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Abstract This paper describes a practical method for
finding the invariant orbits in J2 relative dynamics. Working
with the Hamiltonian model of the relative motion including
the J2 perturbation, the effective differential correction algo-
rithm for finding periodic orbits in three-body problem is
extended to formation flying of Earth’s orbiters. Rather than
using orbital elements, the analysis is done directly in phy-
sical space, which makes a direct connection with physical
requirements. The asymptotic behavior of the invariant orbit
is indicated by its stable and unstable manifolds. The period
of the relative orbits is proved numerically to be slightly dif-
ferent from the ascending node period of the leader satellite,
and a preliminary explanation for this phenomenon is pre-
sented. Then the compatibility between J2 invariant orbit and
desired relative geometry is considered, and the design pro-
cedure for the initial values of the compatible configuration
is proposed. The influences of measure errors on the invariant
orbit are also investigated by the Monte–Carlo simulation.

Keywords Formation flying · J2 invariant orbit ·
Differential correction · Formation configuration

1 Introduction

Formation flying problem (FFP) of satellites has attracted
much attention of researchers in recent years. Since the
relative motion of satellite formations is very complicated,
many works have been devoted to simplifying the relative
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dynamics to better understand the relative motion [1–6]. Most
of them are based on the non-perturbed Keplerian orbits. In
fact, the presence of the disturbances between satellites (e.g.,
J2 term, relative drag) will lead to drift in a formation. And it
is uneconomical to counteract the drift just by means of the
active control. Therefore, the study about the relative dyna-
mics associated with the perturbations has more extensive
perspective [1].

The dominant J2 oblateness effect in perturbations is
considered as the main destroyer to the formation configura-
tion [1–3]. And J2 invariant orbit is firstly defined by Schaub
and Alfriend [1] in mean orbital elements to minimize the
amount of fuel to maintain. Then Li et al. [2,3] concluded,
from the point of view of relative orbital elements, that the
drifts of relative orbit result from the orbital inclination and
right ascension of ascending node of the two satellites. Zhang
and Dai [4] removed the drifts by adjusting the semi-axis
of the follower satellite and obtained a similar conclusion.
However, all the above works are based on the mean orbital
elements instead of the Cartesian coordinates, which prevents
the J2 invariant orbit from being applied.

By means of Routh transformation and dynamical system
theory, Koon and Marsden [5] developed a method to find
the J2 invariant orbit. Kasdin and Koleman [6] studied the
Hamilton model of relative motion with leader satellite (Lea-
der) orbit of zero inclination, and suggested to describe the
periodic relative motion using canonical epicyclic orbital ele-
ments. Biggs et al. [7] proposed a method to determinate the
J2 invariant orbit with the leader’s orbit of zero inclination
based on the targeting method in chaos dynamics.

So far, FFP is considered only in the field of Restricted
Two Body Problem (R2BP) or perturbed R2BP. Actually, the
relative motion is a degeneration of Circular Restricted Three
Body Problem (CR3BP) when the mass radio µ → 0 [8].
So some technologies developed for Halo orbits (a class
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of periodic orbits in CR3BP) may be applied to FFP. For
example, Richardson [9] attained the third order expansion
for FFP, just as he did for Halo orbit in 1980.

Motivated by the idea above, the authors of this paper will
extend the differential correction (DC) algorithm for finding
Halo orbit [10,11] in CR3BP to FFP of Earth’s orbiters for
searching the J2 invariant orbit. Rather than using orbital ele-
ments, the analysis is based on the Hamiltonian form in phy-
sical space, which makes a direct connection with physical
requirements. The invariant manifolds (stable and unstable
manifold) are used to indicate the asymptotic behavior of the
invariant orbit. It is demonstrated that the period of the orbit is
slightly different from the ascending node period of the leader
satellite. Then the formation remain in the particular confi-
guration is considered. The design procedure is proposed to
create the initial values of the compatible configuration. The
influence of measure errors upon DC is investigated by the
Monte–Carlo simulation.

The DC algorithm developed in this paper can obtain the
real-time velocity required by the J2 invariant orbit from the
measure information, so it can be used in the autonomous
formation flying. Similarly, the long-term correction can be
used to design the compatible formation configuration.

2 Hamiltonian model for relative motion dynamics

2.1 Coordinate definition

(a) Orbital reference frame for the leader satellite (SLO): the
origin O is set at the leader; X O axis is in the direction
from the Earth’s center to the leader; Z O axis is in the
direction of the orbital momentum moment of the leader;
YO axis is determined by the right-hand rule.

(b) Inertial reference frame for the geocentric-equator (SEI):
the origin O is set at the Earth’s center; X I axis points to
the vernal equinox; Z I is along the spin axis of the Earth;
YO is determined by the right-hand rule. The sketch map
of relative motion in SLO is shown in Fig. 1.

2.2 J2 absolute dynamics

Denote that u is the argument of latitude; i is the orbital
inclination; � is the right ascension of ascending node;
L is the magnitude of the orbital momentum moment; p is

Fig. 1 Sketch map of relative motion in SLO

the semi-latus rectum. The orbital elements in this paper are
referred to the leader’s without any exception.

Under the effect of J2 perturbation, u, i , L , rL , r L , vL of
the leader can be obtained numerically. So ṙL , �̇, i̇ are as
following:

i̇ = rL cos u√
µp

· fh, (1)

�̇ = rL sin u√
µp sin i

· fh, (2)

u̇ = L

r2
L

− �̇ cos i, (3)

ṙL = xL

rL
ẋL + yL

rL
ẏL + zL

rL
żL = r L · vL

rL
, (4)

fh = −3J2 R2
e µ

2r4
L

· sin 2i sin u, (5)

where r L is the position vector of the leader; rL is the magni-
tude of r L ; vL is the velocity vector of the leader in SEI;
Re is the Earth’s radius; µ is the gravitational constant of the
Earth; J2 is the second order zonal coefficients of gravitatio-
nal potential.

Integrating Eqs. (1)–(5) will achieve high precisions for
the short-term calculation, but will accumulate the integral
errors for the long-term calculation. So the analytic theory for
orbital perturbation is available for the long-term integration
with lower precision requirement.

2.3 J2 relative dynamics

The kinematics of the follower relative to the leader is

r F = r L + ρ, (6)

vF = vL + ω × (r L + ρ) + dO

dt
ρ, (7)

where r F is the position vector of the follower; ρ is the posi-
tion vector of the follower relative to the leader with its com-
ponents [x y z]T in SLO; vF is the inertial velocity of the
follower; ω is instantaneous angle velocity vector of the lea-

der; dO

dt means differentiating with respect to the time in SLO.
The instantaneous angle velocity ω has the form in SLO as

(ω)O = Rz(u)Rx (i)

⎡
⎣

0
0
�̇

⎤
⎦ + Rz(u)

⎡
⎣

i̇
0
0

⎤
⎦ +

⎡
⎣

0
0
u̇

⎤
⎦, (8)

where Rz(θ) and Rx (θ) are the elementary transformation
matrixes around Z and X axis, respectively. And r F has the
form in SEI as

(r F )I = Rz(−�)Rx (−i)Rz(−u)

⎡
⎣

rL + x
y
z

⎤
⎦, (9)

where rF = ‖r F‖ = √
(rL + x)2 + y2 + z2.
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Expanding the third component of Eq. (9) yields

(zF )I = (rL + x) sin u sin i + y cos u sin i + z cos i. (10)

The follower’s kinetic energy is

K = 1

2
(vF )T(vF ) (11)

and its potential energy is

U = − µ

rL
+ µJ2 R2

e

2r3
F

[
3
(zF )2

I

r2
F

− 1

]
, (12)

then its Lagrange function is

L ′ = K − U. (13)

The generalized momentum is defined as p = ∂K
∂ρ̇

, namely

px = ẋ + z(cos u sin i�̇ − sin ui̇)

− y(cos i�̇ + u̇) + ṙL ,

py = ẏ + (rL + x)(cos i�̇ + u̇)

− z(sin u sin i�̇ + cos ui̇),

pz = ż + y(sin u sin i�̇ + cos ui̇)

− (rL + x)(cos u + sin i�̇ − sin ui̇),

(14)

then the Hamiltonian function is

H =
∑
x,y,z

ρi pi − L ′ = − p2
x

2
− p2

y

2
− p2

z

2

+px [px − z(cos u sin i�̇ − sin ui̇)

+y(cos i�̇ + u̇) − ṙL ]
+py[py − (rL + x)(cos i�̇ + u̇)

+z(sin u sin i�̇ + cos ui̇)]
+pz[pz − y(sin u sin i�̇ + cos ui̇)

+(rL + x)(cos u + sin i�̇ − sin ui̇)]

− µ

[(rL + x)2 + y2 + z2]1/2 + J2 R2
e µ

2

·{3[(rL + x) sin u sin i + y cos u sin i + z cos i]2

−(rL + x)2 − y2 − z2}/[(rL + x)2 + y2 + z2]5/2,

(15)

where u, i, rL , ṙL , �̇, i̇ are the time explicit functions deter-
mined by the J2 absolute dynamics of the leader.

Choosing the state vector X = [x, y, z, px , py, pz]T, the
J2 relative dynamics has the brief form as

Ẋ = J∇∇∇X H, (16)

where J is a symplectic operator, and ∇∇∇X H is the gradient
vector of H .

Hereto, the Hamiltonian model for J2 relative dynamics
has been constructed without any simplified assumptions,
and the Lagrange or Newtonian model can be also construc-
ted by the similar process. The model constructed here will
have extraordinarily precision in stationkeeping control and
state estimations.

It is the Hamiltonian model that has the advantage of requi-
ring only one-order ordinary differential equations, while
both the Lagrange and Newtonian models need second order
differentials from the leader. Especially for the long-term
design, the symplectic integrator just based on Hamiltonian
system will retard the energy dissipation, which is another
advantage of the Hamiltonian model.

2.4 Perturbed period

According to the J2 absolute dynamics, the oscillating period
of elements u, a, e, i is termed the ascending-node period
Td = ∫ 2π

0
dt
du du; the oscillating period of r , ṙ is notated

Tr ; the mean orbital period is T̄ = 2π
√

ā3/µ, where ā =
1

2π

∫ 2π

0 a(u)du is the mean semi-axis. Generally, Td , Tr and

T̄ have little difference:

�1 =
∣∣∣Tr − Td

Td

∣∣∣ ∼ O(10−4),

�2 =
∣∣∣ T̄ − Td

Td

∣∣∣ ∼ O(10−4).

(17)

3 Existence and denseness of invariant orbit

3.1 Existence

According to [1] and [2], the existent condition for the J2

invariant orbit is

δTd = 0,

δ[(��)2π ] = 0,
(18)

whose first-order expansion is

fi (δā, δī, δē) = 0, i = 1, 2,

δ�̄, δω̄, δM̄ arbitrary,
(19)

where fi are the linear combinations of δā, δī, δē. The
detailed expressions of fi can be found in [1] and [2]. The
little difference in geometry between the leader and the follo-
wer can be expressed as the variation on the leader’s elements
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and coordinates, namely

δ� = �follower − �leader, � = ā, ī, ē, �̄, ω̄, M̄, x, y, z.

(20)

The more strict condition for the J2 invariant orbit is that all
the elements have the same excursing rate, namely,

δā = 0, δī = 0, δē = 0,

δ�̄, δω̄, δM̄ arbitrary.
(21)

It is obvious that both the relative orbits given in Eqs. (19)
and (21) have the same period Td . The Poincaré section (PS)
of relative orbits deduced from Eq. (21) is shown in Fig. 2
(Poincaré Mapping will be defined in Sect. 4.1). The PS has
no fix points or closed curves, so there is no rigorous periodic
or quasi-periodic orbits in relative orbits, which is consistent
to the conclusion of “the relative orbit is not periodic, but
bounded for the short terms of a, e, i” given in [1] and [2].

3.2 Denseness

Theorem The invariant orbit is dense in some domain; it
means that any point in position space will stay on some
invariant orbit.

Proof We just need to prove that the relative position vector
of invariant orbit can distribute arbitrarily in inertial reference
frame.

Fig. 2 Poincaré section

The relative position vector of the follower relative to the
leader can be expressed as the variation of the leader’s posi-
tion vector. And the position vector of the leader has the form
in SEI as
⎡
⎣

xi

yi

zi

⎤
⎦ =

⎡
⎣

cos u cos � − sin u cos i sin �

cos u sin � + sin u cos i cos �

sin u sin i

⎤
⎦ · a(1 − e2)

1 + e cos θ
,

(22)

where all the orbital elements are osculating elements.
Taking the variation for Eq. (22) yields

δ

⎡
⎣

xi

yi

zi

⎤
⎦ =

⎡
⎣

− sin u cos �δu − cos u sin �δ� − cos u cos i sin �δu − sin u cos i cos �δ�

− sin u sin �δu + sin u cos �δ� + cos u cos i cos �δu − sin u cos i sin �δ�

cos u sin iδu

⎤
⎦

· a(1 − e2)

1 + e cos θ
+

⎡
⎣

cos u cos � − sin u cos i sin �

cos u sin � + sin u cos i cos �

sin u sin i

⎤
⎦ · a(1 − e2)

(1 + e cos θ)2 e sin θδθ + O(δa, δi, δe). (23)

According to Eq. (19) or (21), δ�, δω, δM for the invariant
orbit are arbitrary, so δ[xi yi zi ]T has an arbitrary distribution
in some domain. Therefore, the theorem proof is complete.

Remark 1 The denseness guarantees the existence of the J2

invariant orbit on any point, but not the uniqueness.

4 Differential correction

The initialization procedure of FFP is as follows: the follo-
wer is long-rangely guided to the neighborhood of the leader,
and then the velocity impulse (1st correction) required by the
invariant orbit makes the follower fly in the desired forma-
tion. The autonomous strategy of stationkeeping for FFP is as
following: the follower deviates from the invariant orbit after
periods of time, and then the velocity impulse (2nd correc-
tion) derived from the real-time measure information makes
the follower return formation fly again.

Due to the denseness of the invariant orbit, any position
in physical space can be used for invariant formation. So the
desired velocity in formation is just decided by the position.
The following text will give a correction algorithm aiming at
the velocity generation.

4.1 Correction algorithm

Definition of Poincaré Mapping (see Fig. 3) Poincaré sec-
tion 	 is taken at X = [x0 0 0 0 0 0]T, and the mapping P
is defined as

∀X0 ∈ 	, X f = P(X0) = φT ∗(X0),

where φ is the flow; T ∗, the interval that the orbit intersects
	 twice, is termed Poincaré period in this paper.
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J2 invariant relative orbits via differential correction algorithm 589

Fig. 3 Sketch of the Poincaré Mapping

Then the variation equation for the J2 relative dynamics
is as follows

Φ̇(t) = J
∂2 H

∂ X2 Φ(t), Φ(0) = I6×6. (24)

The monodromy matrix for the invariant orbit is defined as

Φ(T ∗) := Φ(t)|t=T ∗

Φ(T ∗) has the equivalent definition as

Φ(T ∗) := ∂φt (X0)

∂ X0

∣∣∣
t=T ∗ = ∂ X(T ∗)

∂ X(0)
. (25)

Differentiating the Poincaré Mapping yields

dX f = φT ∗+dT (X0 + dX0) − φT ∗(X0). (26)

Ignoring the second orders and expanding this in Taylor series
yield

dX f = Φ(T ∗)dX0 + ∂ X
∂t

∣∣∣
t=T

dT, (27)

i.e.,

[0 dy f dz f d px f d py f d pz f ]T

= Φ(T )[0 0 0 d px0 d py0 d pz0]T

+[ẋ f ẏ f ż f ṗx f ṗy f ṗz f ]T · dT, (28)

expanding the first element of Eq. (28) yields

dx f = 
14dẋ0 + 
15d ẏ0 + 
16dż0 + ẋ f dT = 0. (29)

Define

Z := [dy dz d px d py d pz]T, (30)

M :=

⎡
⎢⎢⎢⎣


24 
25 
26

...
...

...


64 
65 
66

⎤
⎥⎥⎥⎦

5×3

, (31)

then the correction is

dṼ 0 = [d px0 d py0 d pz0]T. (32)

It is seen from Eq. (14) that dṼ 0 is just the physical velocity
correction dV 0 = [dẋ0 d ẏ0 dż0]T. Therefore, the velocity
correction should satisfy the following condition

− Z f =
{

M + 1

ẋ f

∂ Z
∂t

∣∣∣
f
[
14 
15 
16]

}
dṼ 0. (33)

Denote

D := M + 1

ẋ f

∂ Z
∂t

∣∣∣
f
[
14 
15 
16] (34)

from Eq. (33), one can get the pseudo inverse solution of
Eq. (34)

dṼ 0 = −(DT D)−1 DT Z f (35)

the correction for T ∗ is

dT = − 1

ẋ f
[
14 
15 
16]dV 0. (36)

4.2 Convergency

DC algorithm is essentially a modification of Newton itera-
tion algorithm to solve the non-linear equation

F5×1(V 0) = 0. (37)

The convergent condition for the correction algorithm
given in Sect. 4.1 is the existence and denseness for the J2

invariant orbit. The initial value for iterations should be near
the true value. Then executing 2–4 iterations will give the
required corrections. The existence conditions for unpertur-
bed periodic orbit can be used as the initial guess for the 1st
correction, and the result of 1st correction can be used as the
initial guess for the 2nd correction.

For the formation with large eccentricity, the initial guess
can be found via the Lawden equations; for the formation
with small eccentricity, the existence conditions for the per-
iodic orbit in C-W equations can be used as the initial guess

ẏ0 = −2ωx0,

ẋ0 = 1

2
ωy0,

ż0 arbitrary,

(38)

where ω is the angle velocity of the leader.
Associating with the existence and denseness for the J2

invariant orbit, x0 y0z0 and ż0(to be corrected) will give the
uniqueness of the J2 invariant orbit. So the J2 invariant orbit
has four-degree of freedom (DOF, namely, x0 y0z0 and ż0),
which matches Eq. (19) (the DOF are δ�̄, δω̄, δM̄ and one
of δā, δē, δī).

In order to make the invariant orbit drift more slowly, we
can improve the correction algorithm: the Poincaré Map-
ping is redefined as

∀X0 ∈ 	, X f = P(X0) = φN ·T ∗(X0),
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Table 1 Instantaneous orbital elements of the lead satellite

a m e i (◦) � (◦) ω (◦) θ (◦)

6,971,004 0.005 97.73 10 30 95

where N · T ∗ is the interval when the orbit intersects the
Poincaré section 	 after N times.

The correction algorithm can be termed N -Periodic Cor-
rection (N -DC), and its initial guess can be the result of 1-DC
(N = 1).

4.3 Numerical simulation

The instantaneous orbital elements of the leader are listed in
Table 1, the relative initial values of the follower is listed in
Table 2 where the excursions before and after corrections are
also listed.

The results in Table 2 can be recapitulated as follows:

(1) The excursion in along-track velocity is restrained for
the correction. The more iteration times the correction
has, the fewer excursions the along-track velocity has.

(2) The Poincaré section 	 chosen at the Plane X =
[x0 0 0 0 0 0]T means that the quadrature is termi-
nated at no excursion in the radial direction, and the
correction will weaken the excursion in the along-track
and out-of-plane directions. Thus the excursion in the
radial direction results just from the numerical errors,
which can be weakened by the smaller step size in the
quadrature.

(3) The trajectories evolving during 20 Poincaré periods
are showed in Fig. 4 (the dashed line represents the
trajectories without correction, the real line represents
the trajectories with correction, and the asterisk repre-
sents the initial position). The trajectories have only the
excursion of 42.6 m during 20 Poincaré periods (14 km
for the case without correction).

(4) The excursion during 400 Poincaré periods after 1-DC
is 2.1075 km (266.17 km for the case without correc-
tion).

(5) In the case of long-term DC, the large N will make
the Matrix M in Eq. (31) so large that it may lead the
correction algorithm to diverge. So its initial guess in
this case will have more rigorous restriction, and step-
by-step correction is an effective method. It means that
one can start from short-term DC, and use the result
from short-term DC as the initial guess of long-term
DC. The correction for N = 400 in this paper follows
the process

C-W→25 DC→50 DC→· · · → 375 DC→400 DC.

The final excursion for this process is 222.2964 m.
(6) Just from the algorithm’s point of view, the correction

sequence may extend to the larger N . However, from
the physical point of view, other ignored perturbations,
such as J3 and J4 terms, atmospheric drag, Sun and
Moon perturbing acceleration, may accumulate toge-
ther, which will make the correction invalid.

5 Period and stability of invariant orbit

5.1 Period of invariant orbit

According to the theory of spectrum analysis, the Hamiltonian
function can be expanded as follows

H = H0 + ε1 H1 + ε2 H2 + · · · , (39)

where H0 is just the Kepler motion (with period T̄ ); H1 is the
periodic oscillations in u, a, e, i caused by J2 (with period
Td); and H2 is the periodic oscillations in r, ṙ (with period
Tr ). Obviously, ε1 = O(J2), and ε2 = O(J2) · O(ω̇) =
O(J 2

2 ).

Table 2 Initial relative condition and DC of the follow satellite

Case x0 (m) y0 (m) z0 (m) ż0(m s−1) Poincaré Excursions before and after correction (�CW/�Correction) Correction �V (m s−1)

period T (s)

�x (m) �y (m) �z (m) X Y Z

1 1,000 −15,000 −1,500 −0.05 5,800.125 −0.53/ − 0.71 −734.40/ − 0.0064 −5.61/ − 0.011 0.026 −0.042 −0.919

2 15,000 1,000 1,500 0.1 5,800.125 0.025/0.04 710.31/0.10 5.38/ − 0.004 0.021 0.041 0.869

3 −1,500 −1,000 15,000 −0.1 5,800.125 −0.013/ − 0.01 −140.00/ − 0.24 59.15/0.57 0.237 −0.016 0.981

4 1,000 −15,000 −1,500 −0.05 5,800.125×20 −4.48/ − 4.14 −1.4 × 104/40.45 −93.35/12.75 0.026 −0.042 −0.919

5 1,000 −15,000 −1,500 −0.05 5,800.125×400 −1.4 × 104/ − 5.86 −2.66 × 105/2,084 −1, 518.2/ − 317.4 0.026 −0.042 −0.919

6 1,000 −15,000 −1,500 −0.05 5,800.125×400 −1.4 × 104/ − 0.38 −2.66 × 105/ − 222.3 −1, 518.2/ − 0.32 6.876 −0.053 −0.206

The excursions in Cases 1–3 are the ones during 1 Poincaré period after 1-DC, the excursion in Case 4 is the one during 20 Poincaré periods after
1-DC, the excursion in Case 5 is the one during 400 Poincaré periods after 1-DC, and the excursion in Case 6 is the one during 400 Poincaré periods
after 400-DC
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J2 invariant relative orbits via differential correction algorithm 591

Fig. 4 Evolvement of the J2
invariant orbit

According to the definition of Poincaré Mapping, the
period for the relative orbit is the Poincaré period
T ∗ = 5,800.125 s; the mean orbital period for the leader can be
attained via its mean orbital elements, T̄ = 5,796.3 s; nume-
rically integrating the J2 relative dynamics in 50 mean per-
iods, one obtains Td = 5,803.5 s, Tr = 5,800.0 s. It is obvious
that T ∗ is more close to Tr than Td , and here we will give
the elementary explain for the phenomenon in the follows
[12]:

Without the consideration of J2 perturbation, the system
H0 will have the periodic solutions whose period is T̄ (whe-
ther the different ellipse orbits have the periodic relative
motions just depends on if they have the same semi-axis).
There are still the periodic solutions for the system H0 asso-
ciating with the periodic disturbance ε1 H1. However, the
solution’s period becomes the period Td due to the distur-
bance. In the similar manner, the system H0 + ε1 H1 will
associate with the periodic disturbance ε2 H2, so the period
of the remaining periodic solutions becomes Tr .

All the process is similar to the forced vibrations of a
mechanical spring, but the rigorous proof needs more
advanced mathematical theories, which will be introduced
in our another paper.

5.2 Stable and unstable manifolds

Hamiltonian theory indicates that Φ = Dz P(z), the diffe-
rential of P(z), is the symplectic matrix. By means of the
numerical technique, one can abtain the eigenvalues of Φ:
|λ|i = 1, i = 1, 2, 3, 4, λ5 = λ−1

6 > 1. So the invariant

Fig. 5 A branch of stable and unstable manifolds of relative periodic
orbit

orbit abtained by DC has the 4D center manifolds (with the
eigenvalues λi , i = 1, 2, 3, 4), 1D stable manifolds (with the
eigenvalues λ6), and 1D unstable manifolds (with the eigen-
values λ5). One branch of stable and unstable manifolds of
the periodic orbit is shown in Fig. 5 (light-colored surface
represents the stable manifolds, and deep colored surface
represents the unstable manifolds).

Similar to the asymptotic behavior of Halo orbit, the stable
and unstable manifolds have significant applications in for-
mation initialization, reconfiguration and deconstruction: the
follower can tend to the invariant orbit along the stable mani-
folds with few fuel consumptions, and can also depart from
the invariant orbit along the unstable manifolds at the end of
formation mission.
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6 Compatibility between J2 invariant orbit
and formation configuration

6.1 Formation configuration

The leader and the follower should fly in some configuration
to fulfil a prescript mission. The usual configurations are
spatial circularity, subpoint circularity, coplanar ellipse, and
so on [13].

According to the C-W equations, the solution to the rela-
tive motion in spatial circularity (x2 + y2 + z2 = R2) is as
follows

x = R

2
cos(ωt + α),

y = −R sin(ωt + α),

z = ±√
3x,

(40)

where R is the radius of the spatial circularity, and α is the
initial phase angle at the time t = 0.

Notate θ = ωt +α. Then only one DOF (θ ) is necessary to
determine the relative motion (with R known). Here only the
J2 invariant orbit in spatial circularity configuration is inves-
tigated, and the cases for subpoint circularity and coplanar
ellipse can be achieved similarly.

6.2 Compatibility definition

The J2 invariant orbit abtained via DC at any point P on the
configuration may be quite different from the desired orbit (as
the worst case, the two orbits may be nearly vertical with each
other). Meng [13] illustrated the difficulty of maintaining the
formation configuration and the J2 invariant orbit at the same
time. Meng [14] considered that the destruction of the J2

perturbation to formation configuration can be rejected for
some given inclinations of the leader.

The compatibility between the J2 invariant orbit and the
formation configuration at point P is defined as the similarity
of them. So the more similar they are, the better compatibility
they have, and vice versa.

Define the compatibility parameter of point P as C(P),
i.e.,

C(P) :=

√(
max

(x,y,z)∈J2I.O.(N )

√
x2 + y2 + z2 − R

)2 +
(

min
(x,y,z)∈J2I.O.(N )

√
x2 + y2 + z2 − R

)2

R
,

where J2 I.O.(N ) represents the J2 invariant orbit obtained
via the N -DC. The smaller C(P) is, the better compatibility
they have, and vice versa.

The procedure to obtain the distribution of C-P and the
compatible configuration is shown as follows:

Fig. 6 Distribution of C-P

for θ = 0–360◦

Step 1: transform θ into (x, y, z, ẋ, ẏ, ż) on the basis of
Eq. (39), namely θ → (x, y, z, ẋ, ẏ, ż);

Step 2: use N -DC on the point to give the velocity correction
�V and its J2 invariant orbit;

Step 3: calculate the compatibility parameter C(P);

end
plot the distribution of C-P;
the points satisfying the given compatibility (or the extremum
of C(P)) and their J2 invariant orbits are the expected ones.

Figure 6 shows the distribution of compatibility parameter
C vs. P (with correction period N = 1, the orbital elements
for the leader is chosen as same as in Sect. 4.3, and the radius
of the spatial circularity R is 20 km). It is seen that the dis-
tribution of C-P has the characters of uncontinuity, of no
analytic expression, and of multiple humps.

Plotting the distribution of C-P will cost lots of calcu-
lations. Furthermore, in most of cases, one needs to get the
minimum of C-P only, not the total distribution. So the ran-
dom search method, for example, Genetic Algorithm (GA),
is suitable to solve the extremum problem like the distribu-
tion of C-P . The cost function for the problem is just C(P),
and the parameter to be optimized is θ . The mature GA Tool-
box in MATLAB7.0 can deal with this work, so the details
are neglected here.

6.3 Numerical simulation

The instantaneous orbital elements of the leader are as same
as in Table 1; the initial conditions are determined by Eq. (40)
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Table 3 Relative initial condition and DC of the follower

Case Poincaré period Excursions before and after correction (�CW/�Correction) Correction �V (m s−1) Consistency parameter

T (s) �x (m) �y (m) �z (m) X Y Z C

7 5,800.125 3.14/0.47 760/−2.9 × 10−4 4.67/1.18×10−2 0.0199 0.00988 −0.0812 0.0034

8 5,800.125×50 756/0.84 8.57×104/195.36 −160.70/− 34.66 0.722 −0.0456 −0.621 0.0470

The excursion in Case 7 is the one during 1 Poincaré period after 1-DC, and the excursion in Case 8 is the one during 50 Poincaré periods after
50-DC

Fig. 7 Evolvement of
compatible spatial-circular
configuration

with θ = 323.1◦; the radius of the spatial circularity R is
20 km. The excursions and corrections �V ’s after 1-DC or
50-DC are shown in Table 3.

The results in Table 3 can be recapitulated as
follows:

(1) The excursion is just 0.4757 m during 1 Poincaré per-
iod after 1-DC (Case 7), and 198.4101 m during 50
Poincaré periods after 50-DC (Case 8).

(2) Trajectories evolving during 50 Poincaré periods are
showed in Fig. 7 (the light-colored line represents the
J2 invariant orbit, the deep colored line represents the
ideal configuration, and asterisk marks the initial posi-
tion). The trajectories are slightly distorted under the J2

perturbation.
(3) The distance between the leader and the follower during

50 Poincaré periods is shown in Fig. 8. The formation
configuration is destroyed gradually, but the destruc-
tion in 50 Poincaré periods is so tiny that the com-
patibility parameter C only increases from 0.0034 to
0.047.

Fig. 8 Distance r between the leader and the follower

7 Influences of measure errors on correction

7.1 Dispersion error analysis

In engineering practice, the orbit determination error E1 of
the leader and the relative navigation error E2 will have an
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Fig. 9 Error distributions in position

Table 4 Confidence level

Confidence (%) Error distribution (m)

X Y Z

90 0.8747 104.76 0.0150

95 0.9217 123.72 0.0176

99 0.9695 148.23 0.0974

adverse influence on the correction results. In this paper, E1

and E2 are supposed to obey the Gauss distributions. Their
means are all zeros. The variances (1σ ) are 50 m in position
and 0.01 m/s in velocity for E1, and 0.1 m in position and
0.005 m/s in velocity for E2. The measure precisions of the
leader’s orbit determination and relative navigation can be
achieved by GPS and space-borne radars or other devices
[15].

7.2 Monte–Carlo simulation

E1 and E2 will make the correction results random. There-
fore, the Monte–Carlo simulation involving 250 iterations is
used to investigate the statistical error dispersions of correc-
tion results. Error distributions in position are shown in Fig. 9
(errors in magnitude and direction), and confidence levels are
shown in Table 4 (errors just in magnitude).

From the simulation, we find that the measure errors have
the main influence on the Y axis, secondary on X and Z axis.
So the stationkeeping for the invariant orbit is necessary.

8 Conclusions

This paper dealt with the J2 invariant orbits for formation
flying. The Hamiltonian model for relative motion including

the J2 perturbation was constructed without any simplified
assumption. The DC method developed for finding periodic
orbits (Halo orbits) in CR3BP was extended to the formation
flying. Thereby, a new method of searching the J2 invariant
orbits was obtained. The method is suitable for the measure
and control operation in a formation flying mission since
the Cartesian coordinates are adopted. The stable and uns-
table manifolds were calculated to indicate the asymptotic
behavior of the relative periodic orbits, which can be used
to initialize, reconfigure or deconstruct the formation. A pre-
liminarily theoretical analysis was given to explain why the
period of the relative orbits via DC is different from the ascen-
ding node period of the leader. Then the compatibility bet-
ween the J2 invariant orbit and the formation configuration
was proposed, accompanied with the design procedure for
the initial guess of the compatible configuration. The statis-
tical dispersion analysis was performed by the Monte–Carlo
simulation.

The research shows that the J2 relative dynamics and DC
may give the required velocity on-line for the invariant orbit
according to the real-time measure. So the research results
can be used to autonomous formation flying. Moreover, the
long-term correction can be used to design the compatible
formation configuration. However, orbit determination and
relative navigation errors will destroy the correction results,
which will increase the fuel consumption for maintaining
formation. The measure errors are still the barrier for the
engineering practice in formation flying.
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