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Abstract Under isothermal quasi-static stretching the phase
transition of a superelastic NiTi tube involves the formation
(during loading) and vanishing (in unloading) of a high strain
(martensite) domain. The two events are accompanied by a
rapid stress drop/rise due to the formation/vanishing of do-
main fronts. From a thermodynamic point of view, both are
instability phenomena that occur once the system reaches its
critical state. This paper investigates the stability of a shrink-
ing cylindrical domain in a tube configuration during unload-
ing. The energetics and thermodynamic driving force of the
cylindrical domain are quantified by using an elastic inclu-
sion model. It is demonstrated that the two domain fronts ex-
hibit strong interaction when they come close to each other,
which brings a peak in the total energy and a sign change
in the thermodynamic driving force. It is proved that such
domain front interaction plays an important role in control-
ling the stability of the domain and in the occurrence of stress
jumps during domain vanishing. It is also shown that the pro-
cess is governed by two nondimensional length scales (the
normalized tube length and normalized wall-thickness) and
that the length scale dependence of the critical domain length
and stress jump for the domain vanishing can be quantified
by the elastic inclusion model.
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modynamic driving force

The project was supported by the Hong Kong Research Grants
Council (GRF619511) and from the National Natural Science
Foundation of China (11128204).

L. Dong · Q. P. Sun
Department of Mechanical Engineering,
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong, China
e-mail: meqpsun@ust.hk

1 Introduction

Due to its unique biocompatibility, shape memory and su-
perelastic properties, NiTi shape memory alloy (SMA) tubes
have obtained many important applications in the medical
device industry, ranging from catheters to superelastic nee-
dles, from small-scale self-expanding endovascular stents to
other implantable structures (see, for example Refs. [1, 2]).
In these applications, a comprehensive knowledge of ther-
momechanical behaviors of the material is needed. Re-
search on the deformation behavior of NiTi tubes during
phase transition under tensile loading started only in recent
years (among many others, see Refs. [3–17]). The study was
partially motivated by the rapid growth of mechanical engi-
neers’ interest in NiTi tubes and the related devices which
are subjected to a wide range of loading conditions in ser-
vice, and partially motivated by our curiosity about the phase
transition and domain evolution in the polycrystalline tube
geometry, the origins of its nonlinear and multi-field cou-
pling and the resulting deformation patterns and the length
scales [17–28]. From a pure academic point of view, the tube
configuration is also an interesting and convenient system in
investigating phase transition behaviors of the material.

One of the key aspects in phase transition behaviors of
the NiTi tube under tension is the dynamic martensite band
formation/vanishing which is accompanied by a rapid stress
drop/jump. The phenomena are widely observed in tubes
with an arbitrary wall-thickness/mean-radius ratio ranging
from 0 to 2 (i.e., from a very thin tube to an extreme case
of a solid wire). The experiment of a long tube (with tube
length/mean-radius ratio ≈ 270 and wall-thickness/mean-
radius ratio = 0.5) under quasi-static isothermal stretching
(with applied strain rate 5 × 10−4 s−1) is shown in Fig. 1a. It
can be seen that at a critical stress the initial homogeneous
deformation (Fig. 1a, A) of the tube (in the austenite phase)
suffers instability and self-organizes into a mixture of a low-
strain matrix (austenite phase) and a high-strain cylindrical
martensite band (Fig. 1a, B) with a sudden stress drop. The
subsequent phase transition of the tube is realized through
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the growth and shrinkage of the cylinder-shaped band at the
respective upper and lower stress plateaus (see B-C and E-
G in Fig. 1a). During unloading, when the martensite do-
main length is reduced to a critical value, the domain dy-
namically vanishes with a steep stress jump (Fig. 1a, G-H)
which is much smaller than the stress drop during the do-
main formation (Fig. 1a, A-B). While for a short wire (with
wire length/mean-radius ratio = 15 and wall-thickness/mean-
radius ratio = 2) under the same loading condition as shown
in Fig. 1b, the stress jump (Fig. 1b, H-I) during the domain
vanishing can be significant (about a half of the stress drop
in the domain formation, see A-B in Fig. 1b). From a ther-
modynamic point of view, both the domain formation and
vanishing are instability events occurring once the system
reaches its critical state, in order to understand and model
the instability in domain formation/vanishing, the energetics
and stability of domain need to be explored.

Fig. 1 The synchronized stress-strain response and the surface mor-
phologies of a a long tube (with tube length/mean-radius ratio ≈
270 and wall-thickness/mean-radius ratio = 0.5) and b a solid wire
(with wire length/mean-radius ratio = 15 and wall-thickness/mean-
radius ratio = 2) under quasi-static tensile loading and unloading

A systematic and quantitative study is necessary for in-
vestigating the stress fields, strain energy distribution and
their evolution in the tube. Among many other factors (de-
fect, microstructure, external noise, etc.), the domain front
interaction plays the most important role in the energetics of
the unstable events. The following issues must be clarified

before the modeling of the martensite domain. Firstly, the
domain consists of almost fully transformed grains whose
statistical average transformation strains (eigenstrains) under
uniaxial tension are constants (5%, –2.5% and –2.5% in ax-
ial, radial and circumferential directions). Thus the domain
can be treated approximately as an elastic inclusion, but it
is non-classic since the domain is not fully constrained by
the matrix [29–31]. However, the theoretical principle and
method to solve the problem are the same as those for the
classical inclusion-matrix system [32]. Secondly, the domain
can nucleate into different patterns in tubes of different wall-
thickness/mean-radius ratios, e.g., it can be a helix in thin-
walled tubes and a cylinder in thick-walled tubes [4, 5, 8–
10, 15–17]. In all the thin-walled tubes, further loading will
make the helical domain grow and eventually merge into a
cylindrical domain. During unloading the reverse transition
of the cylindrical domain is realized by the reverse propa-
gation of its fronts and the final dynamic domain vanishing.
Compared with the more complex helical domains, analysis
of the vanishing process of the cylindrical domain is rela-
tively simple and will be a good example for the investigation
of the domain stability as well as stable → unstable transi-
tion of an existing domain. Thirdly, it is noticed that even a
cylindrical domain can have different equilibrium front mor-
phologies such as the inclined fronts, perpendicular fronts or
branched fronts [10].

The objective of this paper is to study the stability of a
cylindrical martensite domain during its isothermal shrink-
age in the unloading process. The domain is treated as
an elastic inclusion in the tube configuration, and the do-
main fronts are assumed to be perpendicular to the load-
ing axis mainly for the purpose of mathematical simplicity.
Focus is concentrated on the energetics and thermodynamic
driving force during the domain evolution so that the stress
jump phenomenon in domain vanishing can be explained and
quantified. The paper is organized as follows. In Sect. 2,
the domain front interaction is quantitatively examined for
a thin-walled tube. Based on the calculations of misfit en-
ergy and thermodynamic driving force in Sect. 2, the stabil-
ity of the martensite domain under displacement-controlled
unloading is discussed in Sect. 3. In Sect. 4, the discussions
of domain stability are extended to the more general cases of
arbitrary wall-thickness. The summary and conclusions are
given in Sect. 5.

2 Domain front interaction

Consider a cylindrical tube with length L and a uniform cross
section of mean-radius R and wall-thickness t in the cylindri-
cal coordinate system as shown in Fig. 2a. The tube contains
a cylindrical martensite domain Ω of length LM with con-
stant axisymmetric (with respect to the z-axis) eigenstrain
ε

p
i j (with non-zero components εp

r , εp
θ and εp

z ). The elastic
constants of the domain and the matrix are assumed to be
isotropic and are the same. For most shape memory alloys,
the volume change in phase transformation is ignorable and



On stability of elastic domain during isothermal solid–solid phase transformation in a tube configuration 685

these nonzero components of transformation strain can be
written as

ε
p
r = ε

p
θ = ε

p
1 < 0, εp

z = ε
p
2 = −2εp

1 > 0. (1)

Fig. 2 Schematic diagram of the overall necking deformation in the
tube. a Real mode; b Disconnected stress-free mode; c Connecting
forces joining T1 and T2

Remark 1: In real martensitic transformation in SMA,
the Young’s modulus of martensite is usually less than that
of austenite, so to be exact the martensite domain should be
treated as an inhomogeneous inclusion [32]. The assump-
tion in Eq. (1) is based on the experimental measurement
of the statistical average strain of numerous grains in the
fully transformed region. It should be noticed that a pos-
sible texture might invalidate the assumption of two equal
components of the transformation strain. Moreover, in a real
polycrystalline material, the transformation strain (or vol-
ume fraction of martensite) may change continuously and
rapidly across the domain front (i.e., the boundary zone). In
other words, the domain front has a finite thickness. Here the
constant or uniform transformation strain assumption is used
mainly for the purpose of simplicity.

For a long thin-walled tube (L � R � t), its deformation
arising from the presence of a cylindrical martensite domain
can be represented by the deflection, w, of the tube’s mid-
surface. If both ends of the tube are free from any external
constraint, the equilibrium configuration of the tube is deter-
mined by the minimization of the total energy (or total misfit
energy) which contains two energy terms, pure bending en-
ergy and stretching energy [33]. Pure bending energy arises
from the non-uniformity of tension and compression through
the wall-thickness of the tube, while the stretching energy is
due to the general mid-surface stretching. When the distance
between the two fronts (i.e., the domain length) becomes
large enough, the pure bending and stretching energies will
no longer depend on LM. The resultant total misfit energy of
the system can be generally expressed as Uel ∼ Et3/2w2/R1/2

and the characteristic length scale d of the necking (bend-
ing) zone (see Fig. 2a) can be determined as d ∼ √Rt (see
Appendix I for detailed derivation).

From the elementary theory of elasticity [34], an analyt-
ical expression of the total misfit energy of the system due to
the presence of a long martensite domain (without the inter-
action of two fronts) can be obtained as

Uel =
1
2
πRtE

(
ε

p
1

)2
d, (2)

where d = [R2t2/3(1 − v2)]1/4 is a constant for a given tube
mean-radius and wall-thickness.

The stress and strain fields associated with each domain
front will interact with each other when the domain length
becomes comparable to or less than the necking zone length
(i.e., LM ∼ d). The total misfit energy of the system now
depends on the domain length LM and can be expressed as

Uel =
1
2
πRtE

(
ε

p
1

)2
d
(
1 − e−LM/d cos

LM

d

+ e−LM/d sin
LM

d

)
. (3)

It is seen from Eqs. (2) and (3) that the total misfit en-
ergy depends on three length scales: the domain length LM,
mean-radius R and wall-thickness t of the tube. The mean-
radius and wall-thickness determine the characteristic length
scale d of the necking zone which stores the bending and
stretching energies. For a given R and t, the domain length
LM determines the front interaction which occurs when the
domain length becomes comparable to or less than the neck-
ing zone length.

The thermodynamic driving force, i.e., the material or
configurational force, at a sharp interface (domain front) has
been discussed in many notable papers [35–44]. The driving
force for the interface (domain front) motion can be obtained
as

f = − dU
dLM
. (4)

where U is the Helmholtz free energy of the system for
displacement-controlled loading and is the Gibbs free energy
of the system for force-controlled loading.

For the current case, U = Uel. By substituting Eq. (3)
into Eq. (4),

fel = −dUel

dLM
= −πRtE

(
ε

p
1

)2
e−LM/d cos

LM

d
. (5)

Theoretical calculations of the variations of Uel and fel

with LM for the case t/R = 0.1 are shown in Fig. 3, from
which the front interaction can be seen clearly. For a large
domain length (LM/R > 2), the elastic misfit energy Uel is a
constant (see Fig. 3a). As the domain length LM decreases,
the elastic misfit energy Uel first increases gradually to a peak
(Point 1) and then decreases to zero. Accordingly in Fig. 3b,
for a large domain length (LM/R > 2), the driving force fel is
zero, which means the two interfaces have no interaction. As
LM decreases, the driving force fel becomes positive, which
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means that two interfaces repel each other and the growth of
the elastic domain is favored. There exists a critical domain
length Lc

M (Point 1 in Fig. 3b) below which the driving force
fel becomes negative and favors the shrinkage of the marten-
site domain. It should be noticed that such a critical domain
length Lc

M coincides with the peak in the misfit energy (Point
1 in Fig. 3a). The magnitude of the driving force increases
monotonically as LM decreases and reaches its maximum at
the end of domain vanishing (LM= 0) which makes domain
vanishing a dynamic process. The maximum positive driv-
ing force (Point 2 in Fig. 3b) corresponds to the turning point
(Point 2 in Fig. 3a) of the misfit energy.

Fig. 3 Variation of a elastic misfit energy Uel and b thermody-
namic driving force fel with the domain length LM for t/R = 0.1
(thin-walled tube)

3 Stability of domain

Based on the calculations of the misfit energy and thermo-
dynamic driving force in Sect. 2, we study the stability of a
martensite domain in a thin-walled tube (with t/R = 0.1) dur-
ing the displacement-controlled unloading. For this problem
there are five external governing parameters, with three ge-
ometric parameters (the wall-thickness t, mean-radius R and
length L of the tube) and two loading parameters (the ap-
plied nominal strain ε0 (= tube-elongation/tube-length) and
the temperature T ). The domain length LM is an internal vari-
able which characterizes the phase transition process. The
Helmholtz free energy of the system under displacement-

controlled boundary conditions can be expressed as [29]

U = Uel + ΔUchem + Uext, (6)

where ΔUchem is the change in chemical free energy, Uel is
the misfit strain energy arising from the presence of marten-
site domain and Uext is the extra elastic energy arising from
the external displacement-controlled stretching.

Taking the stress-free austenite phase as the reference
state, the total change in chemical free energy arising from
the thermo-elastic martensitic transformation is

ΔUchem =

∫

Ω

ΔϕdV = VΩΔϕ (T ) = 2πRtLMΔϕ (T ) , (7)

where Δϕ (T ) is the chemical free energy density difference
between the two phases. It depends only on the temperature
T and can be approximated as a linear function of T around
the equilibrium temperature T0

Δϕ (T ) = ϕM (T ) − ϕA (T ) = k (T − T0) , (8)

where k is a material constant determined by the experi-
ments.

The extra elastic energy arising from external
displacement-controlled loading can be expressed as

Uext = πRtLE

⎛⎜⎜⎜⎜⎝ε0 −
LMε

p
2

L

⎞⎟⎟⎟⎟⎠
2

. (9)

For the given tube geometry (tube wall-thickness t,
mean-radius R and length L) and the given temperature T ,
there are only two parameters (domain length LM and nomi-
nal strain ε0) that control the phase transition process and the
stability of the martensite domain. The purpose of this paper
is to investigate the stability of the equilibrium domain in
a displacement-controlled process, i.e., for equilibrium do-
main at any given nominal strain. Therefore, it is appropriate
for us to conduct stability analysis by treating the Helmholtz
free energy as a function of the domain length LM subject
to the given nominal strain ε0. As for the force-controlled
process, the stability of the martensite domain can be simi-
larly considered by employing the Gibbs free energy of the
system.

Under isothermal and quasi-static conditions, the driv-
ing force for the interface motion can be obtained for the
displacement-controlled loading condition as

f = − dU
dLM

∣∣∣∣∣
ε0

= fel + fchem + fext, (10)

where fel for a thin-walled tube is given in Eq. (5) as

fel = −dUel

dLM
= −πRtE

(
ε

p
1

)2
e−LM/d cos

LM

d
,

and

fchem = −dΔUchem

dLM
= −2πRtΔϕ, (11)

fext = −dUext

dLM

∣∣∣∣∣
ε0

= 2πRtEεp
2

⎛⎜⎜⎜⎜⎝ε0 −
LMε

p
2

L

⎞⎟⎟⎟⎟⎠ . (12)
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Consider the quasi-static unloading with displacement-
controlled boundary condition (by monotonically decreasing
the nominal strain ε0). The energy dissipation of the phase
transition in SMA can be accounted for by introducing a
constant dry-friction force D0 [29]. By imposing condition
f = −D0 on the reverse phase transition and referring to
Eq. (10), we find the relation between the nominal strain ε0

and the domain length LM as

ε0 =
LMε

p
2

L
+

1
8

e−LM/dε
p
2 cos

LM

d
+
Δϕ − D0

Eεp
2

. (13)

The corresponding nominal stress can be given by

σ0 = E

⎛⎜⎜⎜⎜⎝ε0 −
LMε

p
2

L

⎞⎟⎟⎟⎟⎠

=
1
8

e−LM/dEεp
2 cos

LM

d
+
Δϕ − D0

ε
p
2

. (14)

Remark 2: It should be noted that in general the en-
ergy minimization principle should not be applied directly to
the above irreversible process with energy dissipation. How-
ever, as argued in Refs. [4, 45] and much earlier by Rice [46],
for the constrained equilibrium studied in this paper both the
chemical energy difference Δϕ and the dry-friction force D0

can be chosen as zero without losing generality. It can be
seen from Eqs. (15) and (18) below that the values of Δϕ and
D0 have no effect either on the critical domain length Lc

M or
on the stress jump Δσ. It can also be seen from Eq. (13) that
Δϕ and D0 affect the values of the critical nominal strain εc

0
by a constant only.

If the driving force f (Eq. (10)) equals zero at a given
ε0, the Helmholtz free energy of the system reaches a sta-
tionary point (i.e., a local maximum, a local minimum or a
saddle point), then the stability of the martensite domain can
be determined by the second derivative κ of the Helmholtz
free energy

κ =
d2U

dL2
M

= 2πRtE
(
ε

p
1

)2
[
− 1

2d
e−LM/d

(
cos

LM

d
+ sin

LM

d

)

+
1
L

⎛⎜⎜⎜⎜⎝
ε

p
2

ε
p
1

⎞⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎦ . (15)

In principle, if κ > 0 at the domain length LM corre-
sponding to f = 0, the Helmholtz free energy U reaches a
local minimum point, which means that the equilibrium do-
main is stable. If κ < 0, the Helmholtz free energy stays
at a local maximum point so the equilibrium domain is un-
stable. If κ = 0 and its sign changes across such a point,
the Helmholtz free energy corresponds to a saddle point (or
spinodal point, i.e., a point that is stationary but not a local
extremum) [47, 48] at which the domain is also unstable. The

variations of the second derivative κ with the domain length
LM for different tube length L are shown in Fig. 4. It is seen
that for relatively large domain lengths, the second derivative
κ is always positive. It changes its sign at a critical domain
lengths Lc

M, which corresponds to the saddle point of the sys-
tem energy. It is also seen that the critical domain length Lc

M
increases as the tube length L increases and there is a limit
Lc

M/R ≈ 0.58 when L/R approaches infinity.

Fig. 4 Variation of the second derivative κ of the Helmholtz free

energy with the domain length LM for different tube lengths L

As shown in Fig. 5, the model has the capability to cap-
ture the instability event which occurs in the quasi-static un-
loading process: as the nominal strain ε0 decreases, the equi-
librium domain is stable and its length LM decreases mono-
tonically until a critical state with ε0 = ε

c
0 and LM = Lc

M is
reached. The energetics of the equilibrium domains in the
strain range ε0 > ε

c
0 is shown in Fig. 5(I). It is seen that the

equilibrium domain length corresponds to a local minimum
of the system energy (accordingly with κ > 0 as shown in
Fig. 4) and thus the martensite→austenite phase transition
is stable. However, the system energy at the critical state
(with ε0 = ε

c
0 and LM = Lc

M) stays at a spinodal point (with
κ = 0, see Fig. 4) and is shown in Fig. 5(II). The system
energy will monotonically decrease when the domain length
decreases. Therefore, the equilibrium martensite domain at
the critical state (with ε0 = ε

c
0 and LM = Lc

M) is unstable,
which means that the domain length will decrease rapidly
leading to dynamic domain vanishing. The dashed lines in
Fig. 5 correspond to those unstable equilibrium states (with
κ < 0 as shown in Fig. 4).

At the critical nominal strain ε0 = ε
c
0, the variation of the

total driving force f = fel + 2πRtEεp
2(εc

0 − LMε
p
2/L) with the

domain length LM is shown in Fig. 6. It is seen that the driv-
ing force is always negative and decreases as LM decreases.
Therefore, it can be concluded that the martensite domain be-
comes unstable at the critical nominal strain εc

0 and any small
change in the domain length will cause domain vanishing.
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Fig. 5 Variation of the equilibrium domain length LM with the nom-
inal strain ε0 for different tube lengths L (for Δϕ = 0 and D0 = 0).
The energetics is shown in (I) for the stable state (with ε0 > ε

c
0) and

(II) for the critical state (with ε0 = ε
c
0)

Fig. 6 Variation of the total driving force f with the domain length
LM at the critical nominal strain εc

0 for different tube lengths L

The variation of the nominal stress σ0 with the nominal
strain ε0 for different tube lengths L is plotted in Fig. 7. It is
seen that at large nominal strain the nominal stress σ0 is zero
(since we take Δϕ = 0 and D0 = 0). As the nominal strain
ε0 decreases, the nominal stress σ0 first decreases gradually
and then increases until the critical state is reached at which
unstable domain vanishing happens. Accompanying the do-
main vanishing is a sudden jump in the nominal stress. The
elastic strain immediately before the domain vanishing is

εc−
e = ε

c
0 −

Lc
Mε

p
2

L
=

1
8

e−Lc
M/dε

p
2 cos

Lc
M

d
+
Δϕ − D0

Eεp
2

(16)

and the elastic strain following the domain vanishing is

εc+
e = ε

c
0 =

Lc
Mε

p
2

L
+

1
8

e−Lc
M/dε

p
2 cos

Lc
M

d
+
Δϕ − D0

Eεp
2

. (17)

Therefore, the corresponding stress jump in the domain
vanishing can be given by

Δσ = E
(
εc+

e − εc−
e

)
=

Lc
MEεp

2

L
. (18)

It is seen that the stress jump is linearly proportional to
the critical domain length Lc

M and inversely proportional to

the tube length L. It should be noted that the stress jump is
always positive since the critical domain length Lc

M is always
positive. Especially, the stress jump approaches zero when
L/R→ ∞.

Fig. 7 Variation of the nominal stress σ0 with the nominal strain
ε0 for different tube lengths L

In summary, unstable domain vanishing happens at
the critical domain length Lc

M during the displacement-
controlled unloading. This critical domain length Lc

M is
determined by the tube geometry (wall-thickness t, mean-
radius R and length L). For a tube with a given normalized
wall-thickness t/R, as the tube length L/R increases the crit-
ical domain length Lc

M/R increases monotonically while the
corresponding stress jump Δσ decreases monotonically.

4 Three-dimensional problems

The discussions in Sect. 3 for the thin-walled tube (t/R =
0.1) can be extended to tubes with an arbitrary wall-thickness
by solving a three-dimensional inclusion problem. For this
general problem in the cylindrical coordinates, the displace-
ment component uθ vanishes and ur, uz are independent of θ.
The nonzero strain components are

εr =
∂ur

∂r
, εθ =

ur

r
, εz =

∂uz

∂z
, εrz =

1
2

(
∂ur

∂z
+
∂uz

∂r

)
. (19)

The corresponding stress components can be given by

σr =
E

1 + v

[
v (e − ep)

1 − 2v
+ εr − εp

r

]
,

σθ =
E

1 + v

[
v (e − ep)

1 − 2v
+ εθ − εp

θ

]
,

σz =
E

1 + v

[
v (e − ep)

1 − 2v
+ εz − εp

z

]
,

σrz =
Eεrz

1 + v
, for |z| < LM

2
,

σr =
E

1 + v

( ve
1 − 2v

+ εr

)
, σθ =

E
1 + v

( ve
1 − 2v

+ εθ

)
,

σz =
E

1 + v

( ve
1 − 2v

+ εz

)
,

σrz =
Eεrz

1 + v
, for |z| > LM

2
,

(20)
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where e = εr + εθ + εz and ep = ε
p
r + ε

p
θ + ε

p
z .

Moreover, the stress components in the inclusion and the
matrix satisfy the following equations of equilibrium

∂σr

∂r
+
∂σrz

∂z
+
σr − σθ

r
= 0,

∂σrz

∂r
+
∂σz

∂z
+
σrz

r
= 0. (21)

Substituting Eq. (20) into Eq. (21), we obtain the Navier
equations for the displacements

1
1 − 2v

∂e
∂r
+ ∇2ur − ur

r2
= 0,

1
1 − 2v

∂e
∂z
+ ∇2uz = 0, (22)

where ∇2 = ∂2/∂r2 + 1/r · ∂/∂r + ∂2/∂z2.

The stress-free boundary conditions on the inner and
outer surfaces are

σr = σrz = 0, for r = R ± t
2
. (23)

The solution for the stress and strain energy in the tube
can be decomposed into the solutions of two sub-problems
as shown in Fig. 8. In Sub-problem 1, the martensite domain
(with constant eigenstrains εp

r , εp
θ and εp

z ) is subjected to the
traction p = −Eεp

1/(1 − v) > 0 on its inner and outer surfaces
to guarantee that there is no radial deflection of the tube. In
Sub-problem 2, the pure elastic tube deforms under the pres-
sure p = −Eεp

1/(1 − v) > 0 prescribed on the inner and outer
surfaces which has the same magnitude as but opposite di-
rection to those in Sub-problem 1. Details of the solution are
given in Appendix II., readers are referred to works [29–31]
for more details.

Fig. 8 Decomposition of the original problem into two sub-
problems. a Original problem; b Sub-problem 1; c Sub-problem
2

The elastic misfit energy of the tube due to the pres-
ence of the martensite domain, according to the inclusion
theory [32], can be generally expressed as

Uel = −1
2

∫

Ω

σi jε
p
i jdV = −1

2

(
σ̄rε

p
r + σ̄θε

p
θ + σ̄zε

p
z

)
VΩ, (24)

where σ̄r, σ̄θ and σ̄z denote respectively the average of stress
σr, σθ and σz over the inclusion (domain) Ω

σ̄r =
1

VΩ

∫
Ω
σrdV ,

σ̄θ =
1

VΩ

∫
Ω
σθdV ,

σ̄z =
1

VΩ

∫
Ω
σzdV .

(25)

By substituting Eqs. (A6), (A11) and (A14) into
Eq. (25), we obtain

σ̄r + σ̄θ =
2

1 − v
H

(LM

R
,

t
R

)
, σ̄z = 0, (26)

where the expression H(LM/R, t/R) can be found in
Eq. (A16) of Appendix II.

Then the elastic misfit energy Uel can be expressed as

Uel =
2πRtLME

(
ε

p
1

)2

1 − v
· H

(LM

R
,

t
R

)
, (27)

in which H(LM/R, t/R)/(1 − v) serves as the shape factor of
the cylindrical domain.

Based on the above solution of the misfit strain energy
Uel for an arbitrary tube wall-thickness/mean-radius ratio
(ranging from 0 to 2), we perform a similar analysis as that
in Sect. 3 to investigate the stability of domains in thick-
walled tubes. The following demonstrates that the stability
of a cylindrical martensite domain in tube configuration dur-
ing displacement-controlled unloading is indeed governed
by two nondimensional parameters, the tube length/mean-
radius ratio L/R and the wall-thickness/mean-radius ratio
t/R.

The variations of the critical domain length Lc
M and the

corresponding stress jump Δσwith the wall-thickness/mean-
radius ratio t/R are respectively shown in Figs. 9 and 10 for
different tube length/mean-radius ratios L/R in the unload-
ing process. It is seen that the critical martensite volume
Lc

M/R and stress jump Δσ decreases monotonically as t/R
decreases for a relatively large tube length/mean-radius ratio
(i.e., L/R > 20). For a smaller tube length/mean-radius ratio
such as L/R = 10, it can be seen that the variation of Lc

M/R
and Δσ with t/R are non-monotonic with a local minimum
value of Lc

M/R ≈ 0.5 occurring at t/R ≈ 0.5. This could be
evidence of strong interaction among three nondimensional
length scales, the normalized tube length L/R, the normal-
ized wall-thickness t/R and the normalized critical domain
length Lc

M/R. Moreover, for all values of t/R the critical
martensite volume Lc

M/R increases and the stress jump Δσ
decreases as the tube length L/R increases. The limiting
case L/R → ∞ gives the upper bound of the critical marten-
site volume Lc

M/R and the lower bound of the stress jump
(Δσ = 0).
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Fig. 9 Variation of the critical domain length Lc
M with the wall-

thickness/mean-radius ratio t/R

Fig. 10 Variation of the stress jump Δσ with the wall-thick-
ness/mean-radius ratio t/R

In summary, the effect of the wall-thickness/mean-radius
ratio t/R on the critical domain length Lc

M and corresponding
stress jump Δσ is studied in this section as an extension of
the effect of the tube-length/mean-radius ratio L/R in Sect. 3.
Generally speaking, the critical domain length and corre-
sponding stress jump increase as the wall-thickness/mean-
radius ratio increases for a given tube length/mean-radius ra-
tio.

5 Summary and Conclusions

The nominal stress-strain response of a superelastic NiTi
tubes is one of the most important issues in its applications.
During isothermal quasi-static tensile loading and unloading,
the formation/vanishing of a domain in the tube are instabil-
ity events accompanied by a rapid stress drop/rise. From a
thermodynamic point of view, both domain formation and
vanishing involve the unstable growth/shrinkage of the do-
main once the system reaches its critical state. Under the
displacement-controlled unloading the domain front interac-
tion (among many others factors such as defects, microstruc-
ture, external noise, etc.) plays an important role in the en-
ergetics of the unstable events when the two fronts are close

to each other. In this paper, a quantitative study on domain
vanishing was performed with focus on the domain front in-
teraction in the stable→unstable transition. Starting from
a cylindrical inclusion-matrix system, the energetics of the
system and the stability of the domain were quantified. The
main conclusions of this paper are drawn as follows.

(1) The front interaction of a cylindrical domain in long
tubes depends on three length scales: the domain length,
the mean-radius and the wall-thickness of the tube. The
mean-radius and wall-thickness determine the characteristic
length scale of the necking zone in the deformation of the
tube, while the domain length determines the front interac-
tion which occurs when the domain length becomes compa-
rable to or less than the necking zone length.

(2) During isothermal displacement-controlled unload-
ing, the shrinkage of a cylindrical domain of martensite
phase is stable as long as the domain length is larger than the
critical length. When the domain length is reduced to a crit-
ical length, the domain will become unstable and any small
change in the domain length will lead to rapid domain van-
ishing due to the negative driving force at the domain fronts.
The critical domain length (at the start of unstable domain
vanishing) is determined by the tube length/mean-radius ra-
tio and the wall-thickness/mean-radius ratio. For a given
tube wall-thickness/mean-radius ratio, the longer the tube
length, the longer the critical domain length and the smaller
the stress jump at vanishing. Moreover, for a given tube
length/mean-radius ratio, the critical domain length and cor-
responding stress jump increase as the wall-thickness/mean-
radius ratio increases.

Appendix I

Consider a thin-walled tube with an overall necking de-
formation as shown in Fig. 2a. After section T2 is discon-
nected from the rest of the tube (T1 and T3), section T2

will have a uniform overall stress-free radial necking (see
Fig. 2b). To connect T1, T2 and T3, the shear force Q must
be applied to the disconnected cross-sections (see Fig. 2c).
The shear force results in bending of the tube in small re-
gions near the joint line where they are applied. Let d be the
dimension of such a region (so that its area is of the order
of Rd). Since the deflection w of the tube mid-surface varies
considerably over the distance d, the bending energy per unit
area is of the order of Et3w2/d4. Therefore the total bending
energy (over an area ∼ Rd) is

Ubend ∼ ERt3w2/d3. (A1)

The strain for general mid-surface stretching is ∼ w/R,
and the stretching energy per unit area is of the order of
Etw2/R2. Therefore the total stretching energy (over an area
∼ Rd) due to the shear force Q is

Ustretch ∼ Edtw2/R. (A2)
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Since the bending energy increases and the stretching
energy decreases with decreasing d, it is clear that both en-
ergies must be taken into account in determining the defor-
mation near the line of application of the shear force Q. The
size d of the necking (bending) zone is given in the order of
magnitude by the condition that the sum of these energies is
a minimum, when

d ∼ √Rt. (A3)

The total energy of the system can be expressed as

Uel ∼ Et3/2w2/R1/2. (A4)

Varying this with respect to w and equating the result to
the work done by the shear force Q, we find the deflection
w ∼ Q/(t/R)3/2.

Appendix II

AII 1 Sub-problem 1

In Sub-problem 1, the martensite domain (with constant
eigenstrains εp

r , εp
θ and εp

z ) is subjected to the traction p =
−Eεp

1/ (1 − v) > 0 on its inner and outer surfaces to guar-
antee that there is no radial deflection of the tube. The dis-
placements of the cylindrical tube have the following forms

uI
r = 0, uI

z = Az, for |z| < LM

2
,

uI
r = 0, uI

z =
ALM

2
, for z >

LM

2
,

uI
r = 0, uI

z = −
ALM

2
, for z < −LM

2
,

uI
r = 0, uI

z = −
ALM

2
, for z < −LM

2
,

(A5)

with A = 2vεp
1/ (1 − v) + εp

2.

Accordingly the stresses in the tube are obtained from
Eqs. (19) and (20) as

σI
r = σ

I
θ = −

Eεp
1

1 − v
, σI

z = σ
I
rz = 0, for |z| < LM

2
,

σI
r = σ

I
θ = σ

I
z = σ

I
rz = 0, for |z| > LM

2
.

(A6)

It is easy to check that the displacement in Eq. (A5) sat-
isfies the governing Eq. (21), but it fails to satisfy the lateral
boundary condition (22) for |z| < LM/2. Consider the force
balance, the solution gives

σI
r

∣∣∣
r=R±t/2

= p = − Eεp
1

1 − v
> 0,

σI
rz

∣∣∣
r=R±t/2

= 0, for |z| < LM

2
,

σI
r

∣∣∣
r=R±t/2

= σI
rz

∣∣∣∣
r=R±t/2

= 0, for |z| > LM

2
.

(A7)

AII 2 Sub-problem 2

In Sub-problem 2, the pure elastic tube is subjected to the
distributed pressure p = −Eεp

1/(1 − v) > 0 on its inner and
outer surfaces over |z| < LM/2. The lateral boundary condi-
tion can be expressed as

σII
r

∣∣∣
r=R±t/2

= p, σII
rz

∣∣∣
r=R±t/2

= 0, for |z| < LM

2
,

σII
r

∣∣∣
r=R±t/2

= σII
rz

∣∣∣∣
r=R±t/2

= 0, for |z| > LM

2
.

(A8)

A standard way to solve the axisymmetric elastic prob-
lem is to employ Love’s stress function φ. The stress and
displacement components can be expressed as

σII
r =

∂

∂z

(
v∇2φ − ∂

2φ

∂r2

)
,

σII
θ =

∂

∂z

(
v∇2φ − 1

r
∂φ

∂r

)
,

σII
z =

∂

∂z

[
(2 − v)∇2φ − ∂

2φ

∂r2

]
,

σII
rz =

∂

∂r

[
(1 − v)∇2φ − ∂

2φ

∂z2

]
,

uII
r = −

1 + v
E
∂2φ

∂r∂z
,

uII
z =

1 + v
E

[
2 (1 − v)∇2φ − ∂

2φ

∂z2

]
,

(A9)

where φ satisfies the bi-harmonic equation ∇2∇2φ = 0.

In order to satisfy the bi-harmonic equation, the stress
function is assumed to be

φ = 2pR3
∫ ∞

0

[
− ρ1kr′I1

(
kr′

)
+ ρ2kr′K1

(
kr′

)

+ ρ3kr′I0
(
kr′

)
+ ρ4kr′K0

(
kr′

) ]

× sin
(
kz′

)
sin

(
kL′M

2

)
dk, (A10)

where r′ = r/R, L′M = LM/R and z′ = z/R. I0 (kr′) and
I1 (kr′) are first kind modified Bessel functions of the zero
and the first orders, respectively. K0 (kr′) and K1 (kr′) are
second kind modified Bessel functions of the zero and the
first orders, respectively.

From Eq. (A9), the stress and displacement components
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can be expressed as

σII
rz = 2p

∫ ∞

0
(ρ1M11 + ρ2M12 + ρ3M13 + ρ4M14)

× k3 sin kz′ sin
kL′M

2
dk,

σII
r = 2p

∫ ∞

0
(ρ1M21 + ρ2M22 + ρ3M23 + ρ4M24)

× k3 cos kz′ sin
kL′M

2
dk,

σII
z = 2p

∫ ∞

0
(ρ1M31 + ρ2M32 + ρ3M33 + ρ4M34)

× k3 cos kz′ sin
kL′M

2
dk,

σII
θ = 2p

∫ ∞

0
(ρ1M41 + ρ2M42 + ρ3M43 + ρ4M44)

× k3 cos kz′ sin
kL′M

2
dk,

uII
r =

2 (1 + v) pR
E

∫ ∞

0
(ρ1χ11 + ρ2χ12 + ρ3χ13

+ρ4χ14)k2 cos kz′ sin
kL′M

2
dk,

uII
z =

2 (1 + v) pR
E

∫ ∞

0
(ρ1χ21 + ρ2χ22 + ρ3χ23

+ρ4χ24)k2 sin kz′ sin
kL′M

2
dk,

(A11)

where the expressions of Mi j and χi j are listed as

M11 (kr′) = −kr′I0 (kr′) − 2 (1 − v) I1 (kr′) ,

M12 (kr′) = −kr′K0 (kr′) + 2 (1 − v) K1 (kr′) ,

M13 (kr′) = I1 (kr′) ,

M14 (kr′) = −K1 (kr′) ,

M21 (kr′) = (1 − 2v) I0 (kr′) + kr′I1 (kr′) ,

M22 (kr′) = (1 − 2v) K0 (kr′) − kr′K1 (kr′) ,

M23 (kr′) = −I0 (kr′) +
I1 (kr′)

kr′
,

M24 (kr′) = −K0 (kr′) − K1 (kr′)
kr′

,

M31 (kr′) = − (4 − 2v) I0 (kr′) − kr′I1 (kr′) ,

M32 (kr′) = − (4 − 2v) K0 (kr′) + kr′K1 (kr′) ,

M33 (kr′) = I0 (kr′) , M34 (kr′) = K0 (kr′) ,

M41 (kr′) = (1 − 2v) I0 (kr′) ,

M42 (kr′) = (1 − 2v) K0 (kr′) ,

M43 (kr′) = − I1 (kr′)
kr′

,

M44 (kr′) =
K1 (kr′)

kr′
,

χ11 (kr′) = kr′I0 (kr′) ,

χ12 (kr′) = kr′K0 (kr′) ,

χ13 (kr′) = −I1 (kr′) ,

χ14 (kr′) = K1 (kr′) ,

χ21 (kr′) = −4 (1 − v) I0 (kr′) − kr′I1 (kr′) ,

χ22 (kr′) = −4 (1 − v) K0 (kr′) + kr′K1 (kr′) ,

χ23 (kr′) = I0 (kr′) ,

χ24 (kr′) = K0 (kr′) .

In order to satisfy the lateral boundary condition (AII4),
the unknown functions ρ1, ρ2, ρ3 and ρ4 should be deter-
mined by the following equations (noting t′ = t/R, a′ =
1 − t′/2 and b′ = 1 + t′/2)

ρ1M11 (ka′) + ρ2M12 (ka′) + ρ3M13 (ka′)

+ρ4M14 (ka′) = 0,

ρ1M21 (ka′) + ρ2M22 (ka′) + ρ3M23 (ka′)

+ρ4M24 (ka′) = − 1
πk4
,

ρ1M11 (kb′) + ρ2M12 (kb′) + ρ3M13 (kb′)

+ρ4M14 (kb′) = 0,

ρ1M21 (kb′) + ρ2M22 (kb′) + ρ3M23 (kb′)

+ρ4M24 (kb′) = − 1
πk4
,

(A12)

by using the relation

∫ ∞

0

1
k

cos kz′ sin
kL′M

2
dk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π

2
, for |z′| < L′M

2

0, for |z′| > L′M
2

. (A13)

AII 3 Superposition of two sub-problems

By superposing the solutions of Sub-problems 1 and 2,
we obtain the total displacements and stresses as

ur = uI
r + uII

r , uz = uI
z + uII

z ,

σr = σ
I
r + σ

II
r , σθ = σ

I
θ + σ

II
θ ,

σz = σ
I
z + σ

II
z , σrz = σ

I
rz + σ

II
rz,

(A14)

which satisfy the basic equation (22) and boundary condition
(23) of the original problem.

By substituting Eqs. (A6), (A11) and (A14) into
Eq. (25), we obtain

σ̄r + σ̄θ =
2

1 − v
H

(
L′M, t

′) , σ̄z = 0, (A15)

where

H
(
L′M, t

′) = 1 +
2

L′Mt′

∫ ∞

0
(ρ1G1 + ρ2G2 + ρ3G3 + ρ4G4)
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× sin2 kL′M
2

dk. (A16)

The expressions of Gi in Eq. (A16) are

G1 = 7 (kb′)2 I0 (kb′) − 4vkb′I1 (kb′)
− (ka′)2 I0 (ka′) + 4vka′I1 (ka′) ,

G2 = (kb′)2 K0 (kb′) + 4vkb′K1 (kb′)
− (ka′)2 K0 (ka′) − 4vka′K1 (ka′) ,

G3 = −kb′I1 (kb′) + ka′I1 (ka′) ,
G4 = kb′K1 (kb′) − ka′K1 (ka′) .

(A17)
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