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Abstract Numerical solution is presented for the two-
dimensional flow of a micropolar fluid between two porous
coaxial disks of different permeability for a range of Reynolds
number Re (−300 ≤ Re < 0) and permeability parameter
A (1.0 ≤ A ≤ 2.0). The main flow is superimposed by
the injection at the surfaces of the two disks. Von Karman’s
similarity transformations are used to reduce the governing
equations of motion to a set of non-linear coupled ordinary
differential equations (ODEs) in dimensionless form. An
algorithm based on the finite difference method is employed
to solve these ODEs and Richardson’s extrapolation is used
to obtain higher order accuracy. The results indicate that the
parameters Re and A have a strong influence on the velocity
and microrotation profiles, shear stresses at the disks and the
position of the viscous/shear layer. The micropolar material
constants c1, c2, c3 have profound effect on microrotation
as compared to their effect on streamwise and axial velocity
profiles. The results of micropolar fluids are compared with
the results for Newtonian fluids.
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1 Introduction

The Navier–Stokes model of classical hydrodynamics is inad-
equate to describe some modern engineering structures which
are often made up of materials possessing an internal struc-
ture. Polycrystalline materials, fluids containing additives
and the materials with fibrous or coarse grain structure fall in
this category. The presence of a small amount of additives in
the fluid significantly lower down the skin friction near a rigid
body and also the frictional drag is reduced by polymer con-
centration [1]. The classical continua fail to accurately pre-
dict the physical nature of asymmetric deformation of these
materials. The theory of micropolar fluids introduced by
Eringen [2,3] is one of the best theories of fluids to describe
the deformation of such materials. Polymeric suspensions,
biological fluids, liquid crystals with rigid molecules, muddy
fluids, and nemotogenic and smectogenic liquid crystals are
some examples of such fluids. Physically these fluids may
represent the fluids consisting of rigid randomly oriented
particles suspended in a viscous medium undergoing both
translational and rotational motion. These fluids can support
stress moments and body couples and are influenced by the
spin inertia. The stress tensor is not symmetric for such flu-
ids. These fluids represent a good mathematical model for
many natural and industrial fluids. The applications of these
fluids are in blood flow, lubricants, porous media, turbulent
shear flows, and flow in capillaries and micro channels.

The problem of disk flows has constituted a major field of
study in fluid mechanics. These flows have applications in
the fields of rotating machinery, computer storage devices,
heat and mass exchangers, viscometry, lubrication, crystal
growth processes, biomechanics and oceanography. Elcrat
[4] proved the theorem of existence and uniqueness for non-
rotational fluid motion between fixed porous disks with arbi-
trary uniform injection or suction. The steady viscous flow
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between two porous disks was studied by Rasmussen [5]. The
fluid motion was symmetrically driven by equal injection or
suction at both the disks. Guar et al. [6] solved the prob-
lem of temperature distribution and heat transfer for laminar
flow through two parallel porous disks with different perme-
ability. The fluid motion was induced due to different injec-
tion/suction velocities at the two disks. The steady flow and
heat transfer of a conducting fluid due to the rotation of an
infinite, non-conducting, porous disk in the presence of an
axial uniform steady magnetic field were studied by Attia [7]
considering the ion slip. The fluid motion was subjected to
the uniform suction or injection through the surface of the
porous disk. The transformed non-linear differential equa-
tions were solved numerically using an algorithm based on
the finite differences.

The steady incompressible flow of a micropolar fluid
between a rotating and a stationary disk was described by
Guram and Anwar [8]. The problem of steady, laminar and
incompressible flow of a micropolar fluid due to a rotating
disk was investigated by Guram and Anwar [9]. The flow
was driven with uniform suction and injection at the sur-
face of the disk. A comparison of the results of micropolar
and Newtonian fluids was also given. The numerical investi-
gations of symmetric flow of micropolar fluid between two
porous coaxial disks were considered by Anwar Kamal et al.
[10]. Ye et al. [11] considered the problem of laminar flow of
micropolar fluids in rectangular microchannels to discuss the
micropolar effects on the velocity and microrotation gyration
using Chebyshev collocation method. A numerical study of
the non-Newtonian behavior of journal bearings lubricated
with micropolar fluid was analyzed by Wang et al. [12] by
considering both thermal and cavitating effects.

In the present work, we consider the two-dimensional
steady, laminar and incompressible flow of a micropolar fluid
between two stationary coaxial porous disks. The two disks
are of different permeability. The flow is asymmetrically
driven by different injection velocities at the two disks. We
neglect the effects of body force and body couple.

2 Basic analysis

For the problem under consideration, the suitable coordinate
system will be the cylindrical polar coordinate system. Con-
sider two stationary porous disks of radii assumed to be infi-
nite, located in the Z = −L and Z = L planes, respectively,
and let the centres of the disks coincide with the axis r = 0 as
shown in Fig. 1. The domain of the problem is thus the semi-
infinite strip in the rz-plane defined by [0,∞) × [−L , L].

The velocity components u and w are taken to be in the
direction of r -axes and z-axes, respectively.

Fluid is injected through the disks at Z = −L and Z = L
with constant velocities V1 and V2, respectively. In order to

Fig. 1 Geometry of porous disks

investigate the influence of different permeabilities of
the porous disks, we define the following permeability
parameter.

A = 1 − V1/V2.

The governing equations of motion for the micropolar fluid
given by Eringen [2] are as follows

∂ρ/∂t + ∇ · (ρV ) = 0, (1)

(λ + 2µ + κ)∇(∇ · V ) − (µ + κ)∇ × ∇ × V

+ κ∇ × υ − ∇π + ρ f = ρV̇ , (2)

(α + β + γ )∇(∇ · υ) − γ (∇ × ∇ × υ)

+ κ∇ × V − 2κυ + ρl = ρ j υ̇, (3)

where V is the fluid velocity vector, υ the microrotation, ρ

the density, π the pressure, f and l are body force and body
couple per unit mass, respectively, j is the microinertia, λ,
µ, α, β, γ , κ are the material constants (or viscosity coef-
ficients) characterizing the microstructure of the micropolar
fluids, where dot signifies material derivative.

For the problem under consideration the velocity and the
microrotation fields have the general form

V = (u(r, z), 0, w(r, z)),
(4)

υ = (0,	(r, z), 0).

Using these field variables in Eqs. (1)–(3), we find

(µ + κ)(∂2u/∂r2 + (1/r)∂u/∂r − u/r2 + ∂2u/∂z2)

− κ∂	/∂z − ∂π/∂r = ρ(u∂u/∂r + w∂u/∂z), (5)

(µ + κ)(∂2w/∂r2 + (1/r)∂w/∂r + ∂2w/∂z2)

+ κ(∂φ/∂r + φ/r)

−∂π/∂z = ρ(u∂w/∂r + w∂w/∂z), (6)

γ (∂2φ/∂r2 + (1/r)∂φ/∂r − φ/r2 + ∂2φ/∂z2)

+ κ(∂u/∂z − ∂w/∂r)

−2κφ = ρ j (u∂φ/∂r + w∂φ/∂z), (7)

∂u/∂r + u/r + ∂w/∂z = 0. (8)
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The boundary conditions on the disks include specification
of the injection velocities (i.e. axial velocity component w),
no slip condition (i.e. zero radial velocity u) and zero micro-
rotation. They may be expressed as

w(r,−L) = 2V1, w(r, L) = 2V2,

u(r,−L) = 0, u(r, L) = 0,

φ(r,−L) = 0, φ(r, L) = 0,

(9)

where V1 and V2 are the uniform injection velocities at the
lower and upper disks, respectively.

We have to solve the Eqs. (5)–(8) subject to the bound-
ary conditions (9). For this we use the following similarity
transformation similar to that of von Karman [13].

u = −r F ′(Z), w = 2F(Z), φ = −rG(Z). (10)

If we substitute Eq. (10) into Eq. (8), we see that the equation
of continuity is identically satisfied and so the velocity com-
ponents represent the possible fluid motion. By substituting
Eq. (10) into Eqs. (5) and (6) we get, after some simplification
and elimination of pressure term, the following equation

(µ + κ)F (iv) − κG ′′ − 2ρF F ′′′ = 0, (11)

where

∂2π/∂r∂z = 0. (12)

Again substitute Eq. (10) into Eq. (7), we have

γ G ′′ + κ F ′′ − 2κG − ρ j (F ′G − 2FG ′) = 0. (13)

Now dimensionless variables may be defined as

f (η) = F(Z)/V, g(η) = L2G(Z)/V, (14)

where η = Z/L and V is the larger of V1 and V2.
Substituting Eq. (14) into Eqs. (11) and (13), we shall find

f (iv) − c1g′′ − 2Ref f ′′′ = 0, (15)

g′ + c2( f ′′ − 2g) − c3( f ′g − 2 f g′) = 0, (16)

where Re = ρV L/(µ + κ) is the Reynolds number and

c1 = κ/(µ + κ), c2 = κL2/γ, c3 = ρ j LV/γ

are dimensionless micropolar material constants character-
izing the vortex viscosity, the spin gradient viscosity and the
microinertia density respectively. For Re < 0 we take the
injection at the two disks and for Re > 0 the problem corre-
sponds to the suction at both the disks. For our problem we
use Re < 0.

Integrating Eq. (15) with respect to η we get

f ′′′ − c1g′ − 2Ref f ′′ + Re f ′2 = B, (17)

where B is constant of integration and is known as pressure
constant.

Substituting Eq. (14) into Eqs. (9) the boundary conditions
reduce to

f (−1) = 1 − A, f (1) = 1,

f ′(−1) = 0, f ′(1) = 0,

g(−1) = 0, g(1) = 0.

(18)

We have to solve Eqs. (16) and (17) subject to the bound-
ary conditions Eqs. (18). We note that Eqs. (16) and (17)
reduce to the corresponding equation for a Newtonian fluid
for vanishing microrotation and κ = 0.

3 Numerical solution

The governing Eqs. (16) and (17) being highly non-linear
cannot be solved analytically. We use a finite difference based
numerical algorithm to solve this coupled pair of equations.
It is better to reduce the order of Eq. (17) by one with the
help of the substitution p = f ′ so that the boundary value
problem consisting of Eqs. (16) and (17) and the boundary
conditions Eqs. (18) takes the following form.

Solve

p = f ′ = d f/dη, (19)

p′′ − c1g′ − 2Ref p′ + Rep2 = B (20)

g′′ + c2(p′ − 2g) − c3(pg − 2 f g′) = 0, (21)

subject to the boundary conditions

f (−1) = 1 − A, f (1) = 1,

p(−1) = 0, p(1) = 0, (22)

g(−1) = 0, g(1) = 0.

For the numerical solution of the above problem we first
discretize the domain [−1, 1] uniformly with step h. The
solution procedure may be described as follows. Equation
(19) is integrated using Simpson’s rule [14] with the formula
given in Ref. [15]. Equations (20) and (21) are discretized
at a typical grid point η = ηn of the interval [−1, 1] by
employing central difference approximations for the deriva-
tives. This results in the following difference equations

(2Reh2 pn − 4)pn + (2 − 2Reh fn)pn+1

+(2 + 2Reh fn)pn−1 = 2h2 B + c1h(gn+1 − gn−1) (23)

(4 + 4c2h2 + 2c3h2 pn)gn = (2 + 2c3h fn)gn+1

+(2 − 2c3h fn)gn−1 + c2h(pn+1 − pn−1), (24)

where h represents the grid length, fn ≈ f (ηn), pn ≈ p(ηn)

and gn ≈ g(ηn).
The algebraic system of equations represented by the

above equations is solved iteratively by SOR method [16],
subject to the appropriate boundary conditions (22).

We use the following solution procedure which is mainly
based on the algorithm described in Ref. [17] in order to
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accelerate the iterative procedure, to improve the accuracy
of the solution and to have an estimate of local as well as
global discretization errors.

For a suitable choice of the values of the grid size h and
the relaxation parameter ω, an iterative procedure is started
with some initial guess for the values of the constant of inte-
gration B and the solution vectors p, g and f , where the kth
iteration performs the following steps:

(1) Next approximation for the solution of Eqs. (23) and
(24), p(k+1) and g(k+1), respectively, is generated by
SOR method subject to the last four conditions in
Eqs. (22) for the problem discussed.

(2) New approximation for the solution of Eq. (19), f (k+1),
is computed by Simpson’s rule subject to the first bound-
ary condition given in Eqs. (22), where p(k+1) is empl-
oyed for p in Eq. (24).

(3) p(k+1), g(k+1) and f (k+1) are compared with p(k), g(k)

and f (k), respectively, to test for convergence.

The iterative procedure is stopped if the following criteria
are satisfied for three consecutive iterations

‖p(k+1) − p(k)‖L2 < TOLiter, (25)

‖ f (k+1) − f (k)‖L2 < TOLiter, (26)

‖g(k+1) − g(k)‖L2 < TOLiter. (27)

In order to determine the constant of integration B we use
hit and trial method by requiring that the computed value
of f at the upper boundary η = 1 matches with the given
boundary value of f up to a specified tolerance TOLiter.

To increase the order of accuracy, the discrete problem
is first solved on a basic grid, say h ∈ [0, H ] for H > 0.
A sequence of approximate solutions is then computed on
successively refined grids. Let U (hl) denotes the discrete
solution corresponding to the step sizes

hl = H

nl
, l = 1, 2, 3, . . . ,

where U (hl) stands for either of p and f , {nl} is a sequence
of integers associated with the step size sequence {hl} to
govern the successive refinement procedure. There are sev-
eral choices for the sequence {nl} found in literature. We use
the Romberg sequence given below

SR = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}.
On the basis of solutions U (hl), higher order approxima-

tions to the exact solutions can be obtained by the use of
Richardson’s extrapolation. This process can be carried out
using any extrapolation scheme [18], e.g. polynomial extrap-
olation (Aitken–Neville algorithm) or rational extrapolation
(Stoer’s algorithm). We use polynomial extrapolation, which

can be presented as

Ul,1 = U (hl), l = 1, 2, 3, . . . , (28)

Ul,m = Ul,m−1 + Ul,m−1 − Ul−1,m−1

(nl/nl−m+1)2 − 1
,

m = 2, 3, . . . , l, l ≥ 2, (29)

where l indicates the grid level and m is the number of extrap-
olation steps. The order of approximation of the solution Ul,m

increases in even multiples of m, i.e. the error of Um,m is pro-
portional to H2m .

An element of multigrid methods called nested iterations
has been used to a limited extent to obtain an improved initial
guess for the solution U (l) , where l > 1, so that rapid con-
vergence of the iterative procedure may be achieved. This
may be done by subjecting the solution U (l−1) to an appro-
priate interpolation operator so that interpolated values are
provided at the new grid points of the level l. A computation-
ally convenient choice is the linear operator which gives the
improved initial guess for the solution U (l) as follows

U (l)
2i = U (l−1)

i ,

U (l)
2i+1 = 1

2
(U (l−1)

i + U (l−1)
i+1 ),

where 0 ≤ i ≤ nl−1 N − 1, and l denotes the grid level.

4 Results and discussion

This section is devoted for the presentation of our findings
in tabular and graphical form together with the discussion
and their interpretations. As our objective is to develop a bet-
ter understanding of the effects of micropolar structure of
fluids and permeability of two disks on the flow characteris-
tics, we choose to present shear stresses at the two disks, and
the velocity and microrotation fields across the disks for a
range of values of the Reynolds number Re and a few cases
of material properties of micropolar fluids. All the cases of
material properties considered in the present work are shown
in Table 1 below.

In order to establish the validity of our numerical com-
putations and to improve the order of accuracy of the solu-
tions, numerical results are computed for three grid sizes h =
0.01, 0.005 and 0.0025 and then extrapolated using Richard-
son’s extrapolation. The comparison of numerical values of

Table 1 Three cases of micropolar material constants for Re = −15
and A = 1.8

Case c1 c2 c3

1 1.0 1.5 2.0

2 5.0 5.5 6.0

3 9.0 9.5 10.0
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Table 2 Radial velocity f ′(η) and its extrapolated values for
Re = −25, A = 1.6, c1 = 5.1, c2 = 6.1 and c3 = 7.1

η f ′(η)

h = 0.01 h = 0.005 h = 0.0025 Extrapolated value

−0.8 0.834618 0.834639 0.834646 0.834649

−0.4 2.548868 2.548594 2.548532 2.548512

0.0 2.646349 2.646273 2.646255 2.646250

0.4 1.558478 1.558577 1.558602 1.558611

0.8 0.515921 0.515950 0.515957 0.515960

Table 3 Axial velocity f (η) and its extrapolated values for Re = −25,
A = 1.6, c1 = 5.1, c2 = 6.1 and c3 = 7.1

η f (η)

h = 0.01 h = 0.005 h = 0.0025 Extrapolated value

−0.8 −0.558522 −0.558521 −0.558521 −0.558520

−0.4 −0.217554 −0.217571 −0.217574 −0.217575

0.0 0.346992 0.346928 0.346914 0.346909

0.4 0.767227 0.767178 0.767167 0.767164

0.8 0.974284 0.974246 0.974239 0.974237

Table 4 Microrotation g(η) and its extrapolated values for Re = −25,
A = 1.6, c1 = 5.1, c2 = 6.1 and c3 = 7.1

η g(η)

h = 0.01 h = 0.005 h = 0.0025 Extrapolated value

−0.8 0.405613 0.405555 0.405541 0.405537

−0.4 0.491803 0.491819 0.491822 0.491823

0.0 −0.420841 −0.420730 −0.420704 −0.420695

0.4 −0.519429 −0.519386 −0.519375 −0.519371

0.8 −0.199743 −0.199752 −0.199754 −0.199755

streamwise velocity, axial velocity and the microrotation for
the three grid sizes and their extrapolated values are given
in Tables 2, 3 and 4, respectively. Excellent comparison vali-
dates our numerical computation and the use of extrapolation
to improve the accuracy of the results.

In order to facilitate understanding of the influence of the
permeability parameter A and the Reynolds number Re on
the flow fields, we first note that A is determined by the ratio
of the injection velocities at the two disks and Re is based on
the injection velocity at the upper disk. When Re = 0, the
problem becomes that of the flow with impermeable disks.
In such a case A will be arbitrary and have no effect on the
flow in view of the relation V1 = (1 − A)V2 (by definition
of A given in the Sect. 2), where V1 = 0 = V2. When the
magnitude of Re is increased for a fixed value of A, it cor-
responds to the situation in which the injection velocities at
the upper and lower disks are increased keeping their ratio
constant. On the other hand if Re is fixed and A is increased

Table 5 Skin friction at lower and upper disks for Re = −100, c1 =
5.1, c2 = 6.1, c3 = 7.1 and various A

A f ′′(−1) f ′′(1)

1.0 35.8521 −2.1587

1.2 14.0248 −2.9157

1.4 9.5979 −3.9370

1.6 8.4396 −5.1275

1.8 8.0601 −6.4782

2.0 7.9883 −7.9882

from 1 to 2, it represents the situation in which, for a given
injection velocity at the upper disk, the injection velocity at
the lower disk is increased from zero to the magnitude of that
at the upper disk. For Re < 0, the case A = 1 corresponds
to the problem of flow with impermeable lower disk and per-
meable upper disk, 1 < A < 2 corresponds to the non zero
and unequal injection velocities at the lower and upper disks
and A = 2 represents the problem of symmetric flow with
equal injection velocities at both the disks.

First of all we present the influence of permeability param-
eter A on shear stresses for a fixed value of Re and material
constants c1, c2 and c3. As A is increased, the shear stress
at the lower disk decreases while it increases at the upper
disk. For this case, the shear stress at the lower disk is max-
imum while it is minimum in magnitude at the upper disk.
This is the most asymmetric case. We note from Table 5 that
as A is increased from 1 to 2, the shear stress at the lower
disk decreases from its maximum value to a minimum value
while at the upper disk its magnitude increases from its min-
imum value to the maximum value so that for A = 2, the
shear stress at both the disks becomes equal reflecting the
symmetry of the problem.

Now in order to investigate the effect of dimensionless
constants c1, c2, c3, Re and A on the primary flow fields, we
give graphical presentation of the streamwise and axial veloc-
ity profiles, and the microrotation across the disks. The influ-
ence of the Reynolds number Re on the streamwise velocity
is presented in Fig. 2 for fixed values of A, c1, c2 and c3.
For Re = 0, the profile is symmetric and parabolic with
respect to the central plane Z = 0. When the non-zero injec-
tion velocity V2 is imposed at the upper disk (i.e. Re < 0),
for A = 1.6 which corresponds to the injection velocity at
the lower disk to be 60% of V2, the profile becomes asym-
metric pushed towards the lower disk. As the magnitude of
Re is increased, the profile becomes more asymmetric. The
point of maximum velocity is shifted towards the lower disk
and the streamwise velocity on the lower disk side increases
while it decreases on the upper disk side. For large value of
Re, the effect of varying Re tends to become insignificant.

Figure 3 presents the profiles of axial velocity component
to reflect the influence of Re on its behavior for typical values
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Fig. 2 Radial velocity profiles of micropolar fluids for A = 1.4, c1 =
2.0, c2 = 2.5, c3 = 3.0 and various Re

Fig. 3 Axial velocity profiles of micropolar fluids for A = 1.4, c1 =
2.0, c2 = 2.5, c3 = 3.0 and various Re

of A and dimensionless constants c1, c2 and c3. The axial
velocity takes its dimensionless value –1 at the lower disk
and increases to1 at the upper disk with a point of inflection
somewhere near the central plane Z = 0 where it changes
its concavity. As the magnitude of Re is increased, the pro-
files reflect significant increase in the axial velocity within
the region away from the disks for −50 ≤ Re ≤ 0. As Re is
further increased in magnitude, its effect becomes less influ-
ential and the gaps between the profiles appear to approach
zero as Re → −∞. This is due to the constraints of axial
velocity being −1 at the lower disk and 1 at the upper disk,
which do not allow the axial velocity to increase indefinitely
as the magnitude of Re is increased.

The behavior of the microrotation for fixed values of A,
c1, c2, c3 and for different values of the Reynolds number Re
is shown graphically in Fig. 4. The shear stresses at the two
disks tend to rotate the fluid in opposite directions because
of which the microrotation has opposite sign near the disks.
When Re = 0, the effect of shear stresses propagates at
equal rate from the disks resulting into zero microrotation at
the central plane Z = 0. As the magnitude of Re is increased,

Fig. 4 Microrotation profiles of micropolar fluids for A = 1.4, c1 =
2.0, c2 = 2.5, c3 = 3.0 and various Re

Fig. 5 Radial velocity profiles of micropolar fluids for Re = −15,
A = 1.8 and three cases of micropolar material constants

Fig. 6 Axial velocity profiles of micropolar fluids for Re = −15,
A = 1.8 and three cases of micropolar material constants

the microrotation increases, and the point of zero microrota-
tion moves towards the lower disk.

Figures 5, 6 and 7 show streamwise velocity, axial veloc-
ity and microrotation profiles for three sets of values of c1, c2

and c3 (given in Table 1) when A and Re are fixed. The val-
ues of c1, c2 and c3 have significant effect on microrotation
as compared to their effect on streamwise and axial veloc-
ity profiles. The maximum value of streamwise velocity and
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Fig. 7 Microrotation profiles of micropolar fluids for Re = −15,
A = 1.8 and three cases of micropolar material constants

Fig. 8 Radial velocity profiles of micropolar fluids for Re = −25 and
various A

Fig. 9 Axial velocity profiles of micropolar fluids for Re = −25 and
various A

microrotation increases as we increase the values of c1, c2

and c3.
The effect of A on the velocity and microrotation profiles

is shown in Figs. 8, 9 and 10 for fixed values of Re, c1, c2

and c3. The streamwise velocity increases by increasing A
across a major part near the upper disk and the profile tends
to become symmetric as A is increased from 1 to 2. The max-
imum value of streamwise velocity increases by increasing
A. The axial velocity profiles given in Fig. 9 are helpful in
finding the position of viscous layer, which is developed due
to the injection at the two disks. The position of viscous

Fig. 10 Spin profiles of micropolar fluids for Re = −25 and various
A

Fig. 11 Comparison of radial velocity profiles of Newtonian and
micropolar fluids for Re = −20 and A = 1.2

layer is a point where f (η) = 0. We observe from the Fig. 9
that the position of viscous or shear layer moves towards
the central plane Z = 0 as we increase A. For A = 2,
this viscous layer coincides with the central plane Z = 0
and the problem reduces to the symmetrical injection case,
discussed by Ref. [13] for Newtonian fluids. A comparison
of Figs. 3 and 9 shows that the position of viscous layer is
more sensitive to the permeability parameter A than to the
Reynolds number Re. From microrotation profiles shown in
Fig. 10, it can be observed that the position of the point where
the curves change their concavity goes on shifting towards
the central plane Z = 0 by increasing A. The maximum
value of microrotation increases while the minimum value
decreases as A is increased so that they reach their respective
extremes at A = 2. A comparison of the profiles of stream-
wise velocity for Newtonian and micropolar fluids shown in
Fig. 11 validates our micropolar model.

5 Conclusions

In the present work, we have considered the numerical solu-
tion of the problem of two dimensional steady, laminar and
incompressible flow of a micropolar fluid between two par-
allel porous disks of different permeability. The problem of
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the flow with one permeable and the other impermeable disk
and that of the symmetric flow with both permeable or both
impermeable disks occur as special cases of the present prob-
lem corresponding to the parametric values A = 1 and Re <

0, A = 2 and Re < 0, Re = 0 and A arbitrary respectively.
The objective of the present study is to investigate the effects
of the Reynolds number Re and permeability parameter A,
determined by the injection velocities at the two disks, and
the material constants on the flow variables. The results indi-
cate that the parameters Re and A have a strong influence on
the velocity and microrotation profiles, shear stresses at the
disks and the position of the viscous/shear layer. The velocity
and microrotation profiles change from the most asymmetric
shape to the symmetric shape across the disks as the Rey-
nolds number Re is increased from some negative value to
zero or the permeability parameter A is increased from 1 to
2. The shear stress at a disk depends strongly on the injec-
tion velocity at it determined by the choice of the values of
Re and A. Larger the injection velocity at a disk relative to
the other is, smaller will be the shear stress at it than that at
the other. The position of viscous layer has been found to be
more sensitive to the permeability parameter A than to the
Reynolds number Re. The material constants c1, c2 and c3

have profound effect on microrotation as compared to their
effect on streamwise and axial velocity profiles. For the flu-
ids with larger values of these material constants, the effect
of micropolar structure cannot be ignored.
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