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Abstract The previous low-order approximate nonlinear
formulations succeeded in capturing the stiffening terms,
but failed in simulation of mechanical systems with large
deformation due to the neglect of the high-order deforma-
tion terms. In this paper, a new hybrid-coordinate formu-
lation is proposed, which is suitable for flexible multibody
systems with large deformation. On the basis of exact strain–
displacement relation, equations of motion for flexible multi-
body system are derived by using virtual work principle.
A matrix separation method is put forward to improve the
efficiency of the calculation. Agreement of the present results
with those obtained by absolute nodal coordinate formula-
tion (ANCF) verifies the correctness of the proposed formu-
lation. Furthermore, the present results are compared with
those obtained by use of the linear model and the low-order
approximate nonlinear model to show the suitability of the
proposed models.

Keywords Nonlinear hybrid-coordinate formulation ·
Flexible multibody systems · Large deformation

1 Introduction

In the linear hybrid coordinate formulation for flexible multi-
body systems, the quadratic deformation terms are not
included in the strain–displacement relation. Therefore, such
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formulation fails to explain the stiffening phenomenon during
the simulation of a rotating flexible beam with high rotating
speed [1]. In the recent 10 years, several formulations for
investigation of stiffening problems were proposed. Wallrapp
[2] and Ryu [3] developed the system equations of motion
of flexible multibody systems that include stress stiffening
effects. The stress stiffness matrix was derived from the inter-
nal virtual work that includes nonlinear terms of strain–
displacement relationship and reference stresses induced by
existing loads before deformation. Liu [4] investigated the
dynamic stiffening problem of a rotating beam with high
rotating speed. By using an axial stretch variable, elastic
strain was linearized, such that computational efficiency can
be improved, and a criterion on inclusion of stiffening terms
of a beam was put forward by using an influence ratio [5],
and then an experiment was carried out to verify the correct-
ness of the nonlinear formulation [6]. Due to the inclusion of
the quadratic deformation terms in the strain–displacement
relationship, these formulations succeeded in capturing the
stiffening terms in the equations of motion. However, with the
assumption of small deformation, the high-order deformation
terms in the mass and force matrices were neglected. Because
only the low-order deformation terms are taken into account,
these formulations are called the low-order approximate for-
mulation, which is not suitable for the dynamic analysis of
flexible multibody systems with large deformation.

The absolute coordinate formulation has been widely used
for the dynamic analysis of a flexible beam system with large
deformation in the recent 10 years [7–9]. In such formula-
tion, the absolute coordinates and slopes defined in global
frame are used to describe the element configuration, and an
exact strain–displacement relationship is employed, so that
geometric nonlinear terms are naturally taken into account.
Furthermore, the mass and force matrices are constant, there-
fore, approximation of the mass and force matrices are not
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700 J. Liu et al.

necessary in the absolute coordinate formulation. Recently,
this formulation has been extended to spatial beams [10],
plates [11], and flexible multibody systems [12]. However,
by using absolute coordinates, the variables, which describe
the rigid-body motion and deformation, cannot be directly
obtained by solving the differential equations because they
are not included in the generalized coordinates.

In order to increase the computational accuracy and avoid
the simulation error due to the neglect of high-order deforma-
tion terms, a new hybrid-coordinate formulation is proposed
combining the characteristics of both the hybrid-coordinate
formulation and the ANCF. By employing the relative coor-
dinates and slopes defined in the body-fixed frame instead of
the deformation coordinates, the mass and force matrices are
simplified without the need to consider high-order deforma-
tion terms. On the basis of exact strain–displacement relation,
such formulation is suitable for flexible multibody systems
with large deformation. By using the virtual work principle,
the equations of motion for a flexible body are derived, and
then Lagrange’s equations of the first kind with Lagrange
multipliers are assembled. In addition, a matrix separation
method is put forward to improve the efficiency of the calcu-
lation. Agreement of the present results with those obtained
by the ANCF verifies the correctness of the present formula-
tion. Finally, the results obtained by the proposed formulation
are compared with those obtained by use of the previous low-
order approximate nonlinear formulations to show the wide
suitability of the proposed formulation.

2 Description of kinematics

A flexible multibody system is composed of N bodies: Bi ,

(i = 1, . . . , N ). As shown in Fig. 1, e0 is the inertial frame,
and ei is the body-fixed frame of Bi . The absolute displace-
ment vector of an arbitrary point of the flexible body Bi is
given by

r = r0 + s, (1)

where r0 represents the displacement vector of the origin of
ei , and s is the displacement vector of the point with respect
to ei after deformation, we rewrite Eq. (1) as

r = r0 + As′, (2)

where s′ represents s defined in ei , and A represents the
transformation matrix. By using the finite element method,
s′ can be written as

s′ = N p, (3)

where N is the shape matrix, and p is the elastic coordinate
vector.

Fig. 1 A flexible body undergoes large overall motion

Differentiating Eq. (2) leads to

ṙ = ṙ0 − As̃′ω′ + Aṡ′ = ṙ0 − As̃′ω′ + AN ṗ, (4)

and differentiating Eq. (3) leads to

r̈ = r̈0 − As̃′ω̇′ + AN p̈ + Aω̃′ω̃′s′ + 2Aω̃′N ṗ, (5)

where ω′ and ω̇′ represent the angular velocity and angular
acceleration defined in the body-fixed frame, respectively,
and s̃′ represents the skew-symmetric matrix corresponding
to s′.

3 Variational equations of a flexible body

3.1 Virtual work of the inertia force

The virtual displacement coordinate vector reads

δr = δr0 − As̃′δπ ′ + ANδ p, (6)

where δπ ′ represents the variation of the rotational displace-
ment vector defined in the body-fixed frame, and then the
virtual work of the inertia force can be written as

δWi = −
∫

V

ρδrT r̈dV, (7)

where ρ represents the mass density of the flexible body.
Substitute Eqs. (5) and (6) into Eq. (7), virtual work of the

inertia force is given by

δWi = δqT(−Mq̈ + Qi ), (8)

where q =
[

rT
0 π ′T pT

]T
represents the generalized

coordinate vector, and the generalized mass and inertia force
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matrices take the form

M =
⎡
⎣M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦ ,

Qi =
⎡
⎣ Q1

Q2
Q3

⎤
⎦ ,

(9)

where

M11 = ρV I,

M12 = MT
21 = −

∫

V

ρ As̃′dV, (10)

M13 = MT
31 =

∫

V

ρ ANdV,

M22 =
∫

V

ρ s̃′T s̃′dV = −
∫

V

ρ s̃′ s̃′dV,

(11)

M23 = MT
32 = −

∫

V

ρ s̃′T NdV =
∫

V

ρ s̃′NdV,

M33 =
∫

V

ρNT NdV,

(12)

Q1 = −
∫

V

ρ(Aω̃′ω̃′s′ + 2Aω̃′N ṗ)dV,

Q2 =
∫

V

ρ s̃′(ω̃′ω̃′s′ + 2ω̃′N ṗ)dV,

(13)

Q3 = −
∫

V

ρNT(ω̃′ω̃′s′ + 2ω̃′N ṗ)dV, (14)

where V represents the volume of the flexible body.

3.2 Virtual work of the elastic force

The Green–Lagrange strain tensor can be written as

εi j = 1

2

[
∂ui

∂x j
+ ∂u j

∂xi
+

3∑
k=1

(
∂uk

∂xi

)(
∂uk

∂x j

)]
,

i, j = 1, 2, 3, (15)

where x1, x2 and x3 represent the coordinates of the rela-
tive displacement vector s before deformation defined in the
body-fixed frame, and u1, u2 and u3 represent the coordinates
of the deformation vector defined in the body-fixed frame.

For s′ = [
s1 s2 s3

]T
, the relation between s′ and

[
u1 u2 u3

]T

is given by

[
u1 u2 u3

]T = [
s1 s2 s3

]T − [
x1 x2 x3

]T
. (16)

Substitute Eq. (16) into (15), one obtains

εi j = 1

2

[
∂(si − xi )

∂x j
+ ∂(s j − x j )

∂xi
+

3∑
k=1

(
∂(sk − xk)

∂xi

)

×
(

∂(sk − xk)

∂x j

)]
, i, j = 1, 2, 3, (17)

Equation (17) reads

εi j = 1

2

[
3∑

k=1

(
∂sk

∂xi

) (
∂sk

∂x j

)
− δi j

]

= 1

2

[(
∂s′

∂xi

)T (
∂s′

∂x j

)
− δi j

]

= 1

2

[
pT

(
∂ N
∂xi

)T (
∂ N
∂x j

)
p − δi j

]
, (18)

where

δi j =
{

1, i = j,
0, i �= j.

(19)

The strain tensor is given by

ε = [
ε11 ε22 ε33 2ε12 2ε23 2ε31

]T
, (20)

and virtual work of elastic force is written as

δWe = −
∫

V

δεT EεdV, (21)

where E represents the matrix of elastic coefficients, which
can be written as

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

E11 E12 E13 0 0 0
E21 E22 E23 0 0 0
E31 E32 E33 0 0 0
0 0 0 E44 0 0
0 0 0 0 E55 0
0 0 0 0 0 E66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (22)

where

E11 = E22 = E33 = λ + 2µ,

E12 = E21 = E13 = E31 = E23 = E32 = λ,

E44 = E55 = E66 = µ.

(23)

Substitute Eqs. (18), (20) and (22) into (21), one obtains

δWe = −δ pT K p, (24)
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702 J. Liu et al.

where K ( p) represents the nonlinear stiffness matrix, which
is given by

K = 1

2

3∑
i=1

3∑
j=1

∫

V

Ei j ( pT S j j p − 1)Si i dV

+
3∑

i=1

∫

V

E(3+i)(3+i)( pT Sik(i) p)[Sik(i) + Sk(i)i ]dV,

(25)

and k(i), Si j are defined as

k(i) =
{

i + 1, i = 1, 2,

1, i = 3,

Si j =
(

∂ N
∂xi

)T (
∂ N
∂x j

)
.

(26)

Each element of the stiffness matrix is given by

K (α, β) = 1

2

3∑
i=1

3∑
j=1

∫

V

Ei j ( pT S j j p − 1)Sii (α, β)dV

+
3∑

i=1

∫

V

E(3+i)(3+i)( pT Sik(i) p)

×[Sik(i)(α, β) + Sk(i)i (α, β)]dV . (27)

Virtual work of elastic force can be also written as

δWe = δqT Qe, (28)

where the elastic force matrix takes the form

Qe = [
0 0 −(K ( p) p)T

]T
. (29)

3.3 Virtual work of body force

Let f be the body force matrix defined in the inertial frame,
virtual work of body force then reads

δW f =
∫

V

δrT f dV = δqT Q f , (30)

where the generalized force matrix associated with the body
force reads

Q f =
∫

V

[
f T (s̃′ AT f )T (NT AT f )T

]T
dV . (31)

3.4 Variational equations

Application of variation principle leads to the variational
equations

δWi + δWe + δW f = 0, (32)

which can be written as

δqT(−Mq̈ + Q) = 0, (33)

where the generalized force matrix for Bi is given by

Q = Qi + Qe + Q f . (34)

4 Dynamic equations of flexible multibody systems

Variational equations of a flexible multibody system are given
by

N∑
i=1

δq(i)T(−M(i)q̈(i) + Q(i)) + δWs = 0, (35)

where δWs represents virtual work of the force element.

Defining q = [
q(1)T . . . q(N )T

]T
as the global generalized

coordinate vector, virtual work of the force element can be
written as

δWs = δqT Qs, (36)

where Qs represents the generalized force matrix related to
the force element.

For the flexible multibody system with constraint equa-
tions Φ(q, t) = 0, Lagrange’s equations of the first kind with
Lagrange multipliers and the acceleration equations read

[
Mg ΦT

q
Φq 0

] [
q̈
λ

]
=

[
Qg

−(Φq q̇)q q̇ − 2Φqt q̇ − Φ t t

]
, (37)

where Φq represents the Jacobian matrices, and λ represents
the Lagrange multipliers related to the corresponding con-
straint equations, and Mg , Qg represent the system gen-
eralized mass and force matrices of the flexible multibody
system, which are given by

Mg = diag(M(1), . . . , M(N )),

Qg = Qs +
[

Q(1)T, . . . , Q(N )T
]T

.
(38)

5 Matrix separation method for stiffness matrix

In order to calculate each element of the stiffness matrix
efficiently, Eq. (27) can be rewritten as

K (α, β) = pTCαβ p + cαβ, (39)
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where

Cαβ = 1

2

3∑
i=1

3∑
j=1

∫

V

Ei j Sii (α, β)S j j dV

+
3∑

i=1

∫

V

E(3+i)(3+i)[Sik(i)(α, β) + Sk(i)i (α, β)]

×Sik(i)dV, (40)

cαβ = −1

2

3∑
i=1

3∑
j=1

∫

V

Ei j Sii (α, β)dV . (41)

It can be seen that by separating coordinate matrix p(t)
from the integration matrix, the constant matrix Cαβ for each
element of the stiffness matrix can be calculated before time
integration begins, such that only matrix multiplication is
needed for each time step and computational efficiency can
be improved.

6 Comparison of different models

6.1 Linear model

In a linear model, the displacement of an arbitrary point on
the beam is written as

u1 = u10 − x2
∂u2

∂x1
− x3

∂u3

∂x1
, (42)

where u10 represents the longitudinal deformation of the cor-
responding point on the neutral axis, and the relation between
strain and deformation displacement is given by

ε11 ≈ ∂u1

∂x1
. (43)

In such model, the quadratic term of the strain is ignored,
which is closely related to the stiffening terms in dynamic
equations. Therefore, linear model fails to explain the stiff-
ening effect due to the high rotating speed.

6.2 Low-order approximate nonlinear model

In order to include the stiffening terms in the equations of
motion, a low-order approximate nonlinear model is used.
In such a model, a non-Cartesian variable w is led into the
expression of the longitudinal deformation [4]

u1 = w − 1

2

x1∫

0

[(
∂u2

∂ξ

)2

+
(

∂u3

∂ξ

)2
]

dξ

−x2
∂u2

∂x1
− x3

∂u3

∂x1
, (44)

and the axial strain is given by

ε11 ≈ ∂u1

∂x1
+ 1

2

[(
∂u2

∂x1

)2

+
(

∂u3

∂x1

)2
]

= ∂w

∂x1
− x2

∂2u2

∂x2
1

− x3
∂2u3

∂x2
1

. (45)

Equation 44 shows that the use of variable w may produce
high-order deformation terms in the mass and inertia force
matrices. However, with the assumption of small deforma-
tion, the mass and force matrices are approximated to the
second order. For each element of M and Q, one obtains

Mi j ( p) ≈ M0
i j + M1

i j p + pT M2
i j p,

Qi ( p, ṗ) ≈ Q0
i + Q1

i p + Q2
i ṗ

+ pT Q3
i p + pT Q4

i ṗ + ṗT Q5
i ṗ.

(46)

Because in a low-order approximate nonlinear model, the
high-order deformation terms are not taken into account, such
formulation is only suitable for simulation of flexible multi-
body systems with small deformation.

6.3 Present nonlinear model

In the present formulation, the axial strain is given in an exact
form

ε11 = ∂u1

∂x1
+ 1

2

[(
∂u1

∂x1

)2

+
(

∂u2

∂x1

)2

+
(

∂u3

∂x1

)2
]

, (47)

and employing the relative Cartesian coordinates and slopes
defined in the body-fixed frame instead of the deformation
coordinates, the mass and force matrices are simplified and
accurate without the need to consider high-order deformation
terms.

7 Simulation examples

7.1 Accuracy and efficiency verification

A flexible single pendulum is shown in Fig. 2. The geo-
metric property and material data of each beam are: mass
density ρ = 5, 540 kg/m3, the modulus of elasticity E =
7 × 105 N/m2, length l = 1.2 m, area A = 0.0018 m2,
moment of inertia I = 1.215 × 10−8 m4. Initially, the beam
is in horizontal and static state without deformation, and then
applied with gravitational force, the flexible single pendulum
undergoes a periodic motion. The beam is divided into four
elements, and Gear integration method is employed for the
numerical simulation. The time step is 10−4 s, and the error
tolerance is 10−8 m.

The displacement of the tip point in i0 and j0 directions are
shown in Figs. 3 and 4. Agreement of the present results with
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704 J. Liu et al.

Fig. 2 Flexible single pendulum

Fig. 3 Tip displacement component in x direction

Fig. 4 Tip displacement component in y direction

Table 1 Efficiency of the matrix separation method

With matrix Without matrix
separation (s) separation (s)

Consumed time 30 300

Fig. 5 Two flexible beams

those obtained by the absolute nodal coordinate formulation
(ANCF) verifies the correctness of the present formulation
for the dynamic analysis.

Efficiency of the proposed matrix separation method can
be verified by comparison of the consumed time for the
present formulation and the previous formulation without
matrix separation. Table 1 shows that the consumed time of
the present formulation is 10% of the formulation without
matrix separation.

7.2 Geometric stiffening effect

Two flexible beams are shown in Fig. 5. Beam B2 is con-
nected to B1, and B1 is connected to the ground with revo-
lute joints. The geometric property and material data of each
beam are: mass densityρ = 2.7667×103 kg/m3, the modulus
of elasticity E = 6.8952 × 1010 N/m2, length l = 4 m, area
A = 4 × 10−4 m2, moment of inertia I = 1.33 × 10−8 m4.
In this simulation, body force is not taken into account.

Initially, the body fixed frames of the two beams are paral-
lel to the inertial frame without deformation, thus, r(1)

0 (0) =
0, r(1)

0 (0) = [
l 0

]T
, θ1(0) = 0, θ2(0) = 0, p1(0) = 0,

p2(0) = 0. The initial angular velocities for B1 and B2 are
θ̇1(0) = 4 rad/s and θ̇2(0) = 4 rad/s, respectively.

The time history of the tip transverse deformation of B1

is shown in Figs. 6 and 7. It can be seen that in case of high
rotating speed, the deformation results obtained by the lin-
ear model are quite different from those obtained by the two
nonlinear models. The large amplitude and low frequency
vibration of the tip transverse deformation show the char-
acteristics of the softening effect of such model, such that
the linear model cannot be used for the dynamic analysis
of the stiffening problem. The agreement of the results of
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Fig. 6 Tip transverse deformation of B2

Fig. 7 Tip transverse deformation of B2

the low-order approximate nonlinear model and the present
model verifies the effectiveness of the low-order approximate
nonlinear model for the stiffening analysis of a multibody
system with high rotating speed and small deformation. Fig-
ures 8 and 9 show that due to the coupling of deformation
and rotational motion, the angular velocity of B1 obtained by
the linear model is also different from those obtained by the
nonlinear models.

7.3 Large deformation effect

The influence of large deformation on dynamic performance
of a hub-beams system is shown in the following section.
As shown in Fig. 10, the hub is connected with a rotational
spring, and B1 is connected to the hub with a fixed joint.
The stiffness of the rotational spring is 1,000 Nm/rad. The
radius and rotary inertia of the hub are 0.5 m and 10 kg m2,
respectively. Each beam has the same geometric and material
properties as the example in Sect. 7.1.

Fig. 8 Angular velocity of B1

Fig. 9 Angular velocity of B1

Fig. 10 Hub-beams system with rotational spring

Initially, the beams are in static state without deformation,
θ1(0) = θ0 = 0.15 rad, θ2(0) = 0, thus,

r(1)
0 = [

R cos θ0 R sin θ0
]
,

r(2)
0 = [

(R + l) cos θ0 (R + l) sin θ0
]
,

p1(0) = 0, p2(0) = 0.

The time histories of the tip transverse deformation and
rotational angle of B1 are shown in Figs. 11 and 12. It can be
seen that due to the excitation of the high-frequency spring
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Fig. 11 Tip transverse deformation of B1

Fig. 12 Rotational angle of B1

torque, the deformation is large enough (approximate 5% of
the beam length) to cause simulation errors in case that the
low-order approximate formulation is used, since the high
order deformation terms are not included in the mass and
force matrices in such model. It is shown that the amplitude
of vibration of the tip transverse deformation and rotational
angle obtained by the low-order model gradually increases,
which may lead to divergence of the deformation results.
However, it can be seen that the vibration of the deformation
and rotational angle obtained by the present model is stable,
which verifies the effectiveness of the present model for the
dynamic analysis of a flexible multibody system with large
deformation.

8 Conclusions

A new hybrid-coordinate formulation considering the
geometric nonlinear effect is proposed. On the basis of the
exact strain–displacement relation, such formulation is

suitable for simulation of a flexible multibody system with
large deformation. Agreement of the present results with
those obtained by the ANCF verifies the correctness of the
proposed formulation. Comparison of the present results with
those obtained by the linear model and low-order approxi-
mate nonlinear model shows that the linear model fails to
explain the stiffening problem due to the neglect of the
quadratic terms in the strain–displacement relationship. In
addition, it is shown that the low-order approximate non-
linear model succeeds in explaining the dynamic stiffening
phenomenon. However, due to the neglect of the high-order
deformation terms in the mass and force matrices, such
method is not suitable for the simulation of the flexible multi-
body system with large deformation.
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