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Abstract In this paper, a minimax design of damped
dynamic vibration absorber for a damped primary system
is investigated to minimize the vibration magnitude peaks.
Moreover, to reduce the sensitivity of the primary system
response to variations of the forcing frequency for a two-
degree-of-freedom system, the primary system should have
two equal resonance magnitude peaks. To meet this re-
quirement, a set of simplified constraint equations includ-
ing distribution characteristics of the resonant frequencies of
the primary system is established for the minimax objective
function. The modified constraint equations have less un-
known variables than those by other authors, which not only
simplifies the computation but also improves the accuracy of
the optimal values. The advantage of the proposed method
is illustrated through numerical simulations.

Keywords Minimax · Optimization · Dynamic vibration
absorber (DVA) · Sensitivity

1 Introduction

The dynamic vibration absorber (DVA) is a widely used pas-
sive vibration device. Classically, an undamped dynamic vi-
bration absorber consists of a mass and a spring attached to a
vibrating body which vibrates harmonically or in a narrow-
band frequency range. A damped vibration absorber consists
of a damper and a spring which are added to the primary
mass on one side and attached to the absorber mass on the
other side. Since Watts and Frahm [1, 2] reported on the first
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use of the dynamic vibration absorber, amount of works have
been completed on the optimization design [3–7] and tuning
of the vibration absorber [8–12].

For a two-degree-of-freedom (2-DOF) system that con-
sists of a primary mass and an absorber mass, as it introduces
two resonant frequencies in the neighborhood of the sup-
pressed frequency and becomes sensitive to variations of the
forcing frequency, a type of optimal design is brought for-
ward. The usual goals pursued in this type of design are the
minimization of vibration amplitudes of both primary and
absorber masses and the reduction in sensitivity of the pri-
mary system response to the forcing frequency change. Den
Hartog [13] did early analytical work with no damping in
the primary system. It is proposed that the most favorable
response curve of the primary mass should have two equal
resonance magnitude peaks which make the primary mass
less sensitive to variations of the forcing frequency.

To obtain two equal resonance magnitude peaks for a
damped primary system, Pennestrı̀ developed a minimax de-
sign of a damped dynamic vibration absorber [14]. He es-
tablished the minimax objective function subject to six con-
straint equations with seven unknown variables. However,
on the one hand, the constraint equations are very compli-
cated so both the computation time and accuracy are affected
to a certain extent. On the other hand, some of the variables
have no obvious physical meaning, the initials of which are
hard to be chosen, such as L and Δ (see also Ref. [6], etc.).
Therefore, in this investigation, a modified minimax design
of damped dynamic vibration absorber for a damped primary
system is presented.

This paper is organized as follows: Section 2 presented
the motion equations of a vibrating system; Section 3 pre-
sented the minimax optimization formulation, where a set
of simplified constraint equations containing three equalities
and one inequality was given; Section 4 presented numerical
examples and comparisons to illustrate effectiveness of the
proposed design.
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2 Motion equations of the vibrating system

For practical systems, there exists damping inevitably. In
most cases, the damping is viscous. Figure 1 shows
a damped primary system with a damped DVA, which
has been studied by Randall, Pennestrı̀ and many oth-
ers [4, 8, 14, 15]. The motion equations of this 2-DOF system
are given by

m1 ẍ1 = b2(ẋ2− ẋ1)+ k2(x2− x1)−b1 ẋ1− k1x1+F sin(ωt), (1)

m2 ẍ2 = b2(ẋ1 − ẋ2) + k2(x1 − x2), (2)

where m1, k1, b1, x1 and m2, k2, b2, x2 are the mass, stiffness,
damping, displacement of the primary mass and the absorber
mass, respectively, F and ω are the amplitude and frequency
of the excitement force.

Fig. 1 Damped vibration absorber system model

When the transient responses have vanished, the har-
monic responses of the two masses are given by the follow-
ing expressions

x1 = X1 sin(ωt + Ψ1), (3)

x2 = X2 sin(ωt + Ψ2). (4)

Substituting Eqs. (3) and (4) into Eqs. (1) and (2), and solv-
ing for X1, X2 yields

X1 =
F
√

(k2 − m2ω2)2 + (b2ω)2

H
, (5)

X2 =
F
√

k2
2 + (b2ω)2

H
, (6)

where

H2 = [k1k2 − ω2(m1k2 + m2k1 + b1b2 + k2m2) + m1m2ω
4]2

+[(m1b2 + b1m2 + m2b2)ω3 − (k1b2 + k2b1)ω]2. (7)

Taking the following normalized variables

ωi =

√
ki

mi
, β =

ω

ω1
,

T =
ω2

ω1
, μ =

m2

m1
,

ξi =
bi

2
√

kimi

, i = 1, 2,

(8)

and substituting these normalized variables into Eqs. (5) and
(6), we obtain the frequency responses for the system as

α =
k1X1

F
=

√
(1 − β2/T 2)2 + 4(ξ2β/T )2

Z
, (9)

γ =
k1Xr

F
=
β2/T 2

Z
, (10)

where α is the normalized maximum displacement of the pri-
mary mass, Xr and γ are the maximum displacement and nor-
malized maximum displacement of the absorber mass rela-
tive to the primary one, respectively, and Z2 is defined as

Z2 =

[
β4

T 2
− β

2

T 2
− β2(1 + μ) − 4ξ1ξ2β2

T
+ 1
]2

+4
[
ξ1β

3

T 2
+
ξ2β

3(1 + μ) − ξ2β
T

− ξ1β
]2
. (11)

3 Minimax optimization formulation

The focus of this section is to formulate the constraint equa-
tions for the optimal design of vibration absorber. A mini-
max objective function subject to three equalities and one in-
equality is given for the spring-mass-damper system to solve
for optimal design parameters.

For a 2-DOF system, the frequency response curve is
characterized by two peak points which correspond to two
maxima αpl, αpr as shown in Fig. 2. It can be seen that
the difference between the two resonance magnitude peaks
is large and the amplitude varies quickly near the suppressed
frequency, namely, the amplitude is sensitive to variations of
the forcing frequency, which should be avoided in practical
applications. Therefore, to minimize the maximum vibration
magnitude of the primary system and reduce meanwhile the
sensitivity of the primary system response to variations of
the forcing frequency near the suppressed frequency, some
constraint conditions must be added to the optimization. Ac-
cording to Den Hartog [13], the most favorable response
curve of the primary system should have the same maximum
amplitudes. Therefore, a constraint equation of αpl = αpr

should be included to constrain the magnitude peaks of the
primary system.
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Fig. 2 Damped system frequency response

In fact, three extreme values including two maximum
values and one minimum value can be found on the α vs. β
curve as shown in Fig. 2. As a result, firstly, we must find
out the two maximum values from the three extreme values,
and then judge whether they have the same value. In order
to effectively seek the two peaks, many additional constraint
conditions have been reported. In Pennestrı̀’s paper [14], he
believed that the optimal curve α had two equal peak values
with minimum distance from a straight line α = L, where L
is initially unknown. So he proposed the following minimax
design for the optimal absorber parameters

min
ξ2,T

max
β
α, (12)

subject to
dα
dβ

∣∣∣∣∣
β=β1

=
dα
dβ

∣∣∣∣∣
β=β2

=
dα
dβ

∣∣∣∣∣
β=β3

= 0,

−α(β1) + L + Δ = 0,

−α(β2) + L − Δ = 0,

−α(β3) + L + Δ = 0,

(13)

where Δ is the maximum deviation of the response curve
from the value α = L and β1, β2 and β3 are the frequency
ratios where such a curve attains a maximum or a minimum.

In this paper, the distribution characteristic of the reso-
nant frequencies of the primary system is utilized to establish
an additional constraint equation for seeking the two peaks.
It is well known that the two resonance magnitude peaks of
the 2-DOF system must bracket the solo amplitude peak of
single-degree-of-freedom (SDOF) system (see Fig. 2), so
the forcing frequency range can be divided into two sections,
with one amplitude peak on each side of the frequency of the
solo amplitude peak

βs =

√
1 − 2ξ2

1, (14)

which is the resonant frequency of the non-dimensional
SDOF system without an absorber mass. Then two reso-
nance magnitude peaks can be obtained, with one amplitude
peak on each side of βs. And αmax is set equal to the larger

of the two peak amplitudes.
According to the reasoning of Randall et al. [4], it

has been assumed that ξ1 and μ are independent parame-
ters, varying respectively. Thus, the remaining parameters
to be optimized are ξ2 and T . Making use of the conditions
required by the arguments above, the optimization problem
proposed in this investigation can be posed as the following
minimax problem

min
ξ2,T

max
β
α, (15)

subject to
dα
dβ

∣∣∣∣∣
β=βi, i=1,2

= 0,

α(β1) = α(β2), β1 < βs < β2,

(16)

where β1 and β2 represent the two resonant frequencies cor-
responding to two resonance magnitude peaks, respectively.

It should be noted that the constraint conditions are
composed of four equations with four unknown variables
(i.e., ξ2, T , β1, β2). The solution of Eq. (15) will be the
set of ξ2 and T which will minimize the maximum αmax with
constraint Eq. (16).

4 Numerical examples and comparison

For the classic system in which ξ1 = 0, a closed form ana-
lytical solution was given by Den Hartog [13]. He reported
the following optimal choice of parameters that assured the
curve α vs. β had two minimum equal peak values

ξ2opt =

√
3μ

8(1 + μ)
, Topt =

1
1 + μ

. (17)

Now for a damped primary system, we use numerical simu-
lation to find the optimal absorber parameters and illustrate
the formulations proposed in Sect. 3. In the simulation pro-
cedure, the Optimization package in Matlab is used. Con-
sider a linear damped primary system with the following
characteristics: m1 = 100 kg, ω1 = 100 rad/s [8]. It is as-
sumed that ξ1 and μ are in the range of 0 ≤ ξ1 ≤ 0.4 and
0 ≤ μ ≤ 0.4 [4].

First, as a comparison and a reference, the uncon-
strained αmax surface is presented in Fig. 3 with varying ξ2
and T at ξ1 = 0.1, μ = 0.1, from which it can be seen that
the optimal parameters are those lead to the bottom on the
curved surface. Then, the function maxα is solved under
constraint Eq. (16), and a series of solution sets of ξ2 and T
that form a shaded area in Fig. 4 are obtained.

As can be seen in Fig. 4, the optimal choice of param-
eters ξ2 and T , which minimizes the maximum amplitude
of the primary system and meanwhile reduces sensitivity of
the primary system response to the forcing frequency change
near the suppressed frequency, is the solution set with the
minimum of αmax. In Fig. 4, the optimal set of ξ2opt, Topt is
marked as

ξ2opt = 0.197 3, Topt = 0.862 0, αmax = 2.622 5.
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It should be noticed that the optimal set of ξ2opt, Topt in Fig. 3
is

ξ2opt = 0.21, Topt = 0.86, αmax = 2.63.

The difference between the two optimal sets of ξ2opt, Topt in
Figs. 3 and 4 is due to the computation accuracy. In Fig. 3,
the steps of ξ2, T are both 0.05 , whereas in Fig. 4, the steps
of ξ2, T are both 10−4 to obtain the accurate result. As a
matter of fact, if the steps of ξ2, T in Fig. 3 are 10−4, the
minimum of αmax will be equal to that given in Fig. 4, which
indicates that, there is no loss in the reduction of the response
amplitude when the condition of the optimal design is met.

Fig. 3 Unconstrained αmax surface with varying ξ2 and T for
ξ1 = 0.1, μ = 0.1

Fig. 4 Constrained αmax surface with varying ξ2 and T for ξ1 = 0.1,
μ = 0.1

Similarly, by changing ξ1 and μ, the curves of ξ2opt, Topt

are obtained as shown in Figs. 5 and 6, respectively. From
Figs. 5 and 6 it can be concluded that, Topt decreases mono-
tonically with increasing ξ1 and μ, whereas ξ2opt increases
monotonically with increasing ξ1 and μ. When ξ1 is small,
αmax and γmax are both strongly dependent on μ, but when
ξ1 grows, they both become less sensitive to μ as shown in

Figs. 7 and 8. As a matter of fact, when ξ1 ≥ 0.4, they vary
little whatever μ is. This phenomenon is of great importance
to the design of the vibration absorber.

Fig. 5 Optimal T for prescribed ξ1 and μ

Fig. 6 Optimal ξ2 for prescribed ξ1 and μ

Fig. 7 Optimal αmax for prescribed ξ1 and μ
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Fig. 8 Optimal γmax for prescribed ξ1 and μ

The curves of α vs. β and γ vs. β at ξ2opt, Topt for
ξ1 = 0.1 are shown in Figs. 9 and 10. From Fig. 9 it
can be seen that the primary system response curves have
two equal resonance magnitude peaks, which satisfies the re-
quirement of the system’s low sensitivity to the forcing fre-
quency change. Also it can be confirmed that the two peaks
distribute on both sides of βs, with one peak on each side of
βs. Moreover it can be seen clearly from Figs. 9 and 10 that
both αmax and γmax decrease with increasing mass ratio μ.

Fig. 9 α vs. β at ξ2opt, Topt for ξ1 = 0.1

Fig. 10 γ vs. β at ξ2opt, Topt for ξ1 = 0.1

A comparison of the optimal design parameters ob-
tained with the proposed formulations and those from other
researchers is reported in Table 1. Notice that the reported
αmax, γmax do not exactly match those presented in related
papers as a result of different computation accuracy. In
Brown’s paper [15], he believed that the working frequency
range in real life is actually a narrow band, and limited the
forcing frequency range to achieve a relatively accurate so-
lution. In this investigation, the forcing frequency range is
not limited and a more accurate solution is obtained through
our formulations which prove to be well-performed.

Table 1 Optimal results given by different authors
(ξ1 = 0.1, μ = 0.1)

Authors Topt ξ2opt αmax γmax

Den Hartog [13] 0.909 0.185 2.899 4 6.624 1

Randall [4] 0.861 0.204 2.627 1 6.157 9

Pennestrı̀ [14] 0.861 0.202 2.627 2 6.188 3

Brown [15] 0.862 0.199 2.622 7 6.248 8

This paper 0.862 0.197 2.622 5 6.272 7

To further advance the understanding of our simplified
formulations, the main indexes in two different methods are
listed in Table 2. Without loss of generality, ξ2, T are defined
in the range of 0.19 ≤ ξ2 ≤ 0.21 and 0.86 ≤ T ≤ 0.87, and
the steps size of ξ2, T are both 10−4. It is shown that the nu-
merical simulation by our method saves CPU time compared
to Pennestrı̀’s method (Intel Core 2 CPU, 2.13G Hz).

Table 2 Comparison of main indexes in two different methods (ξ1 = 0.1, μ = 0.1)

ξ2 ∈ [0.19, 0.21]

T ∈ [0.86, 0.87]

step size : 10−4

Authors Number of constraint equations Number of unknown variables Optimal value CPU time

Pennestrı̀ [14] 6 7
Topt = 0.861

ξ2 = 0.202
568.7 s

This paper 4 4
Topt = 0.862

ξ2 = 0.197
409.5 s
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Moreover, for ξ1 = 0.1, μ = 0.1, the curves of α vs. β
and γ vs. β at optimal parameters obtained in three differ-
ent investigations are illustrated in Fig. 11. From Fig. 11 it
can be seen that the curves match well. For other parameters
such as ξ1 = 0, μ = 0.2, a little superiority can be observed
from the results by our formulations as shown in Fig. 12.

Fig. 11 Optimal αmax, γmax for ξ1 = 0.1, μ = 0.1

Fig. 12 Optimal αmax, γmax for ξ1 = 0, μ = 0.2

5 Conclusions

In this investigation, a minimax problem formulation is pre-
sented for the design of vibration absorber. A set of simpli-
fied constraint equations is given. The distribution charac-

teristic of the resonant frequencies of the primary system is
utilized to establish the constraint equations for the minimax
objective function, which has obvious physical meaning and
helps to simplify the constraint equations. Most importantly,
the comparisons with the results by other authors show good
agreement, and the results by our formulations show a little
superiority for some parameters. These comparisons show
that the minimax formulation and the simplified constraint
equations work effectively.

References

1 Watts, P.: On a method of reducing the rolling of ships at sea.
Tran. Institut. Naval Arch. 24, 165–190 (1883)

2 Frahm, H.: Device for damping vibrations of bodies. U.S.
Patent No. 989958 (1909)

3 Snowdon. J.C.: Vibration and Shock in Damped Mechanical
Systems. Wiley, New York (1968)

4 Randall, S.E.: Optimum vibration absorbers for linear damped
systems. J. Mech. Design 103, 908–913 (1981)

5 Zuo, L., Nayfeh, S.A.: Minimax optimization of multi-degree-
of-freedom tuned-mass dampers. J. S. Vib. 272, 893–908
(2004)

6 Fortgang, J., Sinhose W.: Design of vibration absorbers for
step motion and step disturbances. Tran. ASME 127, 160–163
(2005)

7 Liu, K., Coppola, G.: Optimal design of damped dynamic vi-
bration absorber for damped primary systems. Tran. Can. Soc.
Mech. Eng. 34, 119–135 (2010)

8 Liu, K., Liu, J.: The damped dynamic vibration absorbers: re-
visited and new result. J. S. Vib. 284, 1181–1189 (2005)

9 Zuo, L., Nayfeh, S.A.: The two-degree-of-freedom tuned-mass
damper for suppression of single-mode vibration under random
and harmonic excitation. Tran. ASME 128, 56–65 (2006)

10 Ghosh, A., Basu, B.: A closed-form optimal tuning criterion
for TMD in damped structures. Struct. Control Health Moni-
tor. 14, 681–692 (2007)

11 Wong, W.O., Cheung, Y.: Optimal design of a damped dynamic
vibration absorber for vibration control of structure excited by
ground motion. Eng. Struct. 30, 41–46 (2008)

12 Viana, F.A.C., Kotinda, D.A., Rade, V., et al.: Tuning dynamic
absorbers by ant colony Optimization. Comput. Struct. 86,
1539–1549 (2008)

13 Hartog, D.: Mechanical Vibrations. McGraw-Hill, New York
(1934)

14 Pennestrı̀, E.: An application of Chebyshev’s min-max crite-
rion to the optimal design of a damped dynamic vibration ab-
sorber. J. S. Vib. 217, 757–765 (1998)

15 Brown, B., Singh, T.: Minimax design of vibration absorbers
for linear damped systems. J. S. Vib. 330, 2437–2448 (2010)


