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Abstract The unsteady flow of an incompressible fractional
Maxwell fluid between two infinite coaxial cylinders is stud-
ied by means of integral transforms. The motion of the fluid
is due to the inner cylinder that applies a time dependent tor-
sional shear to the fluid. The exact solutions for velocity and
shear stress are presented in series form in terms of some
generalized functions. They can easily be particularized to
give similar solutions for Maxwell and Newtonian fluids. Fi-
nally, the influence of pertinent parameters on the fluid mo-
tion, as well as a comparison between models, is highlighted
by graphical illustrations.

Keywords Maxwell fluid · Fractional derivative · Exact so-
lutions · Velocity field · Shear stress · Laplace and Hankel
transforms

1 Introduction

The motion of a fluid in cylindrical domains has appli-
cations in the food industry, oil exploitation, chemistry
and bio-engineering [1], and the first exact solutions cor-
responding to motions of non-Newtonian fluids in cylin-
drical domains seem to be those of Ting [2] for second
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grade fluids, Srivastava [3] for Maxwell fluids and Waters
and King [4] for Oldroyd-B fluids. In the meantime a lot of
papers regarding such motions have been published. How-
ever, most of them deal with motion problems in which
the velocity field is given on the boundary. To the best of
our knowledge, the first exact solutions for motions of non-
Newtonian fluids due to a circular cylinder that applies a
constant shear stress to the fluid are those of Bandelli and
Rajagopal [5]. These solutions give the velocity field corre-
sponding to the motion of a second grade fluid between two
infinite circular cylinders, the inner one applies a constant
longitudinal or rotational shear stress to the fluid. Other sim-
ilar solutions have also been obtained in Refs. [6–13].

The aim of this note is to extend the results of Ref. [5,
Sect. 5] to a class of rate type fluids. More exactly, our
interest is to find the velocity field and the adequate shear
stress corresponding to the motion of a Maxwell fluid be-
tween two infinite circular cylinders when the inner cylinder
applies a rotational shear stress to the fluid. However, for
generality, we shall develop exact solutions for a larger class
of such fluids, namely Maxwell fluids with fractional deriva-
tive. Recently, the fractional calculus has witnessed much
success in the description of viscoelasticity [14–22]. The in-
terest for viscoelastic fluids with fractional derivatives came
from practical problems. In order to predict the dynamic re-
sponse of viscous dampers, Makris et al. [23] firstly used
conventional models of viscoelasticity. It was not possible
to achieve satisfactory fitting of experimental data over the
entire range of frequencies. However, a very good fitting of
the experimental data was archived when the fractionalized
Maxwell model

τ + λDατ = μDβγ (1)

was used. Here τ and γ are the shear stress and strain, λ
and μ are generalized material constants and Dα is a frac-
tional derivative operator of order α with respect to time.
This model collapses to the conventional Maxwell model
with α = β = 1, in which λ and μ become the relaxation
time and dynamic viscosity, respectively. Based on the fact
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that at vanishingly small strain rates, the behavior of the vis-
coelastic fluid would be reduced to that of a Newtonian fluid,
the parameter β was set equal to unity. The other three pa-
rameters were also determined and the predict mechanical
properties are in excellent agreement with experimental re-
sults.

However, despite these successful results, it must be em-
phasized that a constitutive relation should be expressed in a
three dimensional form such that it is also frame indifferent.
The first objective law which characterizes an incompress-
ible fractional Maxwell fluid seems to be that of Palade et
al. [24, Eq. (16)]. Under linearization, this constitutive rela-
tion is reduced to the fractional integral Maxwell model [24,
Eq. (8)] which is equivalent to Eq. (1). Consequently, if one
wishes to study uni-dimensional behavior only, one could
consider the present model as a qualified candidate. So, in
the following we shall develop exact solutions for velocity
and shear stress corresponding to the unsteady flows of an in-
compressible fractional Maxwell fluid due to an infinite cir-
cular cylinder that applies a time-dependent torsional shear
stress to the fluid. These solutions satisfy all imposed initial
and boundary conditions and can easily be reduced to the
similar solutions for ordinary Maxwell and Newtonian fluids
performing the same motion. Finally, the influence of the
pertinent parameters on the fluid motion as well as compari-
son among models is graphically illustrated. It is found that
the Newtonian fluid is the swiftest and fractional fluid is the
slowest.

2 Statement of the problem

Consider an incompressible fractional Maxwell fluid
(FMF) at rest in the annular region between two infinitely
long co-axial cylinders. At time t = 0+ let the inner cylin-
der of radius R1 be set in rotation about its axis by a time-
dependent torque per unit length 2πR1τ(R1, t) [5], where

τ(R1, t) =
f
λ

Rα,−1

(−1
λ
, t
)
, 0 < α < 1, (2)

f is a constant and the generalized Ra,b(c, t) functions are de-
fined by [25]

Ra,b(c, t) =
∞∑

n=0

cnt(n+1)a−b−1

Γ[(n + 1)a − b]
, Re(a − b) > 0. (3)

Owing to the shear the fluid is gradually moved, its velocity
being of the form of

V = V (r, t) = w(r, t)eθ, (4)

where eθ is the unit vector in the θ-direction of a cylindrical
coordinate system r, θ and z. For such flows the constraint
of incompressibility is automatically satisfied, while the gov-
erning equations (cf. [16, Eqs. (6) and (10)]) are

(1 + λDαt )
∂w(r, t)
∂t

= ν
(
∂2

∂r2 +
1
r
∂

∂r
− 1

r2

)
w(r, t), r ∈ (R1,R2), t > 0, (5)

(1 + λDαt )τ(r, t) = μ
(
∂

∂r
− 1

r

)
w(r, t), r ∈ (R1,R2), t > 0, (6)

where λ is a material constant having the dimension of tα, μ
is the dynamic viscosity, ν = μ/ρ is the kinematic viscosity
(ρ is the constant density of the fluid ), τ(r, t) = S rθ(r, t) is the
non-trivial shear stress, R2 is the radius of the outer cylinder
and Dαt is the Caputo fractional derivative of order α defined
by [26, 27],

Dαt f (t) =
1

Γ(1 − α)

∫ t

0

f ′(τ)
(t − τ)α d τ, 0 < α < 1. (7)

Of course, for α → 1 when Dαt f (t) → d f (t)/dt, Eqs. (5) and
(6) are reduced to the governing equations for an ordinary
Maxwell fluid, the constant λ becoming the relaxation time.

In the following the fractional partial differential equa-
tions (5) and (6), together with the appropriate initial and
boundary conditions

w(r, 0) =
∂w(r, 0)
∂t

= 0 , τ(r, 0) = 0, r ∈ (R1,R2], (8)

and

(1 + λDαt )τ(r, t)
∣∣∣
r=R1

= μ
(
∂

∂r
− 1

r

)
w(r, t)

∣∣∣
r=R1
= f , w(R2, t) = 0, t > 0, (9)

will be solved by means of Laplace and finite Hankel trans-
forms. The expression of τ(R1, t) given by Eq. (2) is just
the solution of the fractional differential equation (9). For
α→ 1, it takes a simple form

τ(R1, t) =
f
λ

R1,−1

(−1
λ
, t
)
= f [1 − e −t/λ], (10)

corresponding to an ordinary Maxwell fluid. Furthermore,
making λ → 0 in Eq. (10) and having Eq. (9) in mind we
obtain the boundary conditions of

τ(R1, t) = μ
(
∂

∂r
− 1

r

)
w(r, t)

∣∣∣∣∣
r=R1

= f , w(R2, t) = 0, t > 0, (11)

corresponding to the motion of a Newtonian fluid due to
a constant couple on the boundary (cf. [5, Eqs. (5.2) and
(5.3)]).

3 The solution of the problem

In order to solve the fractional differential equations (5)
and (6) with initial and boundary conditions (8) and (9) we
shall follow the same line as adopted in Ref. [9]. Apply-
ing the Laplace transform to Eq. (5), and using the Laplace
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transform formula for sequential fractional derivatives [27],
we find that

(q + λqα+1)w(r, q)

= ν
(
∂2

∂r2 +
1
r
∂

∂r
− 1

r2

)
w(r, q), r ∈ (R1,R2), (12)

where the image function w(r, q) = L{w(r, t)} has to satisfy
the conditions

(
∂

∂r
− 1

r

)
w(R1, q) =

f
μq

and w(R2, q) = 0. (13)

In the following we denote by referring to [7, 28]

wH(rn, q) =
∫ R2

R1

rw(r, q)B(r, rn) d r, n = 1, 2, 3, · · · (14)

the finite Hankel transform of w(r, q), where

B(r, rn) = J1(rrn)Y2(R1rn) − J2(R1rn)Y1(rrn), (15)

rn are the positive roots of the transcendental equation
B(R2, r) = 0 while Jp(•) and Yp(•) are Bessel functions of
the first and second kind of order p.

Multiplying both sides of Eq. (12) by rB(r, rn), integrat-
ing with respect to r from R1 to R2 and taking into account
conditions (13) and the identity of

∫ R2

R1

r
[
∂2w(r, q)
∂r2 +

1
r
∂w(r, q)
∂r

− 1
r2 w(r, q)

]
B(r, rn) d r

=
2
πrn

(
∂

∂r
− 1

r

)
w(r, q)

∣∣∣
r=R1
− r2

nwH(rn, q) , (16)

we find that

wH(rn, q) =
2 f
ρπrn

1
q(q + λqα+1 + νr2

n)
. (17)

Now, for a suitable presentation of the final results, we
rewrite Eq. (17) in the following equivalent form

wH(rn, q) =
2 f
μπr3

nq
− 2 f (1 + λqα)
μπr3

n(q + λqα+1 + νr2
n)
, (18)

apply the inverse finite Hankel transform formula [7, 28]

w(r, q) =
π2

2

∞∑
n=1

r2
nJ2

1(R2rn)B(r, rn)

J2
2(R1rn) − J2

1(R2rn)
wH(rn, q), (19)

and use the known result

∫ R2

R1

(r2 − R2
2)B(r, rn) d r =

4
πr3

n

(R2

R1

)2
. (20)

Finally, applying the discrete inverse Laplace transform
method [27] and using the known result [25, Eq. (97)]

L−1
{ qb

(qa − d)c

}
= Ga,b,c(d, t), Re (ac − b) > 0,

Re(q) > 0,
∣∣∣∣∣ dqa

∣∣∣∣∣ < 1,
(21)

where the generalized Ga,b,c(d, t) function is defined by

Ga,b,c(d, t) =
∞∑
j=0

d jΓ(c + j)
Γ(c)Γ( j + 1)

t(c+ j)a−b−1

Γ[(c + j)a − b]
, (22)

we find the velocity field in the form of

w(r, t) =
f

2μ

(R1

R2

)2(
r − R2

2

r

)

− π f
μλ

∞∑
n=1

J2
1(R2rn)B(r, rn)

rn[J2
2(R1rn) − J2

1(R2rn)]

×
∞∑

k=0

(−νr2
n

λ

)k[
Gα,−k−1,k+1

(−1
λ
, t
)

+ λGα,α−k−1,k+1

(−1
λ
, t
)]
. (23)

The corresponding shear stress

τ(r, t) =
f
λ

(R1

r

)2
Rα,−1

(−1
λ
, t
)

+
π f
λ

∞∑
n=1

J2
1(R2rn)B̃(r, rn)

J2
2(R1rn) − J2

1(R2rn)

×
∞∑

k=0

(−νr2
n

λ

)k
Gα,−k−1,k+1

(−1
λ
, t
)
, (24)

where Ra,b(c, t) is defined by Eq. (3) and

B̃(r, rn) = J2(rrn)Y2(R1rn) − J2(R1rn)Y2(rrn), (25)

is obtained in the same way as Eq. (6).

4 Special cases

4.1 Ordinary Maxwell fluid

Making α → 1 into Eqs. (23) and (24), we obtain the
velocity field

wM(r, t) =
f

2μ

(R1

R2

)2(
r − R2

2

r

)

− π f
μλ

∞∑
n=1

J2
1(R2rn)B(r, rn)

rn[J2
2(R1rn) − J2

1(R2rn)]

×
∞∑

k=0

(−νr2
n

λ

)k[
G1,−k−1,k+1

(−1
λ
, t
)

+ λG1,−k,k+1

(−1
λ
, t
)]
, (26)



Unsteady flow of viscoelastic fluid between two cylinders using fractional Maxwell model 277

and the associated shear stress

τM(r, t) = f
(R1

r

)2 [
1 − e −t/λ

]
+
π f
λ

∞∑
n=1

J2
1(R2rn)B̃(r, rn)

J2
2(R1rn) − J2

1(R2rn)

×
∞∑

k=0

(−νr2
n

λ

)k
G1,−k−1,k+1

(−1
λ
, t
)
, (27)

corresponding to an ordinary Maxwell fluid, performing the
same motion. Direct computations show that wM(r, t) and
τM(r, t) satisfy initial conditions (8), boundary conditions
(10) and (9).

4.2 Newtonian fluid

Now letting λ → 0 in Eqs. (26) and (27) and using the
limit

lim
λ→0

1
λη

G1,b,η

(−1
λ
, t
)
=

t−b−1

Γ(−b)
, b < 0,

we obtain the corresponding solutions

wN(r, t) =
f

2μ

(R1

R2

)2(
r − R2

2

r

)

− π f
μ

∞∑
n=1

J2
1(R2rn)B(r, rn)

rn[J2
2(R1rn) − J2

1(R2rn)]
e −νr

2
nt, (28)

τN(r, t) = f
(R1

r

)2
+ π f

∞∑
n=1

J2
1(R2rn)B̃(r, rn)

J2
2(R1rn) − J2

1(R2rn)
e −νr

2
nt, (29)

for a Newtonian fluid. Of course, as expected, Eq. (28), is
identical to that coming from [5, Eq. (5.17)] for α1 = 0.

5 Conclusions

In this note, the velocity w(r, t) and the shear stress τ(r, t)
corresponding to the flow of an incompressible Maxwell
fluid with fractional derivatives, in the annular region be-
tween two infinite coaxial circular cylinders, have been de-
termined using the Laplace and finite Hankel transforms.
The motion is produced by the inner cylinder that, after the
initial moment, is subject to a time dependent couple. The
solutions, that have been obtained, written in series form in
terms of generalized G and R-functions, satisfy all imposed
initial and boundary conditions. In order to verify the bound-
ary condition (9), for instance, we use the known relation

Dαt (ta) =
Γ(a + 1)
Γ(a − α + 1)

ta−α , 0 ≤ α < 1.

In the special cases, when α → 1 or α → 1 and λ → 0, the
corresponding solutions for the ordinary Maxwell and New-
tonian fluids are obtained. Lengthy but straightforward com-
putations show that wM(r, t) and τM(r, t) given by Eqs. (26)
and (27) are equivalent to the limit solutions of (20) and
(21) obtained in Ref. [29] by a different technique. Making
t → ∞ into Eqs. (26)–(29) and bearing in mind the previous
equivalence, we obtain

wM(r,∞) = wN(r,∞) =
f

2μ

(R1

R2

)2(
r − R2

2

r

)
,

τM(r,∞) = τN(r,∞) = f
(R1

r

)2
. (30)

Consequently, the unsteady flow of a Newtonian fluid
induced by a circular cylinder subject to a constant torque,
as well as the flow of a Maxwell fluid induced by the same
circular cylinder subject to a time-dependent torque of the
form of (10), becomes steady. Moreover, the corresponding
steady solutions are the same for both types of fluids. This
is not a surprise, because for t → ∞ the boundary condition
(10), corresponding to Maxwell fluids, tends to that corre-
sponding to Newtonian fluids. On the other hand, the flow of
the fractional fluid is an unsteady flow and remains unsteady.

Now, in order to reveal some relevant physical aspects
of the obtained results, the diagrams of velocity and the
shear stress are drawn against r for different values of time t
and pertinent parameters. Figure 1a shows that the velocity
w(r, t) is an increasing function of t in the neighborhood of
the moving cylinder. The shear stress (in absolute value) is
an increasing function of t on the whole domain. The influ-
ence of the material parameter λ and the fractional parameter
α on the fluid motion is shown in Figs. 2 and 3. The two pa-
rameters have significant influences on the fluid motion, but
their effects are opposite. The velocity of the fluid in the
neighborhood of the moving cylinder and the shear stress on
the whole flow domain are decreasing functions with respect
to λ and increasing ones with regard to α. The influence of
the material parameter λ on the fluid motion near the inner
cylinder seems natural, λ being the relaxation time of the
fluid.

Finally, for comparison, the profiles of the velocity
and the shear stress corresponding to the motion of the
three types of fluids (Newtonian, Maxwell and fractional
Maxwell) are depicted together in Figs. 4 for the same val-
ues of t and material constants. The Newtonian fluid, as it
result from Fig. 4a, is the swiftest, whereas the fractional
Maxwell fluid is the slowest in the neighborhood of inner
cylinder. The shear stress corresponding to Newtonian fluid
is the highest on the whole flow domain. Of course, these
results are in agreement with those resulting from Figs. 2
and 3. The units of the material constants are SI units in
all pictures and the roots rn have been approximated by
(2n − 1)π/[2(R2 − R1)].
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Fig. 1 Profiles of a The velocity w(r, t) and b Shear stress τ(r, t) given by Eqs. (23) and (24) for R1 = 0.3, R2 = 0.5, f = −2, ν = 0.001 188,
μ = 1.05, α = 0.5, λ = 6, and different values of t

Fig. 2 Profiles of a The velocity w(r, t) and b Shear stress τ(r, t) given by Eqs. (23) and (24) for R1 = 0.3, R2 = 0.5, f = −2, ν = 0.001188,
μ = 1.05, α = 0.5, t = 15 s, and different values of λ

Fig. 3 Profiles of a The velocity w(r, t) and b Shear stress τ(r, t) given by Eqs. (23) and (24) for R1 = 0.3, R2 = 0.5, f = −2, ν = 0.001 188,
μ = 1.05, λ = 6, t = 15 s and different values of α
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Fig. 4 Profiles of a The velocity w(r, t) and b Shear stress τ(r, t) for fractional Maxwell, ordinary Maxwell and Newtonian fluids, for
R1 = 0.3, R2 = 0.5, f = −2, ν = 0.001 188, μ = 1.05, α = 0.2, λ = 5 and t = 5 s
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