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Abstract In the present paper, we have considered the
steady fully developed laminar natural convective flow in
open ended vertical concentric annuli in the presence of a ra-
dial magnetic field. The induced magnetic field produced by
the motion of an electrically conducting fluid is taken into
account. The transport equations concerned with the con-
sidered model are first recast in the non-dimensional form
and then unified analytical solutions for the velocity, induced
magnetic field and temperature field are obtained for the
cases of isothermal and constant heat flux on the inner cylin-
der of concentric annuli. The effects of the various phys-
ical parameters appearing into the model are demonstrated
through graphs and tables. It is found that the magnitude
of maximum value of the fluid velocity as well as induced
magnetic field is greater in the case of isothermal condition
compared with the constant heat flux case when the gap be-
tween the cylinders is less or equal to 1.70 times the radius
of inner cylinder, while reverse trend occurs when the gap
between the cylinders is greater than 1.71 times the radius
of inner cylinder. These fields are almost the same when the
gap between the cylinders is equal to 1.71 times the radius
of inner cylinder for both the cases. It is also found that
as the Hartmann number increases, there is a flattening ten-
dency for both the velocity and the induced magnetic field.
The influence of the induced magnetic field is to increase the
velocity profiles.
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Nomenclature

a Radius of inner cylinder (m)
b Radius of outer cylinder (m)
g Acceleration due to gravity (m/s2)
H′z′ Induced magnetic field in z′-direction (A/m)
H Non-dimensional induced magnetic field in

z-direction
Jθ Induced current density (A/m2)
M Hartmann number
q′ Heat flux (W/m2)
r′, θ′, z′ Cylindrical coordinates (m), (◦), (m)
r Non-dimensional radial distance
T ′f Ambient temperature (K)

T ′w Temperature at outer surface of inner cylin-
der (at r′ = a), (K)

T Temperature of the fluid in non-dimensional
form (K)

u Fluid velocity in non-dimensional form
along axial direction (m/s)

u′ Velocity of fluid along axial direction (m/s)
U Characteristics velocity of fluid (m/s)

Greek symbols

β Coefficient of thermal expansion
μe Magnetic permeability (H/m)
η Magnetic diffusivity
ϑ Kinematic viscosity of the fluid (m2/s)
ρ Density of fluid (kg/m3)
λ Ratio of outer radius and inner radius, b/a
σ Conductivity of fluid (A2S−3/kgm3)

Subscript

1 Value at inner cylinder
λ Value at outer cylinder
θ Along θ-direction
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1 Introduction

The annular geometry is widely employed in the analysis and
design of heat exchangers. The study of transport phenom-
ena in the context of annular geometry is gaining more at-
tention from researchers because of its wide range of appli-
cations in the engineering as well as in the geophysics, such
as the optimization of solidification processes of metals and
metal alloys, the study of geothermal sources, the treatment
of nuclear fuel debris, the control of underground spreading
of chemical wastes and pollutants and the design of mag-
netohydrodynamic power generators. Ramamoorthy [1] has
compared the classical hydrodynamic velocity with the mag-
netohydrodynamic velocity between two rotating co-axial
cylinders in the presence of a radial magnetic field by ne-
glecting the induced magnetic field. Later on, Arora and
Gupta [2] have extended the same problem by taking into
account the induced magnetic field.

Shaarawi and Sarhan [3] have studied the fully devel-
oped free convective flow in vertical annuli by considering
isothermal heating or cooling of the inner cylinder and adi-
abatic condition on outer cylinder. Joshi [4] has investi-
gated the fully developed free convective flow in vertical an-
nuli with two isothermal boundaries. Further, Shaarawi and
Nimb [5] have studied the effects of four fundamental bound-
ary conditions by obtaining and comparing the correspond-
ing fundamental solutions. These boundary conditions are
obtained by combining each of the two conditions of having
one boundary maintained at uniform heat flux or at uniform
wall temperature with each of the conditions while the op-
posite boundary is kept isothermal at the inlet fluid temper-
ature or adiabatic. Lee and Kuo [6] have discussed the lam-
inar flow in annuli ducts imposed by constant wall tempera-
ture at the boundaries. Mahmud and Fraser [7] have focused
on irreversibility characteristics in terms of entropy genera-
tion in fluid flow and heat transfer inside cylindrical annuli.
Leong and Lai [8] have examined analytical solutions ob-
tained through perturbation method and Fourier transform
for the natural convection in concentric cylinders with a
porous sleeve. Shaija and Narasimhan [9] have numerically
investigated the coupled action of conduction, natural con-
vection and surface radiation inside a horizontal annulus.
Nada et al. [10] have investigated heat transfer characteristics
of natural convective flow in the annulus between horizontal
concentric cylinders using different types of nanofluids.

Jha [11] has analytically studied the natural convective
flow along a vertical infinite plate under a constant mag-
netic field. Singh et al. [12] have studied the effect of mixed
kind of thermal boundary conditions on the free convective
flow of an electrically conducting fluid in annuli under the
presence of a radial magnetic field. Several solutions in the
case of hydromagnetic free-convective flows were obtained
by Chandran et al. [13–16] and Singh et al. [17], by con-
sidering different physical situations of flow formation. Bar-
letta et al. [18] have analyzed the combined forced and free
flow of an electrically conducting fluid in vertical annular

porous medium surrounding a straight cylindrical electric ca-
ble. Singh and Singh [19] have presented solutions for mixed
convective flow between two vertical walls.

The above studies on hydromagnetic free convective
heat and mass transfer phenomena have been limited to the
cases in which the induced magnetic field is neglected. This
is because the mathematical descriptions as well as solution
of such problems involve some less effort. The aim of the
present paper is to perform a study of free convective flow of
an electrically conducting fluid in vertical annular geometry
in the presence of a radial magnetic field when the induced
magnetic field is taken into account. Such type of field can
be realized in the case of a motor or a loudspeaker. The uni-
fied solutions for the velocity, induced magnetic field, skin-
friction and induced current density in non-dimensional form
have been obtained using the mixed type of thermal condi-
tions on the inner cylinder. Furthermore in order to resolve
the singularity at M = 2, additional solutions have been
given for this case. Finally, the influence of various parame-
ters has been shown by graphs and tables.

2 Mathematical analysis

We have considered here steady laminar fully developed free
convective flow of an electrically conducting fluid in the ver-
tical concentric annulus of infinite length. The axis of the
co-axial cylinders is taken as z′-axis and r′ denotes the radial
direction measured outward from the axis of cylinder. The
radius of inner and outer cylinders is taken as a and b, respec-
tively. Also the applied magnetic field is directed radially
outward and is of the form aH′0/r

′. In the present physical
situation the inner cylinder is heated or cooled either isother-
mally or at a constant heat flux so that its temperature (i.e.
temperature of outer surface of the inner cylinder) is differ-
ent from the ambient temperature T ′f . As the flow is fully de-
veloped and cylinders are of infinite length, the variables de-
scribing the flow formation depends only on the co-ordinate
r′ and as a result the velocity and magnetic fields are given
by [(0, 0, u′(r′)] and [aH′0/r

′, 0,H′z′(r
′)], respectively. Thus

under the usual Boussinesq approximation, the basic trans-
port equations [12, 20] for the considered model are obtained
as follows

ϑ

(
d2u′

dr′2
+

1
r′

du′

dr′

)
+ gβ

(
T ′ − T ′f

)
+

aμeH′0
ρr′

dH′z′
dr′
= 0, (1)

η

⎛⎜⎜⎜⎜⎝d2H′z′
dr′2

+
dH′z′
dr′

⎞⎟⎟⎟⎟⎠ + aH′0
r′

du′

dr′
= 0, (2)

d2T ′

dr′2
+

1
r′

dT ′

dr′
= 0. (3)

The boundary conditions for the velocity, induced magnetic
field and temperature field are

u′ = H′z′ = 0, T ′ = T ′w or
dT ′

dr′
= −q′/k, at r′ = a,

u′ = H′z′ = 0, T ′ = T ′f , at r′ = b.
(4)
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In the above equations, u′ is the velocity of fluid, g is the ac-
celeration due to gravity, μ is the coefficient of viscosity, μe

is the magnetic permeability, T ′ is the temperature of fluid
and β is the coefficient of volume expansion.

If we introduce the non-dimensional variables

u = u′/U, r = r′/a, λ = b/a, T =
(
T ′ − T ′∞

)
/ΔT,

H = H′z′/aσμeH′0U,
(5)

where ΔT is T ′w − T ′f or aq′/k according as inner cylinder is
maintained at constant temperature T ′w or constant heat flux
q′, the governing equations in the non-dimensional form are
obtained as follows

d2u
dr2
+

1
r

du
dr
+

M2

r
dH
dr
+ T = 0, (6)

d2H
dr2
+

1
r

dH
dr
+

1
r

du
dr
= 0, (7)

d2T
dr2
+

1
r

dT
dr
= 0. (8)

The corresponding boundary conditions for the velocity, in-
duced magnetic field and temperature field in dimensionless
form are obtained as

u = H = 0, T = 1 or
dT
dr
= −1, at r = 1,

u = H = 0, T = 1, at r = λ.
(9)

Additional non-dimensional physical parameters appearing
in the above equations are the Hartmann number M and char-
acteristic velocity U of the fluid defined by

M = μeaH′0
√
σ/μ,

U = gβa2ΔT/ϑ.
(10)

A unified solution for both the cases can be obtained by
combining both conditions for the temperature field at the in-
ner cylinder. By doing so, a combined condition is obtained
as

A
dT
dr
+ BT = C, at r = 1, (11)

in which by assigning suitable values to A, B and C the de-
sired case can be obtained. The solutions of Eqs. (6)–(8)
subject to their appropriate boundary conditions (9) and (11)
are derived as follows

u = E1rM + E2r−M + E3 +
(
D2 lg r + D3

)
r2, (12)

H = E4 + E5 lg r −
(
E1rM − E2r−M

)
/M

+
[
D2

(
1 − 2 lg r

) − 2D3
]

r2/4, (13)

T =
C
D1

lg (r/λ) . (14)

Using Eq. (12), the skin-frictions indimensionless form
at outer surface of inner cylinder and inner surface of outer
cylinder are given by

τ1 =

(
du
dr

)
r=1

= M (E2 − E1) + D2 + 2D3, (15)

τλ = −
(
du
dr

)
r=λ

= M
(
E2λ

−(M+1) − E1λ
M−1

)
−[D2

(
1 + 2 lg λ

)
+ 2D3]λ. (16)

The induced current density along θ-direction obtained from
the Maxwell’s equation is given by

Jθ = −dH
dr

= −E5r−1 + E1rM−1 + E2r−(M+1) +
(
D2 lg r + D3

)
r. (17)

Using the expression of the velocity and induced current
density, the mass flux and induced current flux of the fluid
through the annuli are obtained as

Q = 2π
∫ λ

1
rudr

= π{
(
λM+2 − 1

)
E1/(M + 2) +

(
λ2−M − 1

)
E2/(2 − M)

+
(
λ2 − 1

)
E3/2 + [λ4 (

4 lg λ − 1
)
+ 1]D2/16

+
(
λ4 − 1

)
D3/4}, (18)

J =
∫ λ

1
Jθdr

= −E5 lg λ + [E1

(
λM − 1

)
− E2

(
λ−M − 1

)
]/M

− (D2 − 2D3)
(
λ2 − 1

)
/4 + D2λ

2 lg λ/2. (19)

Since the expressions (12) and (13) for the velocity and
induced magnetic field contain the term D2 = 1/[2

(
4 − M2

)
]

and as a result of which we have to separately derive the so-
lution for M = 2.0 in order to resolve the singularity. For
M = 2, we have obtained expressions for the velocity and
induced magnetic field separately and they are as follows

u = F1r2 + F2r−2 + F3 +
(
G1 lg r +G2

)
r2 lg r, (20)

H = F2r−2/2 + F4 + F5 lg r

+[G9 +
(
G10 +G11 lg r

)
lg r]r2. (21)

By using the expression (20), the skin-friction at the cylin-
drical walls is obtained as

τ1 = 2 (F1 − F2) +G2, (22)

τλ = 2
(
F1λ − F2λ

−3
)
+ 2 (G1 +G2) λ lg λ

+2G1λ(lg λ)
2 +G2λ. (23)

The induced current density along θ-direction is derived as

Jθ = −[F2r−3 + F5r−1 + 2G9r +G10r
(
2 lg r + 1

)
+2G11r lg r

(
lg r + 1

)
]. (24)
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Further, the flux of fluid and induced current flux are ob-
tained as follows

Q = 2π
{ (
λ4 − 1

)
F1/4 + lg λF2 +

(
λ2 − 1

)
F3/2

+G1

[
λ4 lg2 λ − λ4 lg λ/2 +

(
λ4 − 1

)
/8

]
/4

+G2

[
λ4

(
lg λ −

(
λ4 − 1

)
/4

]
/4

}
, (25)

J = −
{ (
λ−2 − 1

)
F2/2 + F5 lg λ +

[
G9

(
λ2 − 1

)
+

(
G10 +G11 lg λ

)
λ2 lg λ

]}
. (26)

The constants D1, D2, · · · , D5; E1, E2, · · · , E5; F1, F2, F3

and G1, G2, · · · , G11 appearing in the above equations are
defined in the appendix.

3 Results and discussion

Singh et al. [12] have found that the temperature was higher
in the case of isothermal condition than that in the constant
heat flux case when the gap between the cylinders is less
or equal to the radius of inner cylinder (λ � 2) while re-
verse phenomenon occurs when the gap is greater than the
radius of inner cylinder (λ > 2). In light of these results,
we concluded that there must exist a critical value of λ at
which the temperature profiles will be the same for both the
cases of thermal heating. Through numerical computations
of Eq. (14), we have obtained that the temperature profiles
are almost the same for both the cases of thermal heating
when the critical value of λ = 2.71 (or gap ratio 1.71).

The outcomes from the numerical computations of ana-
lytical solutions are illustrated via figures and tables in order
to analyze the behavior of the physical parameters on trans-
port processes resulting from natural convection between co-
axial cylinders. The velocities of the fluid for isothermal and
constant heat flux cases are shown in Figs. 1, 2 and 3 for
various values of the Hartmann number. It can be seen from
Figs. 1 and 3 that the magnitude of maximum value of the
velocity profile is higher in the case of isothermal condition
than the case of constant heat flux when the radius of outer
cylinder is less than 2.71 times the radius of inner cylinder
(λ < 2.71) while reverse phenomena occur when λ > 2.71.
Again, it is also clear from Fig. 2 that the velocity profiles
for λ = 2.71 are approximately the same for both cases of
thermal conditions imposed on the inner cylinder. This type
of flow formation is expected as it arises from the temper-
ature difference between the coaxial cylinders as explained
earlier.

Further, the effect of Hartmann number is to decrease
the velocity field for all range of λ (Figs. 1–3).We can also
observed that the velocity profiles are becoming flatter in the
middle region and sharper near the surface of the cylinder
with increasing in value of the Hartmann number. For large
values of Hartmann number, the fluid moves like a block,
showing some sort of rigidity. It indicates that in the electri-
cally conducting fluids strong magnetic field brings rigidity
into the fluid flow.

Fig. 1 Velocity profiles when λ < 2.71

Fig. 2 Velocity profiles when λ = 2.71

Fig. 3 Velocity profiles when λ > 2.71

In Figs. 4–6, we have shown the effect of magnetic
field on the induced magnetic field for the cases when
λ ↔ 2.71, respectively. We can see that in the region
near the inner cylinder, the induced magnetic field is of
parabolic type in upward direction and in the region near
the outer cylinder, the induced magnetic field is also of
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parabolic type but in opposite direction. A conclusive
result from Figs. 4 and 6 is that when the gap between
the cylinders is less than 1.71 times the radius on inner
cylinder, the magnitude of induced magnetic field is large
for the case of isothermal heating of the inner cylinder
compared with the case of constant heat flux, while the
situation is reversed when the gap between the cylinders

Fig. 4 Behavior of the induced magnetic field when λ < 2.71

Fig. 5 Behavior of the induced magnetic field when λ = 2.71

Fig. 6 Behavior of the induced magnetic field when λ > 2.71

is greater than 1.71 times the radius of inner cylinder. Like
the velocity field shown in Fig. 2, Fig. 5 also show that the
induced magnetic field is the same for both types of thermal
conditions when λ = 2.71.

We can also observe form these figures that the mag-
nitude of maximum value of the induced magnetic field
decreases as the Hartmann number increases and as a re-
sult the shape of the induced magnetic profile changes from
parabolic to platykurtic type.

Figures 7–9 show the effect of Hartmann number on
variation of the induced current density for three different
values of λ ( = 2.0, 2.71 and 4.0). It may be noted that the
maximum value of positive induced current density occurs
in the middle region of the flow. On the other hand, the max-
imum negative induced current density occurs on the surface
of the cylinders. Further, we can observe that the effect of
Hartmann number is to decrease both the positive induced
current density in the middle region and the negative induced
current density in the region near the cylinders. As expected,
the effect of thermal boundary conditions on the induced cur-
rent density depends on the gap between the cylinders just
like the velocity and induced magnetic field. We can con-
clude from Figs. 7 and 9 that when the gap between the
cylinders is less than 1.71 times the radius of inner cylinder,
the magnitude of induced current density is higher for the
case of isothermal heating on the inner cylinder than that in
the case of constant heat flux, while the situation is reversed
when the gap between the cylinders is greater than 1.71 times
the radius of inner cylinder. Figure 8 shows that the induced
current density is also the same as the velocity field for both
thermal conditions when λ = 2.71. The magnitude of surface
current density is greater on the inner cylinder compared to
the outer cylinder for all the cases of fluid motion considered
here.

In the Figs. 10–13, we have shown the effect of induced
magnetic field by comparing the behavior of velocity profiles
for both thermal conditions, (1) when the induced magnetic
field is taken into account and (2) when the induced magnetic
field is neglected [12].

Fig. 7 Behavior of the induced current density when λ = 2
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Fig. 8 Behavior of the induced current density when λ = 2.71

Fig. 9 Behavior of the induced current density when λ = 4

Fig. 10 Velocity profiles for the isothermal case when λ = 2.0

These figures show that for the same Hartmann number,
the velocity profiles with considering the induced magnetic
field taken into account are increased compared to the case
of neglecting the induced magnetic field for both types of
thermal boundary conditions.

Fig. 11 Velocity profiles for the constant heat flux case when
λ = 2.0

Fig. 12 Velocity profiles for the isothermal case when λ = 4.0

Fig. 13 Velocity profiles for the constant heat flux case when
λ = 4.0

The numerical values of skin-friction τ1 (at the outer sur-
face of inner cylinder) and τλ (at the inner surface of outer
cylinder) are given in Table 1. From this table, we can ob-
serve clearly that the ratio of radii of outer to inner cylinders
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has great impact upon the skin-friction. From the compar-
ative study of the numerical values of skin-friction for the
cases of isothermal and constant heat flux, we can conclude
that when the gap between cylinders is less or equal to 1.71
times the radius of inner cylinder (λ = 2.71, then τ1 and τλ
are more for isothermal heating of the inner cylinder than
those in the constant heat flux case while the situation is re-
versed when the gap between cylinders is greater than 1.71

times the radius of inner cylinder. Further, the influence of
increasing the gap between inner and outer cylinder (λ) on
τ1 and τλ is to increase them. The applied magnetic field has
a tendency to decrease the skin-friction at outer surface of
the inner cylinder while to increase the skin-friction at inner
surface of the outer cylinder when λ < 4 and the behavior of
skin-friction is reversed for λ = 4.

Table 1 Numerical values of skin-friction for isothermal and constant heat flux cases

λ M
τ1 τ1 τλ τλ

(Iso. temp.) (C. h. f.) (Iso. temp.) (C. h. f.)

1.8 0.5 0.270 16 0.158 80 0.101 42 0.059 62

1.0 0.269 98 0.158 69 0.101 52 0.059 67

1.5 0.269 69 0.158 52 0.101 69 0.059 77

2.0 0.269 29 0.158 29 0.101 91 0.059 90

2.0 0.5 0.339 59 0.235 39 0.121 22 0.084 02

1.0 0.339 32 0.235 20 0.121 35 0.084 11

1.5 0.338 89 0.234 90 0.121 56 0.084 26

2.0 0.338 31 0.234 50 0.121 86 0.084 47

3.0 0.5 0.701 85 0.771 06 0.206 21 0.226 55

1.0 0.701 54 0.770 72 0.206 31 0.226 66

1.5 0.701 04 0.770 18 0.206 48 0.226 84

2.0 0.700 40 0.769 47 0.206 69 0.227 08

4.0 0.5 1.091 11 1.512 60 0.278 49 0.386 06

1.0 1.092 54 1.514 58 0.278 13 0.385 57

1.5 1.094 70 1.517 57 0.277 59 0.384 82

2.0 1.097 32 1.521 21 0.276 93 0.383 91

The numerical values of Q (mass flow rate) and induced
current flux through the annulus region for both types of ther-

mal conditions at the outer surface of the inner cylinder are
given in Table 2.

Table 2 Numerical values of fluid fluxand induced current flux for isothermal and constant heat flux cases

λ M
Q Q J/10−16 J/10−16

(Iso. temp.) (C.h.f.) (Iso. temp.) (C.h.f.)

1.8 0.5 0.159 43 0.093 71 8.82 –1.11

1.0 0.158 74 0.093 31 2.22 1.66

1.5 0.157 61 0.092 64 –13.2 –4.44

2.0 0.156 10 0.091 74 –0.208 0

2.0 0.5 0.323 75 0.224 41 1.11 –4.41

1.0 0.321 81 0.223 06 –2.22 4.99

1.5 0.318 65 0.220 87 15.5 7.77

2.0 0.314 37 0.217 90 –27.7 0.116

3.0 0.5 3.075 01 3.378 25 –4.41 –15.5

1.0 3.029 72 3.328 49 –2.22 –2.22

1.5 2.958 30 3.250 03 –17.7 17.7
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Table 2 Numerical values of fluid fluxand induced current flux for isothermal and constant heat flux cases (continued)

λ M
Q Q J/10−16 J/10−16

(Iso. temp.) (C.h.f.) (Iso. temp.) (C.h.f.)

2.0 2.865 98 3.148 60 0.555 0

4.0 0.5 11.960 7 16.581 1 13.3 0

1.0 11.686 8 16.201 3 0 4.44

1.5 11.267 9 15.620 6 8.88 26.6

2.0 10.748 4 14.900 5 –3.33 –2.22

As expected, the Hartmann number always tends to re-
duce the mass flux of fluid Q for both types of thermal condi-
tions. The increase in the values of Hartmann number yields
oscillatory nature in the induced current flux with decreas-
ing amplitude while the amplitude of induced current flux
increase enhances with increasing gap between the cylinders
for both types of thermal conditions on the inner cylinder. It
can also be observed that the fluid flux is larger in the case
of isothermal condition than that in the constant heat flux
case λ < 2.71 while the reverse phenomenon occurs when
λ > 2.71.

4 Conclusions

We have theoretically investigated the effects of radii ra-
tio parameter and Hartmann number, on the free convective
flow of an electrically conducting fluid generated by impos-
ing mixed type of thermal conditions on the surface of inner
cylinder in the presence of a radial magnetic field with the
induced magnetic field taken into account. It is found that
Hartmann number and the gap between cylinders play im-
portant roles in controlling the behavior of fluid flow. By
a comparative study, it is observed that the effect of the in-
duced magnetic field is to increase the velocity profiles. As
the Hartmann number increases, the magnitude of maximum
value of the velocity has a decreasing tendency, and the ve-
locity tends to take a uniform value in the middle region for
higher values of Hartmann number. This flattening tendency
is also observed in the induced magnetic field and induced
current density. The magnitude of surface current density
is greater on the inner cylinder compared to the outer cylin-
der. In general, skin-friction, mass flux of fluid and induced
current density can be increased by increasing the gap be-
tween the cylinders. The effect of magnetic field on the skin-
friction can be useful in mechanical engineering for model-
ing a system. We can easily obtain a suitable value of Hart-
mann number for which the value of the skin-friction will be
optimum.

Appendix

D1 = A − B lgλ, D2 = −C/[D1(4 − M2)],

D3 = C
[
(12 − M2)/(4 − M2) + 2 lg λ − 1

]
/[2D1(4 − M2)],

D4 =
{
(λ2 − 1)[D2 + 2D3 −C/(4D1)]

+2 lg λ[λ2D2 +C/(4D1)]
}
/M,

D5 = D2λ
2 lg λ + D3(λ2 − 1),

E1 = (D4 + D5)/[2(1 − λM)],

E2 = (−D4 + D5)/[2(1 − λ−M)],

E3 = −E1 − E2 − D3,

E4 = (E1 − E2)/M − (D2 − 2D3)/4,

E5 =
{
(E1λ

M − E2λ
−M)/M

+λ2[D2(2 lg λ − 1) + 2D3]/4 − E4

}
/ lg λ,

G1 = −C/(8D1), G2 = C(1 + 4 lg λ)/(16D1),

G3 = −λ2 lg λ(G1 lg λ +G2),

G4 = −[2G1 +G2 + C/(4D1)],

G5 = −(2G1 + 4G2 − C lg λ/D1)/4,

G6 = (G1 +G4)/2, G7 = [2G5 − (G1 +G4)] /4,

G8 = −λ2 lg λ(G1 lg λ − 2G6) + 2G7(λ2 − 1),

G9 = −(2F1 +G1 −G2)/4, G10 = (G1 −G2)/2,

G11 = −G1/2,

F1 = (G3 +G8)/
[
2(λ2 − 1)

]
,

F2 = (G3 −G8)/
[
2(λ−2 − 1)

]
,

F3 = −(F1 + F2), F4 = −(G9 + F2/2),

F5 = −
[
F4 +G9λ

2 + (G10 +G11 lg λ)λ2 lg λ

+F2/(2λ
2)
]
/ lg λ.
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