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Abstract The flow near a wall suddenly set in motion for
a viscoelastic fluid with the generalized Oldroyd-B model is
studied. The fractional calculus approach is used in the con-
stitutive relationship of fluid model. Exact analytical solu-
tions of velocity and stress are obtained by using the discrete
Laplace transform of the sequential fractional derivative and
the Fox H -function. The obtained results indicate that some
well known solutions for the Newtonian fluid, the general-
ized second grade fluid as well as the ordinary Oldroyd-B
fluid, as limiting cases, are included in our solutions.

Keywords Generalized Oldroyd-B fluid · Stokes’ first
problem · Fractional calculus · Exact solution ·
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1 Introduction

Navier–Stokes equations are the most fundamental motion
equations in fluid dynamics. However, there are only a few
cases for which exact analytical solutions can be obtained.
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Exact solutions are very important not only because they are
solutions of some fundamental flows, but also because they
may serve as accuracy checks for experimental, numerical,
and asymptotic methods.

The inadequacy of the classical Navier–Stokes theory to
describe rheologically complex fluids such as polymer solu-
tions, blood and heavy oils, has led to the development of
theories of non-Newtonian fluids. In order to describe the
non-linear relationship between the stress and the strain rate,
numerous models or constitutive equations have been pro-
posed. Models of differential type and rate type have received
much attention [1]. In recent years, the Oldroyd-B fluid has
obtained a special attention amongst many fluids of rate type,
as it includes as special cases the classical Newtonian fluid
and the Maxwell fluid. For some special flows, the model of
second grade fluid is also included [2–6].

Recently, fractional calculus has seen some success in
the description of the complex dynamics. In particular it
proves to be a valuable tool to handle viscoelastic proper-
ties. The starting point of the fractional derivative model of
viscoelastic fluid is usually a classical differential equation,
which is modified by replacing the classical, time deriva-
tives of an integer order by the fractional calculus operators.
This generalization allows one to define precisely non-integer
order integrals or derivatives [7]. Fractional calculus has been
found to be quite flexible in describing viscoelastic behav-
ior [8–13]. More recently, Huang et al. [14–22] discussed
some unsteady flows of the generalized second grade fluid.
The unidirectional flow of a viscoelastic fluid with the frac-
tional Maxwell model was studied by Tan et al. [23–29]. The
unsteady flow with a generalized Jeffreys model in an annular
pipe was also studied by Tong et al. [30,31].

On the other hand, almost every student of fluid mechan-
ics is familiar with Stokes’ celebrated paper on pendulums
(in 1851), in which he described a kind of classical problems
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of the impulsive and oscillatory motion of an infinite plate in
its own plane. Nowadays, the flows over a plane wall which
is initially at rest and is suddenly set into motion in its own
plane with a constant velocity and with a harmonic vibration
are termed Stokes’ first (or Rayleigh-type) and second prob-
lems, respectively [32,33]. At present, one paid more and
more attention to the Stokes problems due to their important
theoretical and practical implications [4,6,17,23,34–37]. For
example, Tan and Xu [17,23] gave the exact analytical solu-
tions to Stokes’ first problem not only for generalized sec-
ond grade fluid but also for generalized Maxwell fluid. In
another paper, Fetecau and Fetecau [4] established the sine
transform-based solution to Stokes’ first problem for ordi-
nary Oldroyd-B fluid. Recently, Tan and Masuoka [6,37]
considered Stokes’ first problem for second grade fluid and
Oldroyd-B fluid in porous half space.

The aim of this paper is to investigate the Stokes’ first
problem for a viscoelastic fluid with the generalized Oldroyd-
B model. The fractional calculus approach is used in the
constitutive relationship of fluid model. Exact analytical solu-
tions of velocity and stress are obtained by the similar meth-
ods used in the above mentioned papers [12,17,21,23]. The
obtained results indicate that some well known solutions for
the Newtonian fluid [38], the generalized second grade fluid
[17] as well as for the ordinary Oldroyd-B fluid, as limiting
cases, are included in our solutions. A special case of Ref.
[23] about the generalized Maxwell fluid is also included in
our results. It is also found that the effect of the relaxation and
retardation times and the fractional orders in the generalized
Oldroyd-B model is significant, which is discussed in detail
in Sect. 4.

2 Basic equations

The constitutive equation of an incompressible, ordinary
Oldroyd-B fluid is of the form [1]

T = −p I + S, (1)

S + λ
DS
Dt

= µ
[
1 + θ

D

Dt

]
A, (2)

whereλ and θ are the relaxation and retardation times,µ is the
dynamic viscosity of fluid, T is the Cauchy stress tensor,−p I
denotes the indeterminate spherical stress, A = L + LT with
L being the velocity gradient and D/Dt (upper convected
time derivative) an operator on any tensor B, as is defined by

DB
Dt

= ∂ B
∂t

+ V · ∇ B − L · B − B · LT, (3)

where V is the velocity vector, ∇ is the gradient operator, the
superscript T denotes a transpose operation.

Generally, the constitutive relationship of the generalized
Oldroyd-B fluid also takes the form (1) and (2), but DS/Dt

and DA/Dt are defined as follows [11]

DS
Dt

= Dα
t S + V · ∇S − L · S − S · LT, (4)

DA
Dt

= Dβ
t A + V · ∇ A − L · A − A · LT, (5)

where Dα
t and Dβ

t are the fractional differentiation operators
of order α and β with respect to t , respectively, and may be
defined as [7]

Dp
t f (t) = 1

�(1 − p)

d

dt

t∫

0

f (τ )

(t − τ)p
dτ, 0 ≤ p ≤ 1, (6)

where �(·) is the Gamma function. It should be noted that
this model can be reduced to the ordinary Oldroyd-B model
when α = β = 1, the generalized second grade Fluid [14–
21] when α = 0, λ → 0 and the fractional Maxwell fluid
when β = 0, θ → 0 [9,28,29].

In the following, we will determine the velocity field and
the associated stress field corresponding to the first prob-
lem of Stokes for a viscoelastic fluid with the generalized
Oldroyd-B model lying over an infinitely extended flat plate.
Initially, the fluid is at rest, and at time t = 0+ the plate is
impulsively set in motion with constant velocity U . By the
influence of shear, the fluid above the plate is gradually set
in motion. For the problem under consideration, we seek a
velocity field of the form

V = u(y, t)i, (7)

where u is the velocity in the x-coordinate direction, i the
unit vector in the x-direction, x the coordinate along the plate
and y the coordinate perpendicular to the plate.

Substituting Eq. (7) into the above formula and taking
account of the initial condition

S(y, 0) = 0, (8)

we get

(1 + λDα
t )Sxy = µ(1 + θDβ

t )∂yu(y, t), (9)

and Syy = Szz = Sxz = Syz = 0, where Sxy = Syx . In the
absence of a pressure gradient in the x-direction and body
forces the equation of motion leads to

ρ∂t u = ∂y Sxy, (10)

where ρ is the constant density of the fluid. Eliminating Sxy

with Eqs. (9) and (10), we arrive at the following fractional
differential equation

(1 + λDα
t )

∂u

∂t
= ν(1 + θDβ

t )
∂2u

∂y2 , (11)
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where ν = µ/ρ. The corresponding initial and boundary
conditions are as follows

u(y, 0) = ∂t u(y, 0) = 0, y > 0, (12)

u(0, t) = U, t > 0. (13)

And the natural conditions are

u(y, t), ∂yu(y, t) → 0 as y → ∞. (14)

3 Exact solutions to the Stokes’ first problem

Let us introduce the following dimensionless variables

u∗ = u

U
, y∗ = yUρ

µ
, t∗ = tU 2ρ

µ
,

λ∗ = λ
(U 2ρ

µ

)α

, and θ∗ = θ
(U 2ρ

µ

)β

, (15)

in which U and µ/U 2ρ denote the characteristic velocity
and time, respectively. The dimensionless governing equa-
tion (11) and its initial and boundary conditions (12)–(14)
can be written as (for simplicity, the superscript * is omitted)

(1 + λDα
t )

∂u

∂t
= (1 + θDβ

t )
∂2u

∂y2 , (16)

u(y, 0) = ∂t u(y, 0) = 0, y > 0, (17)

u(0, t) = 1, t > 0, (18)

u(y, t), ∂yu(y, t) → 0 as y → ∞. (19)

Let us suppose that

ũ(y, s) = L{u(y, t), s} =
∞∫

0

e−st u(y, t)dt (20)

is the image function of u(y, t), where s is a transform para-
meter. Because the fractional order equation (16) has the
property of the integer order initial conditions, the fractional
derivative must be interpreted as a properly chosen sequen-
tial fractional derivative [7]. Using the Laplace transform
formula for sequential fractional derivatives, we can obtain
the equation of the image function as:

d2ũ

dy2 = s(1 + λsα)

1 + θsβ
ũ, (21)

subject to the boundary conditions

ũ(0, s) = 1

s
, (22)

ũ(y, s), ∂y ũ(y, s) → 0 as y → ∞. (23)

Solving Eqs. (21)–(23) yields

ũ(y, s) = 1

s
· e

−y
(

s(1+λsα)

1+θsβ

)1/2

. (24)

Because the fluid is moved by the action of stress at the
plate, the stress field may be calculated. From Eq. (11) the
dimensionless stress can be represented by

(1 + λDα
t )F(y, t) = (1 + θDβ

t )∂yu(y, t), (25)

where F(y, t) = Sxy/ρU 2. Using Eqs. (8) and (24), the
Laplace transform of Eq. (25) is

F̃(y, s) = −
( s(1 + λsα)

1 + θsβ

)−1/2
e
−y

(
s(1+λsα)

1+θsβ

)1/2

. (26)

In order to obtain an analytical solution for this problem
and to avoid lengthy calculations of residues and contour
integrals, we will apply the discrete inverse Laplace trans-
form method to obtain the velocity and stress distribution.
First, we rewrite (24) and (26) in series forms

ũ(y, s) = 1

s
+

∞∑
k=1

(−y
√

λ/θ)k

k!
∞∑

m=0

(−1)m

m!λm

×
∞∑

n=0

(−1)n�
(

m − k
2

)
�

(
k
2 + n

)

n!θn�
(

k
2

)
�

(
− k

2

)
s

k
2 (β−α−1)+mα+nβ+1

,

(27)

F̃(y, s) = −
∞∑

k=0

(−y)k(λ/θ)
k−1

2

k!
∞∑

m=0

(−1)m

m!λm

×
∞∑

n=0

(−1)n�
(

m + 1−k
2

)
�

(
k−1

2 + n
)

n!θn�
(

1−k
2

)
�

(
k−1

2

)
s

k−1
2 (β−α−1)+mα+nβ

.

(28)

Applying the discrete inverse Laplace transform to Eqs. (27)
and (28), we obtain

u(y, t)

= 1 +
∞∑

k=1

(−y
√

λ/θ)k

k!
∞∑

m=0

(−1)m

m!λm

∞∑
n=0

(−1)n

n!θn

×
�

(
k
2 + n

)
�

(
m − k

2

)
t

k
2 (β−α−1)+mα+nβ

�
(

k
2

)
�

(
− k

2

)
�

(
k
2 (β − α − 1) + mα + nβ + 1

)

= 1 +
∞∑

k=1

(−y
√

λ/θ)k

k!
∞∑

m=0

(−1)m

m!λm
t

k
2 (β−α−1)+mα

×H1,2
2,4

[ tβ

θ

∣∣∣
(1− k

2 ,1),(1−m+ k
2 ,0)

(0,1),(1− k
2 ,0),(1+ k

2 ,0),( k
2 (1+α−β)−mα,β)

]
, (29)
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F(y, t)

= −
∞∑

k=0

(−y)k(λ/θ)
k−1

2

k!
∞∑

m=0

(−1)m

m!λm

∞∑
n=0

(−1)n

n!θn

×
�

(
k−1

2 + n
)
�

(
m + 1−k

2

)
t

k−1
2 (β−α−1)+mα+nβ−1

�
(

k−1
2

)
�

(
1−k

2

)
�

(
k−1

2 (β−α−1)+mα+nβ
)

= −
∞∑

k=0

(−y)k(λ/θ)
k−1

2

k!
∞∑

m=0

(−1)m

m!λm
t

k−1
2 (β−α−1)+mα−1

×H1,2
2,4

[ tβ

θ

∣∣∣
( k+1

2 −m,0),( 3−k
2 ,1)

(0,1),( 3−k
2 ,0),( k+1

2 ,0),( k−1
2 (1+α−β)−mα+1,β)

]
,

(30)

in which Hm,n
p,q (z) is the Fox H -function [11]. In Eqs. (29)

and (30), the following property of the Fox H -function is
used:

∞∑
n=0

(−z)n ∏p
j=1 �(a j + A j n)

n! ∏q
j=1 �(b j + B j n)

= H1,p
p,q+1

[
z
∣∣∣
(1−a1,A1),...,(1−ap,Ap)

(0,1),(1−b1,B1),...,(1−bq ,Bq )

]
. (31)

Particularly, taking y = 0 in Eq. (30), we get the following
formula to calculate the shear stress on the plate

Fp(t) = −
(θ

λ

) 1
2

∞∑
m=0

(−1)m

m!λm
tmα+ α−β−1

2

×H1,2
2,4

[ tβ

θ

∣∣∣
( 1

2 −m,0),( 3
2 ,1)

(0,1),( 3
2 ,0),( 1

2 ,0),(
β−α+1

2 −mα,β)

]
. (32)

4 Limiting cases and numerical results

Now let us apply formulas (29) and (30) in special cases.
(1) If α = 0, λ → 0, θ = η, the medium is the generalized

second grade fluid, and Eqs. (29) and (30) reduce to the same
form as obtained in Refs. [17,19]

u(y, t) = 1 +
∞∑

k=1

(−yt
β−1

2 )k

η
k
2 k!

× H1,1
1,3

[ tβ

η

∣∣∣
(1− k

2 ,1)

(0,1),(1− k
2 ,0),( k

2 (1−β),β)

]
, (33)

F(y, t) = −
∞∑

k=0

(−y)kη
1−k

2

k! t
k−1

2 (β−1)−1

× H1,1
1,3

[ tβ

η

∣∣∣
( 3−k

2 ,1)

(0,1),( 3−k
2 ,0),( k−1

2 (1−β)+1,β)

]
. (34)

(2) If β = 0, θ → 0, then Eqs. (29) and (30) are simplified
into

u(y, t) = 1 +
∞∑

k=1

(−y
√

λ)k

k! t−
(α+1)k

2

× H1,1
1,3

[ tα

λ

∣∣∣
(1+ k

2 ,1)

(0,1),(1+ k
2 ,0),( k

2 (α+1),α)

]
, (35)

F(y, t) = −
∞∑

k=0

(−y)kλ
k−1

2

k! t−1− (α+1)(k−1)
2

× H1,1
1,3

[ tα

λ

∣∣∣
( k+1

2 ,1)

(0,1),( k+1
2 ,0),( k−1

2 (α+1)+1,α)

]
. (36)

They are the solutions of velocity and stress for the fractional
Maxwell fluid, in which the derivatives of the stress and strain
are fractional and first order, respectively [9,23,28,29].

(3) Setting β = 0, θ → 0 in Eqs. (33) and (34) or setting
α = 0, λ → 0 in Eqs. (35) and (36), we obtain the classical
Rayleigh’s similarity solutions of Newtonian fluid [38]

u(y, t) = 1 − erf
( y

2
√

t

)
, (37)

F(y, t) = − 1√
π t

exp
(

− y2

4t

)
. (38)

(4) When α = β = 1, Eqs. (29) and (30) can be simplified
into

u(y, t) = 1 +
∞∑

k=1

(−y
√

λ/θ)k

k!
∞∑

m=0

(−1)m

m!λm
tm− k

2

× H1,2
2,4

[ t

θ

∣∣∣
(1− k

2 ,1),(1−m+ k
2 ,0)

(0,1),(1− k
2 ,0),(1+ k

2 ,0),( k
2 −m,1)

]
, (39)

F(y, t) = −
∞∑

k=0

(−y)k(λ/θ)
k−1

2

k!
∞∑

m=0

(−1)m

m!λm
tm− k+1

2

× H1,2
2,4

[ t

θ

∣∣∣
( k+1

2 −m,0),( 3−k
2 ,1)

(0,1),( 3−k
2 ,0),( k+1

2 ,0),( k+1
2 −m,1)

]
, (40)

which are the solutions for ordinary Oldroyd-B fluid. It is
worth pointing out that the results (39) and (40) are obviously
different from the sine transform-based solution given in
Ref. [4].

(5) From Eqs. (24) and (26), we also have

F̃(y, s) = −
(

s(1 + θsβ)

1 + λsα

)1/2

ũ(y, s). (41)

Using the same method as used in Sect. 3 and the definition
of fractional calculus, we have

F(y, t) = −
√

θ

λ

∞∑
n=0

(−1)n

n!θn

∞∑
m=0

(−1)m�
(

1
2 + m

)
�

(
n − 1

2

)

m!λm�
(

1
2

)
�

(
− 1

2

)

× D
−mα−nβ+ 1+β−α

2
t u(y, t). (42)
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Fig. 1 Velocity u(y, t) versus y for various values of λ at a fixed time
t = 0.1

Fig. 2 Velocity u(y, t) versus y for various values of θ at a fixed time
t = 0.1

If one sets α = 0, λ → 0, θ = η, the formula (42) can be
simplified to the same form as obtained in Ref. [17]:

F(y, t) = −η1/2
∞∑

n=0

(−1)n�
(

n − 1
2

)

n!ηn�
(

− 1
2

)

× D−nβ+(β+1)/2
t u(y, t). (43)

The physical meaning of Eq. (42) is that the stress at a given
point at any time is dependent on the time history of the
velocity profile at that point, and the history can be obtained
by the fractional calculus [10].

(6) The variations of u(y, t) with y for various values of λ,
θ , α and β at a fixed time (t = 0.1) are illustrated in Figs. 1,
2, 3 and 4, which are calculated by formula (29). It is clearly
seen that the smaller the λ (or α), the more slowly the velocity

Fig. 3 Velocity u(y, t) versus y for various values of α at a fixed time
t = 0.1

Fig. 4 Velocity u(y, t) versus y for various values of β at a fixed time
t = 0.1

decays, and the larger the effect region becomes. But one sees
an opposite trend for the values of θ (or β). It is obvious that
the relaxation and retardation times and the orders of the
time fractional derivative have effect on the velocity field.
Figures 5 and 6 demonstrate the velocity changes with time
at a given point (y = 1). It is clearly seen that the smaller the
α, the more rapidly the velocity changes in the initial time
and the more like a solid the generalized Oldroyd-B model
behaves. The effect of β on the velocity is contrary to that of
α. However, it seems that their effect on the velocity changes
is reversed at a critical time point.

5 Conclusion

Fractional calculus approach is introduced to the constitu-
tive relationship model of generalized Oldroyd-B fluid in
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Fig. 5 Velocity u(y, t) versus t for various values of α

Fig. 6 Velocity u(y, t) versus t for various values of β

this paper. The flow model is more useful compared with the
traditional model. Exact analytical solutions of velocity and
stress for the Stokes’ first problem are obtained by using the
discrete Laplace transform of the sequential fractional deriv-
atives and the Fox H -function. Our results can provide new
models and analytical solutions for studying the complicated
fluid in rheology.
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