blocks are in contact, both
will intersect the CP, and if they are not in contact, neither
intersects the CP. By means of CP, the expensive particle-
to-particle contact detection problem is reduced to a much
faster plane-to-particle contact detection problem. Once the
CP is established between two blocks, the normal to the CP
defines the direction of the contact normal, which in turn de-
fines the direction of the normal contact force between the
two blocks. The sliding direction then lies in the CP.

Cundall [19] suggested an iterative procedure to find
the CP:
(1) Get an initial guess of the CP. It is either the CP from the

previous time step or the perpendicular bisector of the
segment that connects the centroids of the two blocks;

(2) Calculate di, dj and di j. di and dj are respectively the dis-
tances of block i and block j to the CP and di j = dj − di.
If di j is greater than a small positive user-defined “tol-
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erance”, which can be set as twice the magnitude of the
maximum displacement in each time step, the blocks are
recognized as too far from each other to make a contact.
Then the iterative process halts and no CP is developed.
Otherwise, move the reference point to the midpoint of
the segment connecting two closest vertices of the two
blocks and two arbitrary orthogonal axes are chosen in
the CP with their origin at the new reference point;

(3) The CP is then perturbed around each of the orthogonal
axes in both negative and positive sense. If any pertur-
bation produces a larger gap than that of the current CP,
replace the new CP with the current one and go to itera-
tion step (2). If all the perturbations produce smaller gap,
rotate the current orthogonal axes for 45◦ and restart the
perturbation. If still no larger gap is produced, start with
a smaller perturbation until the CP is found with reason-
able accuracy.

Fig. 3 Blocks and the common plane (CP)

The total number of iterations depends on the accuracy of
the initial guess of the CP. In general, this algorithm requires
a large number of iteration steps, and sometimes the iteration
may fall into a saddle-point and a wrong CP is obtained.

Then Nezami et al. [20] proposed a fast common plane
(FCP) identification algorithm for separate blocks and pro-
vided the proof. FCP approach recognizes that a CP has
identifying characteristics, and in three-dimensions the can-
didate planes fall within four types, depending on the geom-
etry of the separate blocks and their relative positions, which
dramatically reduces the search space for the CP. For blocks
in contact, Nezami et al. [20] suggested that an additional
step has to be performed to temporarily separate the contact
blocks by translating the two blocks in a direction perpendic-
ular to the CP from the previous time step. The CP is then
determined for this separated configuration.

Actually the FCP algorithm can be extended to all con-
tact types and the four types of CP candidates are also valid
for in-contact blocks or just-in-contact blocks. The proofs
are given by Geng [39]. FCP algorithm is also an iterative
algorithm, but the number of iterations here is usually very
small and in most cases is less than 2. This is mainly because
its iteration is done to locate the two closest vertices, rather
than to determine the CP itself with “blind” perturbation in
the conventional CP algorithm. In addition, the advanced
FCP algorithm can be directly used to search contact pairs
for both convex blocks and non-convex blocks in the cou-
pled method because only the surface triangle facets on each
block are the objects of contact identification. But in original

3D DDA or DEM, the non-convex blocks must be divided
into several convex sub-blocks before using CP algorithm to
identify contacts.

3.2 Contact submatrices

As shown in Fig. 4, element i and element j are two neigh-
boring elements. P1 (x1, y1, z1) of element i and P2 (x2, y2,
z2) of element j are the contact points and constitute a con-
tact pair. (u1, v1, w1) and (u2, v2, w2) are the displacement
increments of points P1 and P2, respectively. After the dis-
placement increments, the two points move to P′1 and P′2.
The normal distance dn from P′2 to P′1 along the normal vec-
tor of the CP, nnn(ex, ey, ez), is

dn = nnn · −−−−→P′2P′1

= ( ex ey ez )

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x1 + u1) − (x2 + u2)

(y1 + v1) − (y2 + v2)

(z1 + w1) − (z2 + w2)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= ( ex ey ez )

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 − x2

y1 − y2

z1 − z2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ ( ex ey ez )

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

v1

w1

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

−( ex ey ez )

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u2

v2

w2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= s + ( ex ey ez )NNNi(x1, y1, z1)DDDi

−( ex ey ez )NNN j(x2, y2, z2)DDDj

= s +HHHiDDDi −GGG jDDDj. (29)

If dn > 0, it means penetration happens and a normal stiff
spring should be added to compel dn = 0. Assume the spring
stiffness is kn, the potential energy of the normal spring is
given by

Πn =
1
2

knd2
n

=
1
2

kn(s2 +DDDT
i HHHT

i HHHiDDDi +DDDT
j GGG

T
j GGG jDDDj

+2sHHHiDDDi − 2sGGG jDDDj − 2DDDT
i HHHT

i GGG jDDDj). (30)
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Fig. 4 Contact in 3D cases

The element matrices can be obtained by taking the
derivatives from the potential energy Πn with respect to the
displacement variables

knHHHT
i HHHi → KKKii,

knGGGT
j GGG j → KKK j j,

−knHHHT
i GGG j → KKKi j,

−knGGGT
j HHHi → KKK ji,

−knsHHHT
i → FFFi,

knsGGGT
j → FFF j,

(31)

where KKKii, KKK j j, KKKi j and KKK ji form four 12× 12 element stiff-
ness matrices, and are added to the global stiffness matrix
in the simultaneous equilibrium equations. FFFi and FFF j form
two 12× 1 element force vectors, and are added to the global
force vector in the simultaneous equilibrium equations.

The shear displacement dt from P′2 to P′1 along the CP is
calculated as

dt =

√
∣∣∣
∣
−−−−→
P′2P′1

∣∣∣
∣
2 − d2

n . (32)

If the following inequality is satisfied, which means no slid-
ing is allowed, a shear contact spring is activated to enforce
the lock of the contact pair.

Ft < Fn tanφ, (33)

where Ft is the shear component of the contact force; φ is
the friction angle of the discontinuity; and Fn is the normal
contact force. Assume kt is the shear spring stiffness, the
potential energy of the shear spring is given by

Πt =
1
2

ktd
2
t

=
1
2

kt[(x1 − x2 + u1 − u2)2 + (y1 − y2 + v1 − v2)2

+(z1 − z2 + w1 − w2)2 − d2
n]. (34)

By expanding and minimizing the potential energy Πt, the

following matrices can be added to the global stiffness ma-
trix or the global force vector,

ktNNNT
i NNNi − ktHHHT

i HHHi → KKKii,

ktNNNT
j NNN j − ktGGGT

j GGG j → KKK j j,

−ktNNNT
i NNN j + ktHHHT

i GGG j → KKKi j,

−ktNNNT
j NNNi + ktGGGT

j HHHi → KKK ji,

−ktNNNT
i

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 − x2

y1 − y2

z1 − z2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ ktsHHHT
i → FFFi,

ktNNNT
j

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1 − x2

y1 − y2

z1 − z2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
− ktsGGGT

j → FFF j.

(35)

When the inequality (33) is not satisfied, which means
the state of the contact is sliding, the shear spring is removed
and a pair of equal and opposite frictional forces parallel
to the sliding direction is applied on the contact face at the
points. The frictional force is calculated from the normal
contact compressive force from the previous iteration

Ft = Fn tan φ = kn|dn| tanφ. (36)

The friction force will be applied along the projective direc-
tion of the previous displacement on the CP, ttt(tx, ty, tz). At
the end of the time step, the potential energy of the friction
force is given by

Πf = Ft[(x1 − x2 + u1 − u2)tx + (y1 − y2 + v1 − v2)ty

+(z1 − z2 + w1 − w2)tz]

= Ft[(x1 − x2)tx + (y1 − y2)ty + (z1 − z2)tz

+( tx ty tz )NNNiDDDi − ( tx ty tz )NNNiDDDj]. (37)

By taking the derivatives from the potential energy Πf ,
the 12× 1 element friction force matrices with the following
form are added to the global force vector in the simultaneous
equations

−FtNNNT
i ( tx ty tz )T → Fi,

FtNNNT
j ( tx ty tz )T → F j.

(40)

4 Validation

In computational mechanics, any method must be thoroughly
tested against real behaviour to establish its validity. To val-
idate a method, one must demonstrate that the solution of a
real problem by the method agrees well with an independent
solution to the problem. The independent solution can be
taken from physical model tests, field case histories or other
validated numerical computational algorithms. In order to
validate the coupled method proposed in this paper, one of
the most common failure modes, i.e., wedge failure, is ana-
lyzed by the algorithm and its results are compared with that
of physical model tests (Yeung et al. [17]).
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As shown in Fig. 5, the model considered in Ref. [17]
consisted of a plaster wedge block placed on a plaster sup-
porting block, which contained the “mould” of the wedge
block. The supporting block was attached to a wood base
block, which in its turn was attached to a tilt table inclined
at an angle α with the horizontal direction. The wedge block
could move freely without being obstructed by the tilt table.
The orientation of the model was quantified by angle β be-
tween the tilt table dip direction and the orthogonal to the
wedge intersection vector. In each test, the model was fixed
in a desired position corresponding to the chosen α and β;
the wedge block was held in place and then released. Two
different wedge blocks, named Block 1 and Block 2, are con-
sidered and their dimensions are shown in Fig. 6. The angle
α varied from 0◦ to 90◦ in 10◦ increments while the angle
β was equal to 60◦, 80◦ and 240◦ for Block 1 and equal to
60◦, 80◦ and 320◦ for Block 2. The coordinates of the block
vertices in these cases can be found in Ref. [40]. Figure 6
also shows the possible wedge sliding directions (Direction
1 or Direction 2). Each wedge block was bounded by two
joint planes (Plane 1 and Plane 2) and two free surfaces. The
average friction angle determined in Ref. [17] from 10 di-
rect shear test measurements was equal to 32.5◦; the den-
sity of the blocks was 1 400 kg/m3; the Young’s modulus was
10 MPa; the Poisson’s ratio was 0.49.

Fig. 5 Physical model of wedge [17]

Fig. 6 Wedge blocks [17]

Tables 1 and 2 show detailed results of the presented cou-
pled method and their comparison with physical model re-
sults. In order to determine the failure mode and sliding di-
rection, the steepest decent directions of Plane 1 and Plane 2
and Direction 1 or Direction 2 are also listed in Tables 1 and
2. In the coupled method, the sliding direction is determined
based on the direction of centroid displacement. For Block
1 shown in Table 1, the failure modes predicted by the cou-
pled method agree very well with model test results without
disagreement. The sliding direction of each case is consis-
tent with Direction 1, or Direction 2, or the steepest decent
direction of Plane 1 or Plane 2. For Block 2 as shown in
Table 2, most of the failure modes predicted by the coupled
method agree with the physical model results. Disagreement
occurs only for 3 cases out of 32 cases. For these three cases
with β = 60◦ and α = 70◦, 80◦ or 90◦, respectively, the fail-
ure modes predicted by the present coupled method are all
“free fall”, while the results determined by model tests [17]
are translational sliding on Plane 2. It can be seen from Ta-
ble 2 that the direction of centroid displacement, which is the
direction of free falling, is very close to the steepest decent
direction of Plane 2. The safety factors based on block theory
for these three cases are 0, 0.07 and 0.14 [17], respectively.
So the differences probably originate from the measurement
error in physical model tests and numerical error in the cou-
pled method. For case with β = 320◦ and α = 85◦, the fail-
ure mode predicted by the coupled method is translational
and torsional sliding (TTS) on Plane 2 as shown in Fig. 7,
which also agrees with the model test results, while the result
determined by Block Theory [17] is translational sliding on
Plane 2. The TTS failure mode was also predicted by Tonon
and Asadollahi [40] using the BS3D algorithm developed by
Tonon [41]. So the differences probably originate from the
limit of the Block Theory.

5 Application

A realistic rockslide is modeled by the coupled method to
illustrate the ability and advantage of DDA coupled with
FEM. Figure 8 shows the computational model of Jiweishan
rockslide which happened in Chongqing, China in 2009. Ac-
cording to the realistic phenomenon, there are three blocks
including B1, B2 and B3 in this model, as shown in Fig. 8.
B1 is fixed and also referred to as the stable bedrock. B1,
B2 and B3 are discretized into 123, 86 and 9 tetrahedron el-
ements, respectively. Figure 8c shows the size and sliding
direction of the rock slope. The parameters of joints (shown
in Fig. 8d) and blocks material are listed in Table 3. The
time interval is set as 0.01 s and totally 10 000 steps are sim-
ulated. The first four thousand steps, which constitute time
duration of 40 s, are static analyses used to simulate original
gravity force field.
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Table 1 Results from the coupled method and physical model tests [17] for Block 1

β α

Steepest decent direc-
tion of Plane 1

Steepest decent direc-
tion of Plane 2

Direction 1 or 2
Results from the
coupled method Physical model

results
x y z x y z x y z Direction of cen-

troid displacement
Failure mode

60 0 −0.40 0.54 −0.74 0.67 −0.07 −0.74 0.46 0.79 −0.40 – – – stable stable

60 10 −0.30 0.48 −0.83 0.68 0.03 −0.73 0.46 0.71 −0.53 – – – stable stable

60 18.3 −0.22 0.40 −0.89 0.66 0.12 −0.74 0.46 0.63 −0.630.630.63 0.45 0.63 −0.630.630.63 w1 w1

60 20 −0.21 0.38 −0.90 0.65 0.14 −0.75 0.46 0.61 −0.650.650.65 0.45 0.61 −0.650.650.65 w1 w1

60 30 −0.13 0.26 −0.96 0.59 0.21 −0.78 0.46 0.49 −0.740.740.74 0.45 0.49 −0.750.750.75 w1 w1

60 40 −0.06 0.12 −0.99 0.51 0.26 −0.82 0.46 0.35 −0.820.820.82 0.44 0.36 −0.820.820.82 w1 w1

60 50 0.01 −0.02 −1.00 0.42 0.27 −0.870.870.87 0.46 0.20 −0.87 0.41 0.26 −0.870.870.87 p2 p2

60 60 0.08 −0.16 −0.98 0.33 0.24 −0.910.910.91 0.46 0.05 −0.89 0.33 0.24 −0.920.920.92 p2 p2

60 70 0.15 −0.29 −0.95 0.24 0.20 −0.950.950.95 0.46 −0.11 −0.88 0.23 0.20 −0.950.950.95 p2 p2

60 80 0.23 −0.41 −0.88 0.15 0.13 −0.980.980.98 0.46 −0.26 −0.85 0.14 0.13 −0.980.980.98 p2 p2

60 90 0.32 −0.50 −0.80 0.06 0.06 −1.001.001.00 0.46 −0.40 −0.79 0.06 0.05 −1.001.001.00 p2 p2

80 0 −0.56 0.37 −0.74 0.66 0.16 −0.74 0.16 0.90 −0.40 – – – stable stable

80 10 −0.45 0.38 −0.80 0.59 0.24 −0.77 0.16 0.82 −0.55 – – – stable stable

80 17.17 −0.38 0.36 −0.85 0.53 0.27 −0.80 0.16 0.74 −0.650.650.65 0.16 0.75 −0.650.650.65 w1 w1

80 20 −0.35 0.35 −0.87 0.50 0.28 −0.82 0.16 0.71 −0.690.690.69 0.16 0.71 −0.680.680.68 w1 w1

80 30 −0.25 0.28 −0.92 0.41 0.28 −0.87 0.16 0.58 −0.800.800.80 0.15 0.58 −0.800.800.80 w1 w1

80 40 −0.16 0.20 −0.97 0.32 0.25 −0.91 0.16 0.43 −0.890.890.89 0.16 0.44 −0.890.890.89 w1 w1

80 50 −0.08 0.10 −0.99 0.23 0.20 −0.95 0.16 0.27 −0.95 0.15 0.28 −0.95 w1 w1

80 60 0.01 −0.01 −1.00 0.14 0.13 −0.980.980.98 0.16 0.10 −0.98 0.13 0.14 −0.980.980.98 p2 p2

80 70 0.09 −0.12 −0.99 0.05 0.05 −1.001.001.00 0.16 −0.07 −0.98 0.05 0.05 −1.001.001.00 p2 p2

80 80 0.18 −0.22 −0.96 −0.04 −0.04 −1.00 0.16 −0.24 −0.96 0.00 0.00 −1.00 free fall free fall

80 90 0.27 −0.30 −0.91 −0.13 −0.12 −0.98 0.16 −0.40 −0.90 0.00 0.00 −1.00 free fall free fall

240 0 0.40 −0.54 −0.74 −0.67 0.07 −0.74 −0.46 −0.79 −0.40 – – – stable stable

240 10 0.52 −0.56 −0.64 −0.63 0.17 −0.76 −0.46 −0.85 −0.26 – – – stable stable

240 20 0.67 −0.50 −0.55 −0.56 0.24 −0.79 −0.46 −0.88 −0.11 – – – stable stable

240 30 0.82 −0.33 −0.47 −0.48 0.26 −0.84 0.46 0.89 −0.05 – – – stable stable

240 40 0.90 −0.04 −0.44 −0.38 0.26 −0.89 0.46 0.87 −0.20 – – – stable stable

240 50 0.85 0.26 −0.46 −0.29 0.23 −0.93 0.46 0.82 −0.35 – – – stable stable

240 60 0.71 0.47 −0.52 −0.20 0.17 −0.96 0.46 0.74 −0.49 – – – stable stable

240 68.1 0.59 0.55 −0.60 −0.13 0.12 −0.98 0.46 0.67 −0.590.590.59 0.38 0.64 −0.670.670.67 w2 w2

240 70 0.56 0.55 −0.61 −0.11 0.10 −0.99 0.46 0.65 −0.610.610.61 0.39 0.62 −0.680.680.68 w2 w2

240 80 0.43 0.55 −0.710.710.71 −0.03 0.02 −1.00 0.46 0.53 −0.71 0.36 0.55 −0.750.750.75 p1 p1

240 90 0.32 0.50 −0.800.800.80 0.06 −0.06 −1.00 0.46 0.40 −0.79 0.31 0.46 −0.830.830.83 p1 p1

Note: w1 and w2 mean wedge translational sliding along Direction 1 or Direction 2, respectively, as illustrated in Fig. 6. p1 and p2 mean
translational sliding on Plane 1 only or on Plane 2 only respectively, – means stable.
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Table 2 Results from the coupled method and physical model tests [17] for Block 2

β α

Steepest decent direc-
tion of Plane 1

Steepest decent direc-
tion of Plane 2

Direction 1 or 2
Results from the
coupled method Physical model

results
x y z x y z x y z Direction of cen-

troid displacement
Failure mode

60 0 0.15 −0.56 −0.82 −0.56 −0.15 −0.82 −0.350.350.35 −0.610.610.61 −0.710.710.71 −0.350.350.35 −0.610.610.61 −0.710.710.71 w1 w1

60 10 0.10 −0.42 −0.90 −0.50 −0.19 −0.85 −0.350.350.35 −0.480.480.48 −0.800.800.80 −0.350.350.35 −0.480.480.48 −0.800.800.80 w1 w1

60 20 0.06 −0.27 −0.96 −0.42 −0.21 −0.88 −0.350.350.35 −0.330.330.33 −0.870.870.87 −0.350.350.35 −0.340.340.34 −0.870.870.87 w1 w1

60 30 0.02 −0.10 −0.99 −0.340.340.34 −0.200.200.20 −0.920.920.92 −0.35 −0.18 −0.92 −0.330.330.33 −0.230.230.23 −0.920.920.92 p2 p2

60 40 −0.01 0.06 −1.00 −0.250.250.25 −0.170.170.17 −0.950.950.95 −0.35 −0.01 −0.94 −0.240.240.24 −0.190.190.19 −0.950.950.95 p2 p2

60 50 −0.05 0.23 −0.97 −0.170.170.17 −0.120.120.12 −0.980.980.98 −0.35 0.15 −0.92 −0.170.170.17 −0.130.130.13 −0.980.980.98 p2 p2

60 60 −0.09 0.38 −0.92 −0.080.080.08 −0.060.060.06 −0.990.990.99 −0.35 0.31 −0.88 −0.080.080.08 −0.070.070.07 −0.990.990.99 p2 p2

60 70 −0.14 0.53 −0.84 0.00 0.00 −1.00 −0.35 0.46 −0.82 0.00 0.00 −1.001.001.00 free fall p2

60 80 −0.19 0.65 −0.74 0.09 0.07 −0.99 −0.35 0.59 −0.73 0.00 0.00 −1.001.001.00 free fall p2

60 90 −0.27 0.74 −0.61 0.17 0.12 −0.98 −0.35 0.71 −0.61 0.00 0.00 −1.001.001.00 free fall p2

80 0 0.33 −0.47 −0.82 −0.47 −0.33 −0.82 −0.120.120.12 −0.700.700.70 −0.710.710.71 −0.120.120.12 −0.690.690.69 −0.720.720.72 w1 w1

80 10 0.24 −0.39 −0.89 −0.37 −0.31 −0.87 −0.120.120.12 −0.560.560.56 −0.820.820.82 −0.120.120.12 −0.560.560.56 −0.820.820.82 w1 w1

80 20 0.15 −0.27 −0.95 −0.28 −0.26 −0.92 −0.120.120.12 −0.410.410.41 −0.900.900.90 −0.120.120.12 −0.410.410.41 −0.900.900.90 w1 w1

80 30 0.08 −0.15 −0.99 −0.18 −0.19 −0.96 −0.120.120.12 −0.250.250.25 −0.960.960.96 −0.120.120.12 −0.250.250.25 −0.960.960.96 w1 w1

80 40 0.01 −0.01 −1.00 −0.10 −0.10 −0.99 −0.12 −0.08 −0.99 −0.090.090.09 −0.120.120.12 −0.990.990.99 p2 p2

80 50 −0.07 0.12 −0.99 −0.01 −0.01 −1.00 −0.12 0.09 −0.99 −0.010.010.01 −0.020.020.02 −1.001.001.00 p2 p2

80 60 −0.14 0.25 −0.96 0.08 0.09 −0.99 −0.12 0.26 −0.96 0.00 0.00 −1.001.001.00 free fall free fall

80 70 −0.22 0.37 −0.90 0.17 0.18 −0.97 −0.12 0.43 −0.90 0.00 0.00 −1.001.001.00 free fall free fall

80 80 −0.32 0.46 −0.83 0.26 0.25 −0.93 −0.12 0.58 −0.81 0.00 0.00 −1.001.001.00 free fall free fall

80 90 −0.42 0.52 −0.74 0.35 0.31 −0.88 −0.12 0.71 −0.70 0.00 0.00 −1.001.001.00 free fall free fall

320 0 −0.58 -0.05 −0.82 −0.05 0.58 −0.82 −0.540.540.54 0.45 −0.710.710.71 −0.540.540.54 0.45 −0.710.710.71 w1 w1

320 10 −0.54 -0.11 −0.83 −0.07 0.71 −0.70 −0.540.540.54 0.57 −0.620.620.62 −0.540.540.54 0.56 −0.630.630.63 w1 w1

320 10.3 −0.54 -0.12 −0.83 −0.07 0.71 −0.70 −0.540.540.54 0.57 −0.610.610.61 −0.540.540.54 0.56 −0.630.630.63 w1 w1

320 20 −0.49 −0.16 −0.86 −0.10 0.81 −0.57 −0.540.540.54 0.67 −0.510.510.51 −0.550.550.55 0.64 −0.540.540.54 w1 w1

320 30 −0.43 −0.18 −0.89 −0.15 0.89 −0.42 −0.54 0.75 −0.39 – – – stable stable

320 40 −0.35 −0.18 −0.92 −0.26 0.93 −0.26 −0.54 0.80 −0.25 – – – stable stable

320 50 −0.27 −0.16 −0.95 −0.66 0.75 −0.11 −0.54 0.83 −0.11 – – – stable stable

320 60 −0.19 −0.12 −0.97 −0.60 −0.79 −0.12 0.54 −0.84 −0.04 – – – stable stable

320 70 −0.11 −0.07 −0.99 −0.25 −0.93 −0.27 0.54 −0.82 −0.19 – – – stable stable

320 80 −0.02 −0.02 −1.00 −0.15 −0.89 −0.43 0.54 −0.78 −0.32 – – – stable stable

320 85 0.02 0.01 −1.00 −0.12 −0.85 −0.51 0.54 −0.74 −0.39 −0.12 −0.82 −0.56 TTS TTS

320 90 0.06 0.04 −1.00 −0.100.100.10 −0.810.810.81 −0.580.580.58 0.54 −0.71 −0.45 0.08 −0.810.810.81 −0.590.590.59 p2 p2

Note: w1 and w2 mean respectively wedge translational sliding along Direction 1 or Direction 2 as illustrated in Fig. 6. p1 and p2 mean
translational sliding on Plane 1 only or on Plane 2 only, respectively. TTS means translational and torsional sliding on Plane 2, – means
stable.
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Table 3 Parameters of joints and blocks [42]

Matarial c/kPa φ/(◦) E/GPa μ ρ/(kg·m−3)

J1 0 8 – – –

J2 200 20 – – –

J3 200 8 – – –

J4 50 20 – – –

J5 300 25 – – –

B1 – – 25 0.24 2 600

B2 – – 25 0.24 2 600

B3 – – 25 0.24 2 000

Note: J5 is the interface of B2 and B3.

Fig. 7 Failure mode for Block 2 with initial configuration of
β = 320◦ and α = 85◦. a Initial configuration; b Failure mode

Fig. 8 Computational model of Jiweishan rockslide. a Left view; b Front view; c Iso view; d Joints

Figure 9 shows the sliding process of rock blocks at
several specific moments. Figures 10 and 11 show the dis-
placement and velocity history of two specific points of P1
and P2, which are respectively on B2 and B3 as shown in
Fig. 8c. From Fig. 10 it can be seen that the displacements
of P1 and P2 increase very slowly with time steps in the first
40 static analysis, which means that B2 and B3 are unstable
under gravity load. Because the gravity of B2 is the pri-
mary driving force, B2 is named as driving block. In the
coupled method, the velocity of the nodal points is set as

zero in the first 40 s to simulate static process as shown in
Fig. 11. The slope profile at the end of 40 s static analysis
is shown in Fig. 9a. Thereafter dynamic analysis is used to
simulate the sliding process of the rock slope under gravity.
At 45 s the driving block B2 is separated obviously from the
stable bedrock B1, as shown in Fig. 9b. At 49 s in Fig. 9c,
the joint J5 between B2 and B3 is detached and B3 is mov-
ing to the margin of the cliff of the bedrock. At 55 s B3 is
toppling down from the bedrock and going on a free falling
down movement as shown in Fig. 9d. This can also be seen
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in Figs. 10b and 11b with the displacement and velocity of
P2 increasing sharply along the y-direction. At 59 s the driv-
ing block B2 is also moving close to the edge of the bedrock

and at 63 s it is toppling down from the slope as shown in
Figs. 9e and 9f, respectively.

Fig. 9 The sliding process of rock blocks. a 40 s; b 45 s; c 49 s; d 55 s; e 59 s; f 63 s

Fig. 10 The displacement history of two specific points. a P1 on B2; b P2 on B3

Fig. 11 The velocity history of two specific points. a P1 on B2; b P2 on B3
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6 Conclusions

In this paper, 3D DDA is coupled with tetrahedron finite el-
ements to tackle the problem of block expansion and to en-
hance DDA block’s deformation ability. Tetrahedron is the
simplest in the 3D domain, and it is easy to implement auto-
matic discretization even for complex topology shape. Fur-
thermore, block faces may not remain planar for hexahedron
finite elements or high order displacement functions after de-
formation, which will cause contact detection difficulties us-
ing existing 3D contact detection schemes. However, ele-
ment faces will remain planar and element edges will remain
straight after deformation for tetrahedron finite elements, and
thus 3D polyhedral contact detection schemes can be used di-
rectly. Therefore, tetrahedron finite elements are appropriate
for being meshed into 3D DDA blocks. The matrices of equi-
librium equations for this coupled method are given in detail
in this paper and a modified fast common plane method is
suggested for contact detection. For validation, one of the
most common failure modes, i.e., wedge failure, is analyzed
by the coupled method and its results are compared with that
of physical model tests (Yeung et al. [17]). Most of the fail-
ure modes predicted by the coupled method agree with the
physical model results except for 3 cases out of the total 65
cases. Finally, a complex rockslide example demonstrates
the robustness and versatility of the coupled method.
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