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Abstract A novel numerical method is explored and named
as mesh-free poly-cell Galerkin method. An improved mov-
ing least-square (MLS) scheme is presented, which can avoid
the matrix inversion in standard MLS and can be used to
construct shape functions possessing delta Kronecher prop-
erty. A new type of local support is introduced to ensure the
alignment of integral domains with the cells of the back-
ground mesh, which will reduce the difficult in integration.
An intensive numerical study is conducted to test the accu-
racy of the present method. It is observed that solutions with
good accuracy can be obtained with the present method.

Keywords MPG · CO-MSL · Mesh-free · Meshless ·
Voronoi diagram

1 Introduction

In the finite element method (FEM), the geometrical bound-
aries have to present as mesh lines [1,2]. Therefore, the mesh
is difficult to generate if the geometrical boundaries are very
complex or changing with time. To avoid the inconvenience
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of FEM, the so called mesh-free methods have been devel-
oped, both for structural [3–6] and fluid mechanics prob-
lems [7–9]. These new methods use the idea of a polynomial
interpolant that fits a number of points minimizing the dis-
tance between the interpolated function and the value of the
unknown points [10]. Many approaches of mesh-free meth-
ods have achieved significant progress in recent years. They
include the smoothed hydrodynamic method (SPH) [11], the
element-free Galerkin method (EFG) [12], the natural ele-
ment method (NEM) [13], the reproducing kernel particle
method (RKPM) [14,15], meshless finite element method
(MFEM) [8], the meshless local Petrov–Galerkin method
(MLPG) [16,17], and the linear conforming point interpo-
lant method (LC-PIM) [18,19], etc.

Although so many approaches have been well-developed,
there are still several common problems not completely
solved. One of these problems, and perhaps the most impor-
tant unsolved issue, is how to perform integral efficiently and
precisely [20].

Gaussian integration is commonly used in Galerkin mesh-
free methods for evaluating the stiffness matrix [21], and
a background mesh is needed in the Gaussian integration.
However, the local supports may not align with the inte-
gration cells. This misalignment is primarily responsible for
the deterioration of accuracy and loss of convergence. Due
to the complexity involved in standard Gaussian integra-
tion, two new mesh-free methods are explored by Atluri
and his colleagues [22]. The first is called local boundary
integral equation (LBIE) method and the second is called
local Petrove-Galerkin (MLPG) method. Both use a local-
Galerkin weak form in order to avoid the need for a back-
ground mesh and integrations are performed on subdomains
surrounding the nodes. However, these local integrations
will result in an unsymmetrical general stiffness matrix.
Besides Gaussian integration techniques, another class of

123



518 C. Zheng et al.

quadrature approaches is the stabilized nodal integration
methods [23,24]. However, the nodal volumes used in nodal
integration are still hard to evaluate. Although the Voronoi
diagram is used to compute nodal volumes [25,26], deterio-
ration of accuracy is still caused by the complexity of integral
domains.

Besides the problem of integration, another problem of
the mesh-free method is the imposition of essential bound-
ary conditions, due to the lack of the delta Kronecher property
(ϕi (X j ) = δi j ). This is the immediate consequence, in the
referred mesh-free methods, of using approximation func-
tions instead of interpolation functions.

In addition to the two problems mentioned above, there
are some other problems including how to assign the radius
of the support domain which influences the result greatly,
how to find connective nodes efficiently, etc.

A new numerical approach named Poly-cell Galerkin
Method (MPG) is explored in this paper, in which schemes
of solving the above mentioned problems are proposed. The
scheme of MPG is as follows.

First, the orthonormalized-moving least square (O-MLS)
method is presented, in which, the basis functions such as
(1, x , y, z, xy, yz, xz, x2, y2, z2) are orthonormalized.
O-MLS avoid computation of matrix inversion and shape
functions can be obtained even if the number of nodes is
very small or some of the nodes are co-linear. Thereafter,
the constrained orthonormalized-moving least square
(CO-MLS) method is presented to construct shape functions
that possess the delta Kronecher property. Therefore, impo-
sition of essential boundary conditions becomes simple in
MPG.

In standard mesh-free methods, the local support is a cir-
cle or a rectangular. These forms of local support make the
mesh-free methods more flexible than FEM, however, they
also causes the integration of stiffness matrix more difficult.
The idea of poly-cell local support is explored here, which
can avoid the error caused by integral boundaries in eval-
uating stiffness matrix. This poly-cell local support can be
used over any background mesh, and the widely used Voronoi
diagram is adopted in this paper.

The outline of this paper is as follows: The O-MLS is pre-
sented in Sect. 2 and the CO-MLS is presented in Sect. 3.
Section 4 shows how to obtain the poly-cell local support
and how to construct shape functions with the poly-cell local
support. Some numerical examples are studied in Sect. 5 and
some conclusions are discussed in Sect. 6.

2 Orthonormalized: moving least-square approximation

The moving least-square (MLS) method is now a commonly
used alternative for constructing shape functions in most of
meshfree methods proposed so far. Two excellent features

make it more popular than other interpolant scheme:
(1) the approximated field is continuous and smooth over the
entire problem domain; and (2) it is capable of producing an
approximation in desired order of consistency and compati-
bility. Unfortunately, the moment matrix inversion is always
required, and the inverse of this matrix does not exist when
the number of nodes is small or the nodes scatter collinearly
in some special cases. By orthonormalizing basis functions,
an Orthonormalized—moving least-square approximation is
formulated to overcome above inherent drawbacks.

2.1 Briefing the moving least-square

Consider a field u(x) defined in the 2D domain � with
boundary �, which can be approximated over the poly-cell
local support in the following form

u(x) ≈ uh(x) =
m∑

i=1

ai (x)pi (x) = aT(x) p(x), (1)

where p(x) is a vector of basis functions built by the Pascal’s
triangles, a(x)T = {a1(x), a2(x), . . . , am(x)} is a vector of
unknown parameters that depends on xT = [x, y], and m
is the number of basis functions. For two dimensions, basis
function p(x) of order 1 and 2 is written, respectively, by

pT(x) = {p1(x) p2(x) p3(x)} = {1 x y},
m = 3, (2)

pT(x) = {p1(x) p2(x) . . . p6(x)}
= 1{x y xy x2 y2}, m = 6, (3)

where m is the number of monomial terms.
Note that the coefficient ai (x) is an arbitrary function of

interested node x, and m is usually much smaller than n. To
determine a(x), a quadratic functional I (x) is constructed
using the approximated values of field function uh(x) and
the nodal parameters, ui = u(xi ) as

I (x) =
n∑

i=1

[
wi

(
aT(x) p(x) − ui

)2
]

, (4)

in which wi is a weight function and n the number of sup-
porting nodes. The stationarity of I with respect to a(x) leads
to the following linear equation system:

a(x) = A−1(x)B(x)u, (5)

where the moment matrix A and basis matrix B are
expressed, respectively,

A(x) =
n∑

i=1

wi (x) p(xi ) pT(xi ),

wi (x) ≡ w(x − xi ), (6)
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B(x) = [w1(x) p(x1) w2(x) p(x2) . . . wn(x) p(xn) (7)

u = (u1, u2, . . . , un)T. (8)

Substituting Eq. 5 back into Eq. 1 leads to

uh(x) =
n∑

i=1

ϕi ui = �Tu (9)

and

�T(x) = pT(x)A−1(x)B(x)

= {ϕ1(x) ϕ2(x) . . . ϕn(x)} (10)

is the vector of the MLS shape functions.
The derivative of shape function � is given as

�T
,x (x) = pT

,x · A−1 · B + pT · (A−1),x · B

+ pT · A−1 · B,x , (11)

where a comma designates a partial derivative with respect
to the indicated spatial variable x.

It can be clearly seen that the inversion of moment matrix
A have to be performed frequently in both Eqs. 14 and 15.
Only the requirement of n � m is satisfied can prevent the
singularity of the weighted moment matrix A. Importantly,
it is very probable that the inversion of A does not exist espe-
cially for the special case of arbitrarily distributed nodes in
the local circle support of interested node. On the other hand,
the frequent operation of matrix inversion usually results in
the computational expensive cost. It is therefore, necessary to
pursue some kind of special technique to avoid the frequent
inversion operation of moment matrix A in the presence of
higher order smoothness of the MLS shape functions.

2.2 Orthonormalized moving least square

An Orthonormalized moving least-square (O-MLS) approxi-
mation is formulated in details by orthonormalizing the basis
functions p utilized in the conventional MLS. This scheme
not only can ensure existence of the inversion of coefficient
matrix but extend our mind to connect different approxima-
tion scheme used in meshfree methods.

First, define a symbol operator as

( f (x), g(x))w =
n∑

i=1

wi f (xi )g(xi ), (12)

where f and g can be arbitrary variables, n is the number of
supporting nodes, xi denotes the coordinates of node i , and
w is the weight function same to MLS.

2.2.1 Orthogonalizing vector p

Vector p can be orthogonalized as follows

s = {s1, s2, . . . , sm}T = V p, (13)

where V is an orthogonalizing matrix with dimension of m×
m. Assume Vi j is the elementary of matrix V in line i and
column j , and then Vi j can be computed by

Vi j =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i < j,

1, if i = j

−∑i−1
k= j

(pi ,sk )w
(sk ,sk )w

Vkj , if i > j,

i, j = 1, 2, . . . , m. (14)

The proof of Eq. 18 by the Smith orthogonalizing formulas
is given as below. The Smith orthogonalizing formulas are
[27]

s1 = p1, (15)

s2 = p2 − (p2, s1)w

(s1, s1)w
× s1, (16)

· · ·
si = pi −

i−1∑

k=1

(pi , sk)w

(sk, sk)w
× sk . (17)

Substituting Eq. 17 into Eq. 21 yields

si = pi −
i−1∑

k=1

m∑

j=1

(pi , sk)w

(sk, sk)w
× Vkj s j , (18)

in which si is computed with p1, p2, . . ., pi . Note that when
j > k, Vkj = 0, hence

si = pi −
i−1∑

k=1

k∑

j=1

(pi , sk)w

(sk, sk)w
× Vkj p j , (19)

si = pi −
i−1∑

j=1

⎛

⎝
i−1∑

k= j

(pi , sk)w

(sk, sk)w
× Vkj

⎞

⎠ p j . (20)

Expressing Eq. 24 in the matrix form and then Eq. 18 can be
obtained.

2.2.2 Normalizing vector s

Normalizing the vector s yields

r(x) = {r1(x) r2(x) . . . rm(x)}T, (21)

ri = si√
(si , si )w

, i = 1, 2, . . . , m. (22)

Substituting Eq. 13 into Eq. 17 yields

r = H p, (23)

where H is an orthonormalizing matrix with dimension
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m × m. Suppose Hi j is the elementary of matrix H in line i
and column j , and then Hi j can be computed by

Hi j = Vi j√
(si , si )w

, i, j = 1, 2, . . . , m. (24)

2.2.3 Computing shape functions �

Now use the vector r as the basis vector and substitute r
as p into Eq. 1 of standard MLS. A similar form of shape
functions will be obtained as follows

�T = rT(x)A−1 B, (25)

A(x) =
n∑

i=1

wi (x)r(xi )rT(xi ), (26)

B(x) = [w1(x)r(x1) w2(x)r(x2) . . . wn(x)r(xn)]
(27)

Since the vector r is an orthonormalized vector, matrix A
will be an identical matrix, and then

�T = rT(x)B. (28)

The partial derivative of shape function � can be easily
obtained as

�T
,x = rT

,x B + rT B,x . (29)

Compared with classical MLS, the O-MLS is conducted
without any inversion of matrix. This feature makes the
O-MLS more suitable to irregular node distribution in the
shape function construction of meshfree methods. This
advantage also implies the MPG very robust in simulating
problems of cracks and complex geometries, which are inten-
sively studied in the following analysis of cracks. More
importantly, the O-MLS permits one select any number of
nodes in the nodal support domain. When n > m, the
O-MLS is referred to as the standard MLS; and when n ≤ m,
it can still be performed without any problems. This flexibil-
ity of selecting nodes indicates that fewer nodes can be used
for interpolation and integration, which optimizes the com-
putation cost and numerical accuracy.

3 Constrained orthonormalized-moving least square
(CO-MSL) method

Based on O-MLS, the CO-MLS technique is presented,
which can be used to construct shape functions that posses
delta Kronecher property.

3.1 Constrained by one node

Same to O-MLS, r is selected as the basis functions. The
approximation function is expressed as follows.

u(x) ≈ uh(x) =
m∑

i=1

ai (x)ri (x) = aT(x)r(x). (30)

Assume the shape function must satisfy the condition as
follows.

uh(xq) = aT(xq)r(xq) = uq , (31)

in which q is one of the supporting nodes. According to
Lagrange multiplier method, construct function J as follows:

J = I + 2λ(aTr(xq) − uq). (32)

The stationarity of J with respect to a leads to the following
linear equation system.

ai = (r i , u)w − λriq , (33)

in which riq represents the value of ri at node q. Substituting
Eq. 33 into Eq. 31 yields,

λ =
∑m

i=1[riq · (r i , u)w] − uq∑m
i=1 r2

iq

=
∑n

j=1

[(∑m
i=1 w j riqri j

)
u j
]− uq

∑m
i=1 r2

iq

. (34)

Equation 34 can be expressed as follows,

λ =
n∑

j=1

f [q]
j u j , (35)

where

f [q]
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑m
i=1(w j Riq Ri j )∑m

i=1 R2
iq

, if j �= q,

∑m
i=1(w j Riq Ri j ) − 1
∑m

i=1 R2
iq

, if j = q,

j = 1, 2, . . . , n. (36)

Substituting Eq. 35 into Eq. 33 yields,

ai =
n∑

j=1

(w j ri j − f [q]
j riq)u j , i = 1, 2, . . . , m. (37)

Substituting Eq. 37 into Eq. 30 yields,

�T = rT(x)B[q], (38)

B[q] = {B[1]
1 , B[1]

2 , · · · , B[1]
n }, (39)

B[q]
j = w j r(x j ) − f [q]

j r(xq),

i = 1, 2, . . . , m; j = 1, 2, . . . , n. (40)
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A novel mesh-free poly-cell Galerkin method 521

3.2 Formulas of CO-MLS

B[q] includes the constrained condition of node q. If con-
strained conditions of all nodes are considered, a modifica-
tion on matrix B should be made as follows.

B′
j =

n∑

q=1

w′
j B[q]

j , (41)

where w′
q is called constraining weight function of node q.

w′
q should satisfy relations as bellow.

n∑

q=1

w′
q = 1 (42)

w′
q(xi ) =

{
1, if q = i,
0, if q �= i.

(43)

The shape functions of CO-MLS can be expressed as

�T = rT(x)B′, (44)

B′ = {B′
1, B′

2, . . . , B′
n}, (45)

B′
j = w j r j −

n∑

q=1

w′
q f [q]

j r(xq). (46)

4 Poly-cell local support domain and Galerkin weak
form

4.1 Poly-cell local support domain

In the FEM, the geometrical boundaries such as outlines or
cracks, have to present as mesh lines. If an crack is located
in elements, as shown in Fig. 1, it would be hard to deal
with. Figure 1 also shows that an crack located in a model of
mesh-free methods. It is found that the mesh-free methods
are more flexible in dealing with the geometrical boundaries.
For most of mesh-free methods, circular loacal support are
adopted. A simple model and the circular local supports of
each node are plotted in Fig. 2. It is obvious that the circular
local support causes serious difficulty in evaluating the stiff-
ness matrix. Thus we try to find a type of local support, which
is easy to evaluate the stiffness matrix and can still deal with
the geometrical boundaries in the same way as traditional
mesh-free methods. The Poly-cell local support domain is
then explored to solve this problem. A background mesh is
needed in poly-cell local support domain. The background
mesh can be arbitrary mesh consisting polygons in 2D space
or polyhedrons in 3D space. There are many ways to gener-
ate the background mesh for poly-cell local support, and the
Voronoi diagram is an easy way. The Voronoi diagram is a
partition of the problem domain � into non-overlapping con-
vex subdomains �i called Voronoi cell. Each Voronoi cell is
associated with a node I and any point in �i is closer to I

Fig. 1 Illustration of a crack, noting that the mesh-free method is easy
to deal with discontinuity

Fig. 2 Inllustration of circular local support, noting that accurate
integration is hard to perform

Fig. 3 Poly-cell local support based on Voronoi diagram

than to any other node [8]. A Voronoi diagram is shown in
Fig. 3.

On the background mesh, each node influences several
nearby cells, and like the FEM, the integration can be com-
pleted by looping for cells. The poly-cell local support with
different influence-degree dI can be obtained as shown in
Fig. 3. In CO-MLS, each node has a weak supporting domain
in which w > 0 and a strong supporting in which w′ > 0
in. Denote dw

I as the influence-degree of the weak support-
ing and ds

I as the influence-degree of the strong supporting
domain. Obviously, these two parameter play an important
role for efficiency. In order to obtain high effieciency in com-
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Fig. 4 Comparison of integral domain

putation, dw
I is evaluated 2.0 and ds

I is evaluated 1.0, which
are the smallest values that ensure the overlapping of local
support. The cell �I and all of its neighbor cells are the weak
supporting cells of node I . Only �I is the strong support cell
of node I . Figure 4 shows the integral domain of stiffness
between node I and J , for both circular local support and
poly-cell local support. It is obvious that if the integration is
performed by looping for the cells, the poly-cell local support
will achieved better accuracy than the circular local support.

4.2 Weight functions

It is a difficult matter to construct the weight functions on
a poly-cell local support domain because its edges is more
complex than a circular domain. An interpolated weight func-
tions is introduced here.

For the node I , the computation of the interpolated weight
functions is shown in Fig. 5. Auxiliary triangulations are gen-
erated and the weight functions on the vertices of these trian-
gles are assigned. The weight functions on the local support

Fig. 5 Illustration of interpolated weight functions

domain are obtained by interpolation on these triangulations.
In the numerical experiments of this paper, for the weight
functions, w1 is assigned 2/3 and w2 is assigned 1/3, and for
the constraining weight functions, w1 is assigned 0 and w2

is assigned 0.
A weight function, a constraining weight function and a

shape function are plotted in Figs. 6a, b and c, respectively.
The figure reveals that the shape functions are C∞ in the
auxiliary triangles and are C0 on the edges of the auxiliary
triangles. The delta Kronecher property of the shape func-
tions is also manifested by the figure.

4.3 Galerkin weak form

Since the MPG is based on Galerkin weak form, the method-
oly of Galerkin weak form will be reviewed in this section.
Consider a solid problem defined in domain � bounded by
�(� = �t +�u), the governing equations of these problems
can be expressed as follows [1]:

Equilibrium equation:

LTσ + b = 0, in �. (47)

Fig. 6 Shape function of poly-cell local support based on Voronoi diagram. a Weight function of node I ; b Constraining weight function of node I ;
c Shape function
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Natural and essential boundary conditions:

σ · n = t̄, in �t ,

u = ū, in �u, (48)

where L =
[

∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]T

is the differential operator; σ =
[σx , σy, σxy]T is the stress vector, u = [u, v, w] is the dis-
placement vector, b = [bx , by]T is the body force vector,
t̄ is the prescribed traction on natural boundaries, ū is the
prescribed displacement on essential boundaries, and n is
the vector of unit outward normal at a point on the natural
boundary.

The unconstrained Galerkin weak form is presented as
follows:
∫

�

(Lδu)T DLud� −
∫

�

δuTbd�

−
∫

�t

δuT td� = 0. (49)

For linear elasticity, the material matrix D is expressed as
follows:

D = E

1 − v2

⎡

⎣
1 v 0
v 1 0
0 0 1−v

2

⎤

⎦ (50)

for plane stress problem,

D = E(1 − v)

(1 + v)(1 − 2v)

⎡

⎢⎣
1 v

1−v
0

v
1−v

1 0

0 0 1−2v
2(1−v)

⎤

⎥⎦ (51)

for plane strain problem, where E is Young’s modules and v

is possion’s ratio.
Substituting the approximation equation into Galerkin

weak form yields

K u = f , (52)

where

K i j =
∫

�

BT
i DBj d�, (53)

ui = {u(xi ), v(xi )}T, (54)

f i =
∫

�t

ϕT
i t̄d� +

∫

�

ϕT
i b̄d�, (55)

Bi =
[

∂ϕi
∂x 0 ∂ϕi

∂y

0 ∂ϕi
∂y

∂ϕi
∂x

]T

. (56)

5 Numerical examples

An intensive numerical study for the present MPG is con-
ducted in terms of the validation, accuracy and convergence
using some benchmark examples. All the experiments is con-
ducted on the numerical platform ASOF (analysis system of
failure), which contains computer program of FEM, TFEM
and most of mesh-free methods. The variable units used in the
work are based on international standard unit system unless
specially denoted.

To examine the accuracy and convergence, the relative L2

error in displacement norm and in energy norm are defined
as follows, respectively,

ed =
√∫

�
(uexact − unumerical)2d�∫

�
(uexact)2d�

, (57)

ee =
√√√√

1
2

∫
�
(εexact−εnumerical)T D(εexact−εnumerical)d�

1
2

∫
�
(εexact)T Dεexactd�

,

(58)

where the superscript “exact” represents the exact or analyti-
cal solution and the “numerical” denotes a numerical solution
obtained using a numerical technique including the present
MPG. Each Voronoi cell is divided into several auxiliary
triangles and for each triangle 3-point Hammer quadrature is
utilized to evaluate the stiffness matrix.

5.1 Cantilever beam

A 2D cantilever beam with length L , height D and unit thick-
ness is studied for the various behaviors of the TFEM as a
benchmark problem. The beam is fixed at the left end and
subjected to a parabolic traction P at the free end in Fig. 7.
The analytical solutions of displacement and stress [28] for
the plane stress case is given by,

ux = − Py

6E I

[
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

)]
, (59)

Fig. 7 A cantilever beam
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Fig. 8 Three models for the cantilever beam problem

uy = P

6E I

[
3ν

(
y − 1

2
D

)2

(L − x) + 1

4
(4 + 5ν)D2x

+ (3L − x)x2

]
, (60)

σxx = − P

I
(L − x)

(
y − 1

2
D

)
, (61)

σyy = 0, (62)

σxy = − Py

2I
(y − D), (63)

where I is the moment of inertia of D3/12. For plane strain
problem, Eqs. 59 and 60 hold after substituting E and ν with
E/(1 − ν2) and ν/(1 − ν), respectively.

The parameters in the computation are taken as: L = 8,
D = 1, P = −1, and E = 3.0 × 107 unless specially
denoted, and the plane strain conditions are assumed. In the
computation, the nodes on the boundary of x = 0 are con-
strained using the exact displacements given from Eqs. 59 to
60, and the traction are specified on the boundary of x = L
using Eq. 63.

Three models are used (347, 589 and 895 nodes) to inves-
tigate the properties of the present method as shown in Fig. 8.
To make a comparison, triangular element mesh was gener-
ated for each model and the numerical solutions of FEM are
also given. The convergence curves are plotted in Fig. 9, for
both TFEM and standard FEM. It is observed that the TFEM
presents better accuracy than standard FEM.

To examine accuracy of the present method, the model
with 895 nodes are sampled. The numerical solutions of
deflection along the neutral line and the stress in the x direc-
tion along the line (x = L/2) of the beam are plotted in
Fig. 10, together with analytical solutions. It is found the
solutions of the present MPG agree with the analytical solu-
tions very well and the accuracy of MPG is better than FEM.

5.2 An infinite plate with a hole

Figure 11a represents the infinite plate with a central hole sub-
jected to a tensile traction P . Due to its symmetric, only the
upper right quadrant of the plate is modeled with the dimen-
sions of b in both x and y directions as shown in Fig. 11b.
The analytical stress in the plate can be found in the polar
coordinate [28].

σxx = P

{
1 − a2

r2

[
3

2
cos(2θ) + cos(4θ)

]

+3a4

2r4 cos(4θ)

}
, (64)

σyy =−P

{
a2

r2

[
1

2
cos(2θ) − cos(4θ)

]
+ 3a4

2r4 cos(4θ)

}
,

(65)

σxy =−P

{
a2

r2

[
1

2
sin(2θ) + sin(4θ)

]
− 3a4

2r4 sin(4θ)

}
,

(66)

where θ is measured counterclockwise from the positive
x-axis. Similarly, the analytical displacement of the plate is
given as

ur = P

4µ

{
r

[
κ − 1

2
+ cos(2θ)

]
+a2

r
[1+(1+κ) cos(2θ)]

−a4

r3 cos(2θ)

}
, (67)

Fig. 9 Convergence of the
cantilever beam. a Displacement
norm; b energy norm
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Fig. 10 Comparison of the
solutions of the cantilever beam.
a Error of deflection at neutral
line; b σx at line x = L/2;
c τxy at line x = L/2

Fig. 11 An infinite plate with a
hole. a Infinite plate with
circular hole subjected to
unidirectional tension; b domain
sampling of the infinite plate

uθ = P

4µ

[
(1 − κ)

a2

r
− r − a4

r3

]
sin(2θ), (68)

where

µ = E

2(1 + ν)
,

κ =

⎧
⎪⎨

⎪⎩

3 − 4ν, plane strain,

3 − ν

1 + ν
, plane stress.

(69)

The parameters in this problem are taken as: a = 1, b = 5,
P = 1, and plane stain state is assumed. The material used
is linear elastic with Young’s modules E = 1.0 × 103 and
Poisson’s ratio v = 0.25 unless specially denoted. Analyti-

cal traction solutions are enforced on the boundaries at x =
5.0 and y = 5.0 and analytical displacement solutions are
enforced on the remaining essential boundaries.

Three models are used (134, 278 and 474 nodes) to investi-
gate the properties of the present method as shown in Fig. 12.
To make a comparison, triangular element mesh was gener-
ated for each model and the numerical solutions of FEM are
also given. The convergence curves are plotted in Fig. 13, for
both TFEM and standard FEM. It is observed that the TFEM
presents better accuracy than standard FEM.

To examine accuracy of the present method, the model
with 134 nodes are sampled The numerical solutions at
boundary line x = 0 and y = 0 of the plate are plotted
in Fig. 14 and Fig. 15, respectively. It is found the solutions
of the present MPG agree with the analytical solutions very
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Fig. 12 Three models for the
infinite plate with a hole

Fig. 13 Convergence of the infinite plate with a hole

well. The examples show that better accuracy can be achieved
with the present MPG. Noting that even if the MPG just
possess comparable accuracy with FEM, the MPG still has
advantages because the MPG is more flexible than FEM
in modeling practical problems with complex geometrical
boundaries.

6 Conclusion

A MPG based on the voronoi diagram is presented in the
paper. In the MPG, CO-MLS technique and the poly-cell
local support domain are introduced firstly. An intensive
numerical study is conducted to examine the accuracy of
the present MPG. It is observed that good accuracy can be
achieved with the MPG. The advantages of PGM are as
follows.

Fig. 14 Comparison of
solutions at line x = 0.
a Displacement; b stress
in θ direction

Fig. 15 Comparison of
solutions at line y = 0.
a Displacement; b Stress
in θ direction
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(1) Comparing with the methods based on circular support
domain, the integration of PGM can be performed more
efficiently and accurately. Furthermore, the assignment
of radius of circular support domain greatly influence
the results, however, the use of non-circular support
domain avoid this assignment.

(2) Comparing with the FEM, the PGM is more flexible in
dealing with the geometrical boundaries.

(3) The shape functions obtained by CO-MLS posses the
Delta Kronecher property, so it is simple to impose
essential boundary conditions. In addition, CO-MLS
avoids the computation of matrix inversion, so it still
works even if the number of nodes is very small or
some of the nodes are co-line.

(4) Comparing with the non-Galerkin method, the general
stiffness matrix is symmetric and positive definite.
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