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Abstract The equations of motion of an insect with flap-
ping wings are derived and then simplified to that of a flying
body using the “rigid body” assumption. On the basis of
the simplified equations of motion, the longitudinal dynamic
flight stability of four insects (hoverfly, cranefly, dronefly
and hawkmoth) in hovering flight is studied (the mass of
the insects ranging from 11 to 1,648 mg and wingbeat fre-
quency from 26 to 157 Hz). The method of computational
fluid dynamics is used to compute the aerodynamic deriva-
tives and the techniques of eigenvalue and eigenvector anal-
ysis are used to solve the equations of motion. The validity
of the “rigid body” assumption is tested and how differences
in size and wing kinematics influence the applicability of
the “rigid body” assumption is investigated. The primary
findings are: (1) For insects considered in the present study
and those with relatively high wingbeat frequency (hover-
fly, drone fly and bumblebee), the “rigid body” assumption
is reasonable, and for those with relatively low wingbeat
frequency (cranefly and howkmoth), the applicability of the
“rigid body” assumption is questionable. (2) The same three
natural modes of motion as those reported recently for a
bumblebee are identified, i.e., one unstable oscillatory mode,
one stable fast subsidence mode and one stable slow subsi-
dence mode. (3) Approximate analytical expressions of the
eigenvalues, which give physical insight into the genesis
of the natural modes of motion, are derived. The expres-
sions identify the speed derivative Mu (pitching moment
produced by unit horizontal speed) as the primary source
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of the unstable oscillatory mode and the stable fast subsi-
dence mode and Zw (vertical force produced by unit vertical
speed) as the primary source of the stable slow subsidence
mode.
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of motion · Navier–Stokes simulation · Natural modes
of motion

1 Introduction

Considerable progress has been made in the area of aerody-
namics of insect flight in the last 20 years [1–3]. With the
current understanding of the aerodynamic force mechanisms
of insect flapping wings, researchers are beginning to study
the dynamics of insect flight. Thomas and Taylor [4] and Tay-
lor and Thomas [5] studied static stability of gliding animals
and flapping flight, respectively, and they found that flapping
did not have any inherently destabilizing effect, and that flap-
ping could even enhance static stability compared to gliding
flight at a given speed.

Taylor and Thomas [6] and Sun and Xiong [7] studied
dynamic flight stability in the desert locust at forward flight
and in a bumblebee at hovering flight, respectively. An impor-
tant assumption, “rigid body” assumption, was made in their
analysis. With this assumption, the analysis was greatly sim-
plified. The “rigid body” assumption is that the insect had
only 6 degrees of freedom of a rigid flying body and the
effects of the flapping wings on the flight system are repre-
sented by wingbeat-cycle-average aerodynamic and inertial
forces and moments that can vary with time over the time
scale of the insect body. It is further assumed that the animal’s
motion consists of small disturbances from the equilibrium
condition; thus, the linear theory of aircraft flight dynam-
ics is applicable to the analysis of insect flight dynamics.
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232 M. Sun et al.

The equations of motion of a body of 6 degrees of freedom
were directly used under the “rigid body” assumption. The
authors did not first develop the full equations of motion of
an insect (body plus the flapping wings) and then simplify
the equations to that of a body. As a result, the simplifica-
tion process could not be examined and its validity could
not be tested. In the present study, we first derive the full
equations of motion of an insect with flapping wings; and
then we reduce the equations of motion to that of a body
with 6 degree of freedom using the “rigid body” assump-
tion. By doing so, the simplification process can be exam-
ined and the magnitudes of the neglected terms can be
estimated.

Different insects have very different sizes and wingbeat
frequencies, it is of great interest to investigate the size and
wing kinematics influence on the validity of the “rigid body”
assumption. In the present study, we address this question
by studying the longitudinal dynamic stability in hovering
flight of four insects (a hoverfly, a dronefly, a cranefly, and a
hawkmoth; their mass ranging from 11 to 1,648 mg and wing-
beat frequency ranging from 26 to 157 Hz). These insects
are chosen because their sizes and wingbeat frequencies
are different greatly, and because their morphological
and wing kinematic data are available from previous
studies.

In the study of Sun and Xiong [7], numerical solutions for
the eigenvalues were obtained. The solutions, although they
could show the properties of the natural modes of motion, do
not give much physical insight into their genesis. If approxi-
mate analytical solutions are obtained, the production of the
natural modes of motion and the influence of the flight param-
eters could be better understood. In the present study, approx-
imate analytical expressions of the eigenvalues are derived
and physical insight into the genesis of the natural modes of
motion can be obtained.

Similar to Ref. [7], we use the method of Computation
Fluid Dynamics (CFD) to compute the flows and to obtain
the aerodynamic derivatives and use the techniques of eigen-
value and eigenvector analysis to study the properties of the
dynamic flight stability of the hovering insects.

2 The model of analysis and the solution methods

2.1 Equations of motion and fluid dynamics equations

Equations of motion for flapping flight have been developed
and presented by Gebert et al. [8]. However, due to some
errors, their equations cannot be used as they are. We have
re-derived the equations in Appendix A. Three frames of
reference are used, as seen in Fig. 1: frame (xf , yf , zf) is an
inertial frame; frame (xb, yb, zb) is a frame fixed on the insect
body with its origin at the centre of gravity of the wingless

Fig. 1 Reference frames

body; frame (xw, yw, zw) is a frame fixed on an insect wing
with its origin at the root of the wing. For any vector V , in
frame (xf , yf , zf) we have:

f V =
⎡
⎣

V xf

V yf

V zf

⎤
⎦ , (1)

where V xf , V yf and V zf are the xf , yf and zf components
of V , respectively. Similarly, in frame (xb, yb, zb) and frame
(xw, yw, zw), we have, respectively:

bV =
⎡
⎣

V xb

V yb

V zb

⎤
⎦

(2)

and wV =
⎡
⎣

V xw

V yw

V zw

⎤
⎦ .

f V , bV and wV are related by the following relations [9].

f V = E
b→f

bV ,

f V = E
w→f

wV , (3)

and bV = E
w→b

wV .

Here E
b→f

, E
w→f

and E
w→b

are matrix of direction cosines. For

example,
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E
b→f

=
⎡
⎣

cos θ cosψ sin φ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sin φ sinψ
cos θ sinψ sin φ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sin φ cosψ

− sin θ sin φ cos θ cosφ cos θ

⎤
⎦ , (4)

where ψ , θ and φ are the Euler angles relating frame
(xb, yb, zb) to frame (xf , yf , zf);

E
w→b

=
⎡
⎣

cos θw cosψw sin φw sin θw cosψw − cosφw sinψw cosφw sin θw cosψw + sin φw sinψw

cos θw sinψw sin φw sin θw sinψw + cosφw cosψw cosφw sin θw sinψw − sin φw cosψw

− sin θw sin φw cos θw cosφw cos θw

⎤
⎦ , (5)

where ψw, θw and φw are the Euler angles relating frame
(xw, yw, zw) to frame (xb, yb, zb). With respect to the iner-
tial frame, the centre of gravity of the wingless body moves
at velocity vcg, the body rotates at angular velocity ωbd and a
wing rotates at angular velocity ωwg (note that since angular
velocity of the wing relative to the body is prescribed, ωwg

and ωbd are not independent). Rcg is the position vector of
the centre of gravity of the body; Rh is the vector from the
body centre of gravity to the root of a wing; Rwg is the vector
from the root of a wing to the centre of gravity of the wing;
Rp is the vector from the centre of gravity of a wing to any
point on the wing (Fig. 1).

Let FA be the total aerodynamic force and MA

moment (about the centre of gravity of the body ), mtotal

the total mass of the insect (body and wings), mwg the mass
of a wing, Ib the matrix of moments and products of inertia
of the body, Iwg the matrix of moments and products of iner-
tia of a wing, g the gravitational acceleration and t the time.
The equations of motion (Eqs. A14 and A39 in Appendix A)
are as follows:

b FA +
[

mbd +
N∑

i=1

mwg,i

]
b g

=
[

mbd +
N∑

i=1

mwg,i

] (
dbvcg

dt
+ bωbd × bvcg

)

+
N∑

i=1

{
mwg

[
dbωbd

dt
× b Rh + bωbd × (bωbd × b Rh)

]}

i

+
N∑

i=1

{
mwg E

w→b

[
dwωwg

dt
× w Rwg

+ wωwg × (wωwg × w Rwg)

]}

i

, (6)

b MA +
N∑

i=1

[mwg(b Rh + b Rwg)× b g]i

= bωbd × b Ibdbωbd + d

dt

{
b Ibdbωbd

+
N∑

i=1

[mwg(b Rh + b Rwg)(bvcg + bωbd × b Rh)

+mwgb Rh × (bωwg × b Rwg)+ E
w→b

(w Iwgwωwg)]i

}

+
N∑

i=1

{bωbd × E
w→b

(w Iwgwωwg)+ mwgbωbd

×[b Rh × (bωwg × b Rwg)] + mwgbωbd×[(b Rh+ b Rwg)

×(bvcg + bωbd × b Rh)] + mwgbvcg × (bωbd × b Rh

+bωwg × b Rwg)}i , (7)

where N is the number of wings, and b F, b M and
mtotal in Eqs. (A14) and (A39) have been replaced

by b F = b FA +
[
mbd + ∑N

i=1 mwg,i

]
b g, b M =

b MA + ∑N
i=1[mwg(b Rh + b Rwg) × b g]i and mtotal =[

mbd + ∑N
i=1 mwg,i

]
, where mbd is the mass of the body.

The aerodynamic force and moment (FA and MA in
Eqs. (6) and (7)) are determined by fluid dynamic equations
(the Navier–Stokes equations). The equations can be found
in Ref. [3] and will not be repeated here.

2.2 Simplification of the equations of motion by “rigid
body” assumption

The motion of the insect is governed by the two systems of
equations, the system of equations of motion and the system
of fluid dynamics equations. These equations are very com-
plex. With “rigid body” assumption, the equations of motion
can be greatly simplified, and furthermore, flight stability of
an insect can be made similar to that of aircraft.

We first re-write Eqs. (6) and (7) as follows. Let ωwg0 rep-
resent the angular velocity of the wing relative to the body,
which is determined by the flapping motion of the wing, then
ωwg can be written as

wωwg = wωwg0 + E
b→w

bωbd, (8)

bωwg = E
w→b

wωwg = bωwg0 + bωbd. (9)

123
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Substituting Eqs. (8) and (9) into Eqs. (6) and (7) and after
some manipulation, we have (assuming the insect with
two wings):

b FA + mbdb g = mbd

(dbvcg

dt
+ bωbd × bvcg

)
+ a1 + b1,

(10)

b MA = bωbd × b Ibdbωbd + b Ibd
dbωbd

dt
+ a2 + b2 (11)

where

a1 = mwg

2∑
i=1

{
− b g + dbvcg

dt
+ bωbd × bvcg + dbωbd

dt

× (b Rh + b Rwg)+ bωbd × [bωbd × (b Rh + b Rwg)]
}

i

,

(12)

b1 = mwg

2∑
i=1

{(
E

w→b
Ė

b→w
bωbd + E

w→b

dwωwg0

dt

)

× b Rwg + (bωbd + bωwg0)× (bωwg0 × b Rwg)

+ bωwg0 × (bωbd × b Rwg)

}

i

, (13)

a2 =
2∑

i=1

{
mwg(b Rh + b Rwg)×

(
− b g + dbvcg

dt

+ dbωbd

dt
× b Rh

)
+ mwgb Rh ×

(dbωbd

dt
× b Rwg

)

+ mwgbvcg × [bωbd × (b Rh + b Rwg)] + mwgbωbd

×[(b Rh + b Rwg)× (bvcg + bωbd × b Rh)

+ b Rh × (bωbd × b Rwg)] + E
w→b

w Iwg E
b→w

dbωbd

dt

+ bωbd × [ E
w→b

w Iwg( E
b→w

bωbd)]
}

i

, (14)

b2 =
2∑

i=1

{
mwgb Rh ×

[dbωwg0

dt
× b Rwg + (bωwg0

+ bωbd)× ( Ė
w→b

w Rwg)
]

+ Ė
w→b

w Iwg(wωwg0

+ E
b→w

bωbd)+ E
w→b

w Iwg
dwωwg0

dt
+ bωbd

× ( E
w→b

w Iwgwωwg0)+ E
w→b

w Iwg Ė
b→w

bωbd

+ mwgbωbd × [b Rh × (bωwg0 × b Rwg)]
+ mwg( Ė

w→b
w Rwg)× (bvcg + bωbd × b Rh)

+ mwgbvcg × (bωwg0 × b Rwg)
}

i
, (15)

where the top dot “·” represents time derivative. In Eqs. (10)
and (11), a1 represents the weight of the wings, the inertial

force of the wings due to the body acceleration and rotation
and a2 represents the moments produced by the weight of the
wings and by the inertial forces of the wings due to the body
motion; b1 and b2 represent the inertial forces and moments
of the wings due to the flapping motion. Without a1, a2, b1

and b2, Eqs. (10) and (11) would be the equations of motion
of a flying body.

Because mwg is much smaller than mb, compared with
the terms of body weight (mbdg) and body inertial force
[mbd(dbvcg/dt + bωbd × bvcg)], a1 in the Eq. (10) can be
neglected, and similarly a2 in Eq. (11) can be neglected.
Thus we have

b FA + mbdb g = mbd

(dbvcg

dt
+ bωbd × bvcg

)
+ b1, (16)

b MA = bωbd × b Ibdbωbd + b Ibd
dbωbd

dt
+ b2. (17)

Now, we further simplify Eqs. (16) and (17) using the
“rigid body” assumption. The main point of the “rigid body”
assumption is as following: the wingbeat frequency is rela-
tively high, so that the time scale of the wingbeat motion is
much smaller than that of the body motion, and when ana-
lyzing the flight dynamic of the insect, the wingbeat-cycle
average aerodynamic and inertial forces and moments, which
could vary over the time scale of the body, can be used. We
take the time average of Eqs. (16) and (17) over the fast time
scale (the wingbeat period) to average out the fast motion.
The resulting equations would represent the body motion at
the slow time scale. Let the over-bar denote the mean value
(wingbeat-cycle average value) and the symbol “ ˆ ” denote
the difference between the instantaneous and mean values
(e.g., vcg = v̄cg + v̂cg). Taking the time average of Eqs. (16)
and (17) gives:

b F̄A + mbdb g = mbd

(dbv̄cg

dt
+ bω̄bd × bv̄cg

+ bω̂bd × bv̂cg

)
+ b̄1, (18)

b M̄A = bω̄bd × b Ibdbω̄bd + bω̂bd × b Ibdbω̂bd

+ b Ibd
dbω̄bd

dt+
+ b̄2. (19)

Note that v̂ and ω̂ represent the fast oscillation of the body due
to the cyclic variations of forces and moments at wingbeat
frequency. Because the wingbeat frequency is assumed to
be high, it is expected that the oscillation is very small (this
should be checked afterwards). Thus terms like ω̂bd × v̂cg

can be neglected. b̄1 and b̄2 are the mean inertial force and
moment of the wings due to the flapping motion. Since there
are acceleration and deceleration of the wing within one
downstroke (or upstroke) and the motion of the wing in the
upstroke is opposite to that of the downstroke, it is antici-
pated that b̄1 and b̄2 are approximately zero (this should be
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Fig. 2 a A sketch of the rigid body approximation. b Definition of the
state variables

checked afterwards). As a result, Eqs. (18) and (19) become:

b F̄A + mbdb g = mbd

(dbv̄cg

dt
+ bω̄bd × bv̄cg

)
, (20)

b M̄A = bω̄bd × b Ibdbω̄bd + b Ibd
dbω̄bd

dt
. (21)

Equations (20) and (21) are the simplified equations of
motion (motion at the slow time scale) for the insect; they
are the same as that of a rigid flying body or an airplane. (It
must be emphasized that the basic assumption that the time
scale of the wingbeat motion is much smaller than that of the
body motion should be checked afterwards.)

2.3 Linearization of the equations of motion

Equations (20) and (21) are the same as that of an airplane;
methods used in aircraft stability analysis can be used to study
the stability of insects. As done to an airplane, we linearize
Eqs. (20) and (21) for stability analysis. As a first step, we
consider the longitudinal motion in the present study.

Let body be aligned so that the xb-axis is horizontal and
points forward at equilibrium (Fig. 2). The variables that
define the motion are the forward (u) and vertical (w) compo-
nents of velocity v̄cg along xb- and zb-axes, respectively, the
pitching angular-velocity around the center of mass
(q; yb component of ω̄bd), and the pitch angle between the
x-axis and the horizontal (θ). Let X and Z be the components
of F̄A along the xb and zb directions, respectively, M the yb

component of M̄A (pitching moment) and Iy the moment of

inertia of the body about yb axis. The longitudinal component
of Eqs. (20) and (21) are

u̇+ = −w+q+ + X+/m+
bd − g+ sin θ, (22a)

ẇ+ = −u+q+ + Z+/m+
bd + g+ cos θ, (22b)

q̇+ = M+/I +
y,b, (22c)

θ̇ = q+, (22d)

where the variables have been non-dimensionalzied
using c, U and c/U as reference length, velocity and time,
respectively, (c is the mean chord length of a wing; U =
2�nr2 is the mean flapping velocity, where r2 is the radius
of the second moment of wing area, � is the stroke ampli-
tude and n is the wingbeat frequency): X+ = X/0.5ρU 2St

(St is the area of two wings and ρ is the fluid density); Z+ =
Z/0.5ρU 2St; M+ = M/0.5ρU 2Stc; m+

bd = mbd/0.5ρStc;
t+ = tU/c; g+ = gc/U 2 (g is the gravitational accel-
eration); u+ = u/U ; w+ = w/U ; q+ = qc/U ; I +

y =
Iy/0.5ρStc3. Let each variable be expressed as the sum of
the reference (equilibrium flight) value and the disturbance
value:

u+ = u+
e + δu+, w+ = w+

e + δw+,
q+ = q+

e + δq+, θ = θe + δθ,
(23a)

X+ = X+
e + δX+, Z+ = Z+

e + δZ+,
M+ = M+

e + δM+, (23b)

where the subscript “e” denotes the equilibrium flight condi-
tion and the symbol “δ” denotes a small disturbance quantity.
Note that ue = we = qe = θe = 0 (θe is zero because xb is
chosen to be horizontal at equilibrium flight; qe is zero for all
constant-speed flight, including hovering; ue andwe are zero
for hovering flight). Substituting Eq. (23a) into Eq. (22a) and
neglecting second and higher order terms gives:

X+
e = 0, (24a)

Z+
e + m+

bdg+ = 0, (24b)

M+
e = 0, (24c)

and

δu̇+ = δX+/m+
bd − g+δθ, (25a)

δẇ+ = δZ+/m+
bd, (25b)

δq̇+ = δM+/I +
y , (25c)

δθ̇ = δq+. (25d)

Equations (24a) and (25a) are the equilibrium equation and
the equation of disturbance motion, respectively. We fur-
ther express the perturbations in the aerodynamic forces and
moment as
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δX+ = X+
u δu

+ + X+
wδw

+ + X+
q δq

+, (26a)

δZ+ = Z+
u δu

+ + Z+
w δw

+ + Z+
q δq

+, (26b)

δM+ = M+
u δu

+ + M+
w δw

+ + M+
q δq

+, (26c)

where X+
u , X+

w , etc. are the stability derivatives [9]. In
Eq. (26a), terms of rate derivatives, such as X+

u̇ δu̇ (here u̇
is the time rate of change in u+), are not included. This is
consistent with the assumption that rate of body motion is
very small. Substituting Eq. (26a) into Eq. (25a), the linear-
ized equations of the disturbance motion are:
⎡
⎢⎢⎣
δu̇+
δẇ+
δq̇+
δθ̇

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣
δu+
δw+
δq+
δθ

⎤
⎥⎥⎦ , (27)

where A is the system matrix:

A =

⎡
⎢⎢⎣

X+
u /m+

bd X+
w/m+

bd X+
q /m+

bd −g+
Z+

u /m+
bd Z+

w/m+
bd Z+

q /m+
bd 0

M+
u /I +

y M+
w /I +

y M+
q /I +

y 0
0 0 1 0

⎤
⎥⎥⎦ . (28)

At equilibrium flight, the wing kinematic parameters must
be such that Eq. (24a) is satisfied (mean vertical force bal-
ances the weight of the insect and mean horizontal force and
mean pitching moment are zero). Morphological data and
most of the kinematic data at hovering flight (the equilib-
rium flight) for the insects considered in the present study are
available from previous works [10,11]. But there are three
kinematic parameters, down- and upstroke angles of attack
(αd and αu, respectively) and mean stroke angle (φ̄) are not
available. As will be seen below, they can be determined
using the above force and moment balance requirements.
When the equilibrium conditions are determined, the stability
derivatives can be calculated (see below). After the stability
derivatives are calculated, the system matrix A is determined
and the stability properties of the insect can be analyzed.

2.4 The wing, the body and the flapping motion

In determining the equilibrium conditions of the flight, we
only need to calculate the flows around the wings (at equi-
librium the body does not move and it is assumed that the
wings and body do not interact aerodynamically). To obtain
the aerodynamic derivatives, in principle we need to com-
pute the flows around the wings and around the body. But as
discussed in Sun and Xiong [7], near hovering, the aerody-
namic forces and moments of the body are negligibly small
compared to those of the wings, because the relative veloc-
ity that the body sees is very small. Therefore, in estimating
the aerodynamic derivatives, we still only need to compute
the flows around the wings. We further assume that the con-
tralateral wings do not interact aerodynamically. As a result,

Fig. 3 The wing planforms of dronefly (DF), cranefly (CF), hawk-
moth (HM)

in the present CFD model, the body is neglected and the flows
around the left and right wings are computed separately. The
wing planforms of the three insects (Fig. 3) are obtained from
data given by Ellington [10]. The wing section is assumed
to be a flat plate with rounded leading and trailing edges, the
thickness of which is 3% of the mean chord length of the
wing.

The flapping motion of a wing consists of two parts: the
translation (azimuthal rotation) and the rotation (flip rota-
tion). The motion is sketched in Fig. 4 (φ is the positional
angle of the wing; φmin and φmax are the minimum and max-
imum positional angles, respectively; α is the angle of attack
of the wing; β is the stroke plane angle; o1x1 y1z1 is an frame
with the x1 y1 plane parallel to the xy plane of the body frame;
o′x ′y′z′ is a frame with the x ′y′ plane in stroke plane). The
translation (azimuthal rotation) velocity is approximated by
the simple harmonic function [7]. α takes a constant value
during the down- or upstroke translation (the constant value
is denoted by αd for the downstroke translation and αu for the
upstroke translation); around stroke reversal, the wing flips
and α changes with time, also according to the simple har-
monic function [7]. As discussed in Ref. [7], for prescribing
the flapping motion, the stroke amplitude (� = φmax−φmin),
the wingbeat frequency (n), the angles of attack in the down-
stroke (αd) and upstroke (αu) translations, the mean posi-
tional angle [φ̄ = (φmax + φmin)/2] and the stroke plane
angle (β) must be given.

2.5 The flow solution method

The flow equations and the solution method used are the same
as those described in work by Sun and Tang [3]. The com-
putational grids are similar to that used by Sun and Xiong
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Dynamic flight stability of hovering insects 237

Fig. 4 Sketches of the wing motion and reference frames

[7]. Once the flow equations are numerically solved, the fluid
velocity components and pressure at discretized grid points
for each time step are available and the aerodynamic forces
and moments acting on the wing can be calculated. Resolv-
ing resultant aerodynamic force of the wing into the z1- and
x1-axis, we obtain the vertical (Lw) and the horizontal (Hw)

forces due to the wing, respectively (see Fig. 3). The pitching
moment about the center of mass of the insect due to the aero-
dynamic force on the wing is denoted as My,w. The above
forces and moment are non-dimensionalized by 0.5ρU 2S
and 0.5ρU 2Sc, respectively. The coefficients of Lw, Hw,and
My,w are denoted as CL,w, CH,w and CM,w, respectively.

2.6 Computation of the equilibrium conditions and
aerodynamic derivatives

�, n, β of the hovering insects are available from the mea-
sured data of previous studies. The kinematics
parameters of a wing left undetermined are αd, αu, and φ̄.
As mentioned above, in the present study, αd, αu and φ̄ are
not treated as known input parameters but are determined
in the calculation process by the force balance and moment
balance conditions, i.e., the mean vertical force of the wings
is equal to insect weight and the mean horizontal force and
mean pitching moment (about the center of mass) are equal
to zero. The non-dimensional weight of an insect (CG) is
defined as CG = mg/0.5ρU 2St , where St = 2S, area of two

wings. The mean vertical force coefficient of the wing needs
to be equal to CG.

Conditions in the equilibrium flight are taken as the refer-
ence conditions in the aerodynamic derivative calculations.
In order to estimate the partial derivatives, Xu, Xw etc., we
make three consecutive flow computations for the wing: an
u-series in which u is varied whilst w, q and θ are fixed at
the reference values (i.e., w, q and θ are zero), a w-series in
which w is varied whilst u, q and θ are fixed at zero, and a
q-series in which u,w and θ are fixed at zero (in all the three
series, wing kinematical parameters are fixed at the reference
values). Using the computed data, curves representing the
variation of the aerodynamic forces and moments with each
of the u, w and q variables are fitted. The partial derivatives
are then estimated by taking the local tangent (at equilibrium)
of the fitted curves.

2.7 Solution of the small disturbance equations

After the aerodynamic derivatives are determined, the
elements of the system matrix A would be known. Equa-
tion (1) can be solved to yield insights into the dynamic
flight stability of the hovering insects. As described in Sun
and Xiong [7], the central elements of the solution for the
dynamic stability problem are the eigenvalues and eigenvec-
tors of A. A real eigenvalue and the corresponding eigen-
vector (or a conjugate pair of complex eigenvalues and the
corresponding eigenvector pair) represent a simple motion
called natural mode of motion of the system. The free motion
of the flying body after an initial deviation from its ref-
erence flight is a linear combination of the natural modes
of motion. A positive (or negative) real eigenvalue, λ, will
result in an unstable divergent (or stable subsidence) mode;
the time to double (or to half) the starting value is given by
0.693/|λ|. A pair of complex conjugate eigenvalues, e.g.,
λ1,2 = n̂ ± ω̂i , will result in oscillatory time variation of the
disturbance quantities. The period of the oscillatory motion is
2π/ω̂ and the time to double or half the oscillatory amplitude
are 0.693/|n̂|.

2.8 Flight data

Flight data for the insects are taken from the works of
Ellington [10,11]. The general morphological data, m, R,
c, S,r2, lb (body length), l1 (distance from wing base axis to
center of mass) and χ0 (free body angle), are given in Table 1
(in the table and in the later tables and figures, HF, DF, CF and
HM represent hoverfly, drone fly, crane fly and hawkmoth,
respectively). Moment of inertia of the body about wing-root
axis (Ib) is also available. The moment of inertia of the body
about yb-axis, can be computed as Iy = Ib − l2

1m; the com-
puted values of Iy are also given in Table 1 (for comparison,
the data of bumblebee (BB) studied in Sun and Xiong [7] are
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Table 1 General morphological and wing-kinematic data for the insects

m/mg R/mm c/mm r2/R lb/R l1/ lb χ0/(
◦) Iy/(kg m2) �/(◦) n/Hz β/(◦) χ/(◦)

HF 27.3 9.3 2.2 0.578 1.10 0.14 53 1.84×10−10 90 160 0 43

DF 68.4 11.4 3.19 0.543 1.22 0.12 50 0.70×10−9 109 157 0 50

CF 11.4 12.7 2.38 0.614 0.85 0.21 70 0.95×10−10 120 45.5 0 51

HM 1,648 51.9 18.26 0.525 0.81 0.27 73 2.08×10−7 121 26.3 0 51

BB 175 13.2 4.01 0.550 1.41 0.21 57.5 2.13×10−9 116 155 6 46.8

Table 2 Parameters determined by equilibrium condition

CG αd/(
◦) αu/(

◦) φ̄/(◦)

HF 1.46 33 33 2.4

DF 1.10 5 25 0

CF 1.36 27 28 6

HM 1.51 25.5 30.5 9

also included). The available wing-kinematic data [�, n, β,
χ (body angle)] for the insects are also given in Table 1.

3 Results and analysis

3.1 The equilibrium conditions and the aerodynamic
derivatives

For different set of values of αd, αu and φ̄, the mean verti-
cal and horizontal forces and mean pitching moment of the
wings would be different. αd, αu and φ̄ are determined using
the equilibrium conditions as follows. A set of values for
αd, αu and φ̄ are guessed; the flow equations are solved and
the corresponding mean vertical force (C̄L,w), mean hori-
zontal force (C̄H,w) and mean moment (C̄M,w) coefficients
of the wing are calculated. If C̄L,w is not equal to CG (the
non-dimensional weight, given in Table 2), or C̄H,w is not
equal to zero, or C̄M,w is not equal to zero, αd, αu and φ̄ are
adjusted; the calculations are repeated until the magnitude of
difference between C̄L,w and CG is less than 0.03 and those
between C̄H,w and 0 and between C̄M,w and 0 are less than
0.01. The calculated values of αd, αu and φ̄ which satisfy the
equilibrium conditions are given in Table 2.

After the equilibrium flight conditions have been deter-
mined, aerodynamic forces and moments on the wing for
each of u, w and q varying independently from the equilib-
rium value are computed. The corresponding X+, Z+ and
M+ are obtained. As an example, the u-series, w-series and
q-series data for the hoverfly are plotted in Fig. 5 (in the
figure, the equilibrium value has been subtracted from each
quantity). Similar to the case of the bumblebee studied by
Sun and Xiong [7], X+, Z+ and M+ vary approximately

Fig. 5 The u-series (a),w-series (b) and q-series (c) force and moment
data for hoverfly

linearly when the values of u+, w+ and q+ are small, show-
ing that the linearization of the equations of motion is only
justified for small disturbances (results for other insects are
similar).

123



Dynamic flight stability of hovering insects 239

Table 3 Non-dimensional aerodynamic derivatives

X+
u Z+

u M+
u X+

w Z+
w M+

w X+
q Z+

q M+
q

HF −1.28 −0.04 2.32 0.01 −1.26 0.05 −2.15 0 −0.23

DF −0.85 0.04 2.13 0.02 −0.99 0.04 −1.15 0.08 −0.38

CF −1.09 −0.06 3.87 −0.01 −1.03 0.13 −1.23 0.15 −0.69

HM −0.99 −0.12 1.97 −0.05 −1.14 0.21 −1.07 −0.08 −0.69

Table 4 Eigenvalues of the
system matrix

Given in parentheses are
eigenvalues
non-dimensionalized by
wingbeat frequency n

Mode 1 Mode 2 Mode 3
λ1,2 λ3 λ4

HF 0.010±0.019i (0.074±0.144i) −0.022(−0.171) −0.003(−0.020)

DF 0.010±0.019i (0.073±0.139i) −0.022(−0.165) −0.002(−0.015)

CF 0.024±0.053i (0.033±0.733i) −0.063(−0.865) −0.008(−0.110)

HM 0.043±0.096i (0.269±0.608i) −0.118(−0.747) −0.015(−0.092)

BB 0.006±0.018i (0.045±0.129i) −0.027(−0.197) −0.002(−0.012)

Table 5 Magnitudes and phase
angles of the components of
each of the three eigenvectors

Numbers in the parentheses are
phase angles, in degrees

Mode δu/U δw/U δqU/c δθ

HF 1 1.3×10−1 (125) 5.0×10−4 (248) 0.2×10−1 (63) 1 (0)

2 1.5×10−1 (0) 6.0×10−4 (0) 0.2×10−1 (180) 1 (0)

3 3.0 (180) 1.4×102 (0) 0.3×10−2 (180) 1 (0)

DF 1 0.1043 (123) 0.0005 (50) 0.0213 (62) 1 (0)

2 0.1089 (0) 0.0003 (180) 0.0223 (180) 1 (0)

3 1.2 (180) 0.6×102 (0) 0.2×10−2 (180) 1 (0)

CF 1 0.1763 (126) 0.0018 (326) 0.0585 (66) 1 (0)

2 0.1741 (0) 0.0039 (0) 0.0630 (180) 1 (0)

3 5.7 (0) 1.7×102 (180) 0.8×10−2 (180) 1 (0)

HM 1 0.1803 (123) 0.0030 (231) 0.1055 (66) 1 (0)

2 0.1730 (0) 0.0017 (0) 0.1180 (180) 1 (0)

3 2.5 (0) 0.23×102 (180) 0.1×10−1 (180) 1 (0)

The non-dimensional aerodynamic derivatives, X+
u , Z+

u ,
M+

u , X+
w , Z+

w , M+
w , X+

q , Z+
u and M+

q are estimated using the
above data and are given in Table 3. Note that although the
insects have a 150-fold weight difference, each of the non-
dimensional aerodynamic derivatives is not greatly different
between the insects.

3.2 The natural modes of the disturbed motion

The eigenvalues and the corresponding eigenvectors, calcu-
lated in Matlab, are shown in Tables 4 and 5, respectively,
(for comparison, eigenvalues for the bumblebee studied in
Sun and Xiong [7] are included in Table 4). For each of
the insects, there are a pair of complex eigenvalues with a
positive real part and two negative real eigenvalues,
representing an unstable oscillatory motion (mode 1) and

two stable subsidence motions (mode 2 and mode 3), respec-
tively. As Sun and Xiong [7] did, we call modes 1, 2, and
3 unstable oscillatory mode, fast subsidence mode and slow
subsidence mode, respectively. The three modes of motion
of each of the insects are similar to the corresponding ones
of the bumblebee studied by Sun and Xiong [7]. The unsta-
ble oscillatory mode is a motion in which δq, and δu are the
main variables (see Table 5). In this mode the insect conducts
horizontal and pitching oscillations; in a large part of a cycle,
δu and δq are in phase, i.e., the insect pitching down while
moving backwards or pitching up while moving forward. The
fast subsidence mode is also a motion in which δq and δu are
the main variables (Table 5), but δq and δu are out of phase,
i.e., when δu has a positive initial value, δq has a negative
initial value and the insect would pitch down (or up) back to
the reference attitude and at the same time moves forward
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(or backwards). The slow subsidence mode is a motion in
which δw is the main variable (Table 5), which represents a
vertical descending (or ascending) motion.

3.3 Test of the “rigid body” assumption

3.3.1 The requirement of body motion being much slower
than wing flapping motion

The “rigid body” assumption requires that the time scale of
the body motion is much larger than that of the flapping
motion of the wings. The eigenvalues can determine the time
scale of the body motion. If the largest eigenvalue is much
smaller than the circular frequency of wingbeat, the above
requirement is met.

The circular frequency of wingbeat is 2πn; the non-dimen-
sional circular frequency of wingbeat (non-dimensionalized
by n) is 2π (≈ 6.28). The largest non-dimensional eigen-
value (non-dimensionalized by n) for the hoverfly, or drone
fly, or bumblebee, is less than 0.2 (see Table 4), more than 30
times smaller than 2π . Thus, for these insects, the assumption
should be reasonable. Note that these insects have relatively
large wingbeat frequency (larger than 150 Hz; see Table 1).

However, for the crane fly or hawkmoth, the largest non-
dimensional eigenvalue is about 0.8 (Table 4), only about one
eighth of 2π . For these two insects, the assumption that the
body motion is much slower than the wing flapping motion is
in question. Note that these two insects have relatively small
wingbeat frequency (25–45 Hz; see Table 1).

3.3.2 The requirement of body-oscillation at wingbeat
frequency being small

In the process of simplifying the equations of motion, terms
like ω̂bd × v̂cg in Eqs. (18) and (19) have been neglected
under the assumption that ω̂bd, v̂cg, etc., are small, i.e., the
oscillations of the body at wingbeat frequency, which is
caused by cyclic vitiations of the aerodynamic and inertial
forces on the flapping wings, are small. Here we use the
complete equation of motion (Eqs. 10 and 11) to estimate the
amplitude of the oscillation. Since the flapping motion (wing
motion relative to the body) is prescribed, ωwg0 in Eqs. (10)
and (11) is known. Morphological parameters such as Rh,
Rwg, Iwg and so on are available or can be computed based
on the data in Refs.[10,12]. As for the aerodynamic force
(FA) and moment (MA), recall that in Sect. 3.1, the aerody-
namic force and moment of the flapping wings at equilibrium
flight (the body assumed not oscillating) have been com-
puted; these force and moment are reasonably good approx-
imations to FA and MA, respectively. Using these data and
numerically integrating Eqs. (10) and (11), we obtain the
body oscillation at equilibrium flight, which could be taken as
an estimate of the body oscillation in the disturbance motion.

Table 6 The amplitude of the oscillations

au/U aw/U aqc/U aθ ax/c az/c

HF 0.013 0.0016 0.0041 0.004 0.014 0.001

DF 0.017 0.0013 0.0059 0.005 0.014 0.001

CF 0.048 0.0115 0.020 0.043 0.094 0.013

HM 0.039 0.009 0.047 0.044 0.035 0.005

The non-dimensioned amplitudes of oscillation are shown in
Table 6 (in the table the amplitudes of the xb and zb com-
ponents of vcg are denoted as au and aw, respectively; the
amplitudes of pitching angular velocity and pitching angle
are denoted as aq and aθ , respectively; the amplitudes of the
horizontal and vertical displacement of the center of mass of
the body are denoted as ax and az, respectively). The non-
dimensional amplitudes are of the order of 10−2. Thus, the
magnitudes of the terms like ω̂bd × v̂cg, etc. would be of the
order of 10−4. The retained terms in the equations of distur-
bance motion, e.g., M+

u δu
+, are of the order of 10−1. It is

clear that neglecting terms like ω̂bd × v̂cg is reasonable.

3.3.3 The mean inertial force and moment of the flapping
wings being approximately zero

Recall that in Sect. 2.3, b̄1 and b̄2 in Eqs. (18) and (19), which
represent the mean inertial forces and moments of the flap-
ping wings, were dropped on the assumption that they were
approximately zero. This is checked here. To compute b̄1 and
b̄2, we need ωwg0, ωbd and vcg (see Eqs. 13 and 15). ωwg0 is
known because the flapping motions is prescribed. ωbd and
vcg can be estimated on the basis of the natural modes of
motion of the body. Thus, b̄1 and b̄2 can be estimated. Our
calculations show that the contributions of b̄1 and b̄2 to the
equations of disturbance motion are approximately zero (the
values of which are the order of 10−6). The reason for this is
because there are acceleration and deceleration of the wing
within a down- or upstroke and the motion of the wing in
the downstroke is opposite to that of the upstroke, the iner-
tial forces (or moments) in deferent parts of a flapping cycle
approximately cancel out (this was anticipated above).

The above analysis show that for insects, with relatively
high wingbeat frequency (hoverfly, dronefly, bumblebee; n
larger than 150 Hz), the “rigid body” assumption and the sim-
plification of the equations of motion are reasonable, but for
insects with relatively small wingbeat frequency (cranefly
and hawkmoth; n less than 45 Hz), because the requirement
of body motion being much slower than wing flapping motion
is not well met, the applicability of the “rigid body” assump-
tion is questionable.
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Table 7 Approximate eigenvalues for insects in normal hovering com-
puted by Eqs. (31), (34)–(38)

Mode 1 Mode 2 Mode 3
λ1,2 λ3 λ4

HF 0.010±0.019i −0.023 −0.003

DF 0.010±0.019i −0.023 −0.002

CF 0.025±0.052i −0.065 −0.008

HM 0.044±0.095i −0.120 −0.015

3.4 Approximate analytical expressions of the eigenvalues
and physical interpretation of the natural modes

In order to have physical insight into the genesis of the nat-
ural modes of motion, it is desirable to have approximate
analytical expressions for the eigenvalues. Here, we obtain
the expressions by simplifying the equations of motion on
the basis of the known modal characteristics.

First, we consider the stable slow subsidence mode. We
have noted that δu, δq and δθ are negligibly small in this
mode (Table 5, mode 3). We can therefore simplify the equa-
tions of motion (Eq. 27) by neglecting the X -force equation,
the pitching moment equation and the δθ -equation and putt-
ing δu, δq and δθ to zero in the Z -force equation. This results
in the simplified equation:

δẇ+ = Z+
w

m+
bd

δw+. (29)

The characteristic equation is

λ− Z+
w/m+

bd = 0, (30)

which gives the approximate expression for the eigenvalue
of the stable slow subsidence mode (λ4) as

λ4 ≈ Z+
w/m+

bd. (31)

Values of λ4 computed by Eq. (31) are given in Table 7 and
they are almost identical to the exact values shown in Table 4
(λ4 for the bumblebee studied by Sun and Xiong [7] com-
puted by Eq. (31) is −1.795, almost the same as the exact
value −1.799). From Eq. (31), we see that the stable slow
subsidence mode mainly depends on the ratio of two parame-
ters, Zw and mbd. The physical interpretation of this mode of
motion is clearly seen: when Zw is negative, for example, a
positive
w disturbance (insect moving downward) will pro-
duce a negative vertical force, which opposes the downward
motion, stabilizing the motion.

Next, we consider the unstable oscillatory mode and the
stable fast subsidence mode. In these two modes (Table 5,
modes 1 and 2), δw is negligibly small. Therefore, we can
neglect the Z -force equation and set δw in other equations
zero. The equations of motion (Eq. 27) are simplified to the

following:
⎡
⎣
δu̇+
δq̇+
δθ̇

⎤
⎦ =

⎡
⎣

X+
u /m+

bd X+
u /m+

bd −g+
M+

u /I +
y M+

q /I +
y 0

0 1 0

⎤
⎦

⎡
⎣
δu+
δq+
δθ

⎤
⎦ . (32)

The characteristic equation of which is

λ3 −
( X+

u

m+
bd

+ M+
q

I +
y

)
λ2 +

( X+
u M+

q

m+
bd I +

y
− M+

u X+
q

m+
bd I +

y

)
λ

+g+M+
u

I +
y

= 0. (33)

The exact expressions of the roots of Eq. (33) can be obtained.
But the expressions are rather complex and it is difficult to
see how a parameter influences the roots. By using the bino-
mial series expansion and neglecting the higher order terms,
we obtain relatively simple expressions of the roots (see the
Appendix B):

λ1,2 = n̂ ± iω̂, (34)

where

n̂ ≈ 1

2
3

√
M+

u g+

I +
y

(1 − 2 j), (35)

ω̂ ≈
√

3

2
3

√
M+

u g+

I +
y

, (36)

and

λ3 ≈ − 3

√
M+

u g+

I +
y

(1 + j), (37)

where

j = −1

3

( M+
q

I +
y

+ X+
u

m+
bd

)/
3

√
M+

u g+

I +
y

. (38)

Values of λ1,2 and λ3 computed using Eqs. (34)–(38) are
also given in Table 7, which are in very good agreement with
the exact values given in Table 4 (this is also true for the
bumblebee studied by Sun and Xiong [7]).

Using data in Tables 1 and 3, it can be shown that j is

considerably smaller than 1. We thus see that 3
√

M+
u g+/I +

y

plays a major role in determining λ1,2 (= n̂±iω̂) and λ3; i.e.,
these two modes are mainly determined by the parameters
Mu, g and Iy. On the basis of these results, the physical inter-
pretation of the two natural modes of motion can be given.
For the unstable oscillatory mode, when the insect moves
forward (positive 
u), it pitches up (as seen above, u and
q are approximately in phase); the positive 
u produces a
positive moment Mu
u, which tends to increase the pitch-
up motion, destabilizing the motion (similar destabilizing
effects can be seen when the insect moves backwards). For
the fast subsidence mode, the opposite is true: when the insect
moves forward, it pitches down (as seen above, u and q are
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approximately out of phase); the positive moment produced
by 
u tends to decrease the pitch-down motion, stabilizing
the motion (similar stabilizing effects can be seen when the
insect moves backwards).

4 Conclusions

1. For insects considered in the present study and in Ref.
[7], for those with relatively high wingbeat frequency
(hoverfly, drone fly and bumblebee), the “rigid body”
assumption is reasonable, and for those with relatively
low wingbeat frequency (cranefly and howkmoth), the
applicability of the “rigid body” assumption is question-
able.

2. The same three natural modes of motion as those reported
recently for a bumblebee are identified, i.e., one unstable
oscillatory mode, one stable fast subsidence mode and
one stable slow subsidence mode.

3. Approximate analytical expressions of the eigenvalues,
which give physical insight into the genesis of the natural
modes of motion, are derived. The expressions identify
the speed derivative Mu (pitching moment produced by
unit horizontal speed) as the primary source of the unsta-
ble oscillatory mode and the stable fast subsidence mode
and Zw (vertical force produced by unit vertical speed) as
the primary source of the stable slow subsidence mode.

Appendix A Derivation of the equations of motion

A.1 Translational equations of the motion

Variables vcg,ωbd, Rcg, Rh, Rwg, etc. have been defined in
the text. Newton’s law is applied to an element dm of the
insect and then integrated over all elements. The position
vector of dm relative to the origin of the inertial frame is
Rcg + R, where R is a vector from the centre of mass of the
body to dm. The inertial velocity of dm is

fv = d

dt
(f Rcg + f R) = fvcg + df R

dt
. (A1)

The momentum of dm is vdm, and of the whole insect is:

∫

body & wings

fvdm =
∫

body & wings

(
fvcg + df R

dt

)
dm

= mtotalfvcg +
∫

body & wings

df R
dt

dm

(A2)

where mtotal is the total mass of the body and wings of the
insect. Newton’s second law applied to dm gives:

df f = dfv

dt
dm, (A3)

where df f is the force acting on the element. Integration over
the insect gives:

f F = mtotal
dfvcg

dt
+

∫

body & wings

d2
f R

dt2 dm

= mtotal
dfvcg

dt
+ d2

dt2

∫

body

f Rdm +
N∑

i=1

d2

dt2

∫

wing,i

f Rdm,

(A4)

where F is the force acting on the insect and N is the number
of wings. Since R is a vector from the centre of mass of the
body, we have:
∫

body

f Rdm = 0. (A5)

For a point on a wing (Fig. 1),

f R = f Rh + f Rwg + f Rp, (A6)

where Rp is a vector from the centre of mass of the wing.
Since (Rh + Rwg) is constant in the integration, we have:
∫

wing

f Rdm =
∫

wing

(f Rh + f Rwg + f Rp)dm

= mwg(f Rh + f Rwg), (A7)

where mwg is the mass of the wing. Substituting Eqs. (A5)
and (A7) into Eq. (A4) gives:

f F = mtotal
dfvcg

dt
+

N∑
i=1

mwg,i
d2

dt2 (f Rh + f Rwg)i . (A8)

Equation (A8) is in the inertial frame. As will be seen below,
in deriving the rotational equation of motion, time deriva-
tives of angular momentum, which contains moments and
products of inertia of the body, are needed. If equations of
motion are written in body frame, moments and products
of inertia of the body would be independent on time and
the resulting equations would be relatively simple. There-
fore, it is desirable to rewrite the equations of motion in the
body frame (xb, yb, zb). Equation (A8) can be transformed
to frame (xb, yb, zb) by using the following relations [13]:

df V
dt

= dbV
dt

+ bωbd × bV , (A9)

d2
f V

dt2 = d2
bV

dt2 + 2bωbd × dbV
dt

+ dbωbd

dt
× bV

+ bωbd × (bωbd × bV ). (A10)
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When bV and bωbd are changed to wV and wωwg , respec-
tively, Eqs. (A9) and (A10) relate the time derivatives of f V
and wV . Applying these relations to the terms on the right
hand side (RHS) of Eq. (A8) gives:

dfvcg

dt
= dbvcg

dt
+ bωbd × bvcg, (A11)

d2
f Rh

dt2 = dbωbd

dt
× b Rh + bωbd × (bωbd × b Rh), (A12)

d2
f Rwg

dt2 = dwωwg

dt
× w Rwg + wωwg × (wωwg × w Rwg).

(A13)

Thus Eq. (A8) can be rewritten as

b F = mtotal

(dbvcg

dt
+ bωbd × bvcg

)
+

N∑
i=1

{
mwg

[dbωbd

dt

×b Rh + bωbd × (bωbd × b Rh)
]}

i
+

N∑
i=1

{
mwg E

w→b

×
[dwωwg

dt
× w Rwg + wωwg × (wωwg × w Rwg)

]}
i
,

(A14)

which is the translational equation of motion.

A.2 Rotational equations of motion

The moment of momentum of dm with respect to the origin
of the inertial frame is

df H = f R1 × fvdm, (A15)

where R1 is a vector from the origin of the inertial frame,
Newton’s second law written for the angular momentum
gives:

df M1 = d

dt
(df H) = d

dt
(f R1 × fvdm), (A16)

where df M1 is the moment acting on the element about the
origin of the inertial frame. Integrating over the insect gives:

f M1 = df H
dt

, (A17)

where M1 is the moment acting on the insect about the origin
of the inertial frame and H can be written as follows:

f H =
∫

body & wings

f R1 × fvdm

=
∫

body

f R1 × fvdm +
N∑

i=1

∫

wing,i

f R1 × fvdm. (A18)

At a point on the body, inertial velocity is

fv = d

dt
(f Rcg + f R) = fvcg + fωbd × f R. (A19)

At a point on a wing (R is Rh + Rwg + Rp), inertial velocity
is

fv = d

dt
(f Rcg + f Rh + f Rwg + f Rp)

= d

dt
(f Rcg + f Rh)+ fωwg × (f Rwg + f Rp)

= fvcg + fωbd × f Rh + fωwg × (f Rwg + f Rp). (A20)

R1 can be written as

f R1 = f Rcg + f R (for point on body), (A21)

f R1 = f Rcg+f Rh+f Rwg+f Rp (for point on wing).

(A22)

Using Eqs. (A19)–(A22), Eq. (A18) can be written as

f H =
∫

body

(f Rcg + f R)× fvcgdm +
∫

body

(f Rcg + f R)

×(fωbd × f R)dm +
N∑

i=1

∫

wing,i

(f Rcg + f Rh + f Rwg

+f Rp)× (fvcg + fωbd × f Rh)dm +
N∑

i=1

∫

wing,i

(f Rcg

+f Rh + f Rwg + f Rp)× [fωwg × (f Rwg + f Rp)]dm.

(A23)

The terms on the RHS of Eq. (A23) can be simplified as
following. The first term becomes:

∫

body

f Rcg × fvcgdm +
∫

body

f R × fvcgdm

= mbdf Rcg × fvcg, (A24)

where mbd is the mass of the body and the second integration
is zero because R is a vector from the centre of mass of the
body. The second term on the RHS of Eq. (A23) becomes:

∫

body

f Rcg × (fωbd × f R)dm +
∫

body

f R × (fωbd × f R)dm

=
∫

body

f R × (fωbd × f R)dm = f Ibdfωbd, (A25)
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where Ibd is the inertia matrix of the body. The third term on
the RHS of Eq. (A23) becomes:

N∑
i=1

∫

wing,i

(f Rcg + f Rh + f Rwg + f Rp)× (fvcg + fωbd

×f Rh)dm =
N∑

i=1

[mwg(f Rcg + f Rh + f Rwg)

×(fvcg + fωbd × f Rh)]i , (A26)

because in the integration, (Rcg + Rh + Rwg) and (fvcg +
fωbd ×f Rh) are constant and Rp is a vector from the centre of
mass of the wing. The fourth term on the RHS of Eq. (A23)
becomes:

N∑
i=1

∫

wing,i

(f Rcg + f Rh + f Rwg + f Rp)× [fωwg × (f Rwg

+ f Rp)]dm =
N∑

i=1

{mwg(f Rcg + f Rh)× (fωwg × f Rwg)

+
∫

wing

(f Rwg + f Rp)× [fωwg

× (f Rwg + f Rp)]dm}i

=
N∑

i=1

[mwg(f Rcg + f Rh)×(fωwg×f Rwg)

+ f Iwgfωwg]i , (A27)

where

f Iwgfωwg =
∫

wing

(f Rwg+f Rp)×[fωwg × (f Rwg + f Rp)]dm,

(A28)

and Iwg is the inertia matrix of the wing. Substituting
Eqs. (A24)–(A27) into Eq. (A23), f H is written as

f H = mbdf Rcg × fvcg + f Ibdfωbd +
N∑

i=1

[mwgf Rcg × (fvcg

+ fωbd × f Rh)+ mwgf Rcg × (fωwg × f Rwg)]i

+
N∑

i=1

[mwg(f Rh + f Rwg)× (fvcg + fωbd × f Rh)

+ mwgf Rh × (fωwg × f Rwg)+ f Iwgfωwg]i . (A29)

The time rate of change of f H is

df H
dt

= mbdf Rcg × dfvcg

dt
+ mbd

df Rcg

dt
× fvcg

+
N∑

i=1

[
mwg

df Rcg

dt
× (fvcg + fωbd × f Rh)

+ mwgf Rcg× dfvcg

dt
+mwgf Rcg× d

dt
(fωbd × f Rh)

]
i

+
N∑

i=1

[
mwg

df Rcg

dt
× (fωwg × f Rwg)

+ mwgf Rcg × d

dt
(fωwg × f Rwg)

]
i
+ d

dt
(f Ibdfωbd)

+
N∑

i=1

d

dt
[mwg(f Rh + f Rwg)× (fvcg + fωbd × f Rh)

+ mwgf Rh × (fωwg × f Rwg)+ f Iwgfωwg]i

= mbdf Rcg × dfvcg

dt
+

N∑
i=1

[
mwgfvcg × (fωbd × f Rh)

+ mwgf Rcg×dfvcg

dt
+ mwgf Rcg× d

dt
(fωbd×f Rh)

]
i

+
N∑

i=1

[
mwgfvcg × (fωwg × f Rwg)

+ mwgf Rcg × d

dt
(fωwg × f Rwg)

]
i

+ d

dt
(f Ibdfωbd)+

N∑
i=1

d

dt
[mwg(f Rh + f Rwg)

×(fvcg + fωbd × f Rh)

+ mwgf Rh × (fωwg × f Rwg)+ f Iwgfωwg]i . (A30)

M1 in Eq. (A17) (the moment acting on the insect) is about
the origin of the inertial frame. It can be written as

f M1 = f M + f Rcg × f F, (A31)

where M is the moment acting on the insect about the center
of mass of the body and F is the force acting on the insect.
Using Eq. (A8), (A31) becomes

f M1 = f M + f Rcg ×
[
mtotal

dfvcg

dt

+
N∑

i=1

mwg,i
d2

dt2 (f Rh + f Rwg)i

]

= f M + mtotalf Rcg × dfvcg

dt

+
N∑

i=1

[
mwgf Rcg × d2

dt2 (f Rh + f Rwg)
]

i

= f M + mtotalf Rcg × dfvcg

dt
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+
N∑

i=1

[
mwgf Rcg× d

dt
(fωbd×f Rh+fωwg×f Rwg)

]
i

= f M + mtotalf Rcg × dfvcg

dt

+
N∑

i=1

[
mwgf Rcg × d

dt
(fωbd × f Rh)

]
i

+
N∑

i=1

[
mwgf Rcg × d

dt
(fωwg × f Rwg)

]
i
. (A32)

Substituting Eqs. (A30) and (A32) into Eq. (A17) and noting
that

mbd +
N∑

i=1

mwg,i = mtotal, (A33)

Eq. (A17) becomes

f M =
N∑

i=1

[mwgfvcg × (fωbd × f Rh + fωwg × f Rwg)]i

+ d

dt
(f Ibdfωbd)+

N∑
i=1

d

dt
[mwg(f Rh + f Rwg)

×(fvcg + fωbd × f Rh)+ mwgf Rh

×(fωwg × f Rwg)+ f Iwgfωwg]i . (A34)

Equation (A34) is the rotational equation of motion in
inertial frame. It is transformed into the body frame using
Eqs. (A9) and (A10). First, the time derivative terms on the
RHS are treated separately as following:

d

dt
(f Ibdfωbd) = d

dt
(b Ibdbωbd)+ bωbd × b Ibdbωbd,

(A35)

d

dt
[(f Rh + f Rwg)× (fvcg + fωbd × f Rh)]

= d

dt
[(b Rh + b Rwg)× (bvcg + bωbd × b Rh)]

+bωbd × [(b Rh + b Rwg)× (bvcg + bωbd × b Rh)],
(A36)

d

dt
[f Rh × (fωwg × f Rwg)]

= d

dt
[b Rh × (bωwg × b Rwg)] + bωbd

×[b Rh × (bωwg × b Rwg)], (A37)

d

dt
(f Iwgfωwg) = d

dt
(b Iwgbωwg)+ bωbd × b Iwgbωwg

= d

dt
[ E
w→b

(w Iwgwωwg)]
+ bωbd × E

w→b
(w Iwgwωwg). (A38)

Using Eqs. (A35)–(A38), Eq. (A34) is transformed into the
body frame as following:

b M =
N∑

i=1

[mwgbvcg × (bωbd × b Rh + bωwg × b Rwg)]i

+bωbd × b Ibdbωbd + d

dt
{b Ibdbωbd

+
N∑

i=1

[mwg(b Rh + b Rwg)× (bvcg + bωbd × b Rh)

+mwgb Rh × (bωwg × b Rwg)+ E
w→b

(w Iwgwωwg)]i }

+
N∑

i=1

{bωbd × E
w→b

(w Iwgwωwg)+ mwgbωbd

×[b Rh × (bωwg × b Rwg)] + mwgbωbd

×[(b Rh + b Rwg)× (bvcg + bωbd × b Rh)]}i . (A39)

Equation (A39) is the rotational equation of motion in body
frame.

Appendix B Derivation of approximate roots

Letting b = −
( X+

u

m+
bd

+ M+
q

I +
y

)
, c =

( X+
u M+

q

m+
bd I +

y
− M+

u X+
q

m+
bd I +

y

)

and d = g+M+
u

I +
y

, Eq. (A33) can be written as

λ3 + bλ2 + cλ+ d = 0. (B1)

From the values of M+
u , M+

q , etc. (Table 3), we have b > 0,
c > 0 and d > 0. Letting

p = c − b2/3, (B2)

q = 2b3/27 + d − bc/3, (B3)

the roots of Eq. (B1) are [14]:

λ1,2 = n̂ ± iω̂, (B4)

where

n̂ = −1

2

( 3
√−A + B + 3

√−A − B
) − b

3
, (B5)

ω̂ =
√

3

2

( 3
√−A + B − 3

√−A − B
)
, (B6)

and

λ3 = 3
√−A + B + 3

√−A − B − b

3
. (B7)

A and B in the above equations are defined as

A = q

2
= d

2
(1 + α − β), (B8)

B =
√

q2

4
+ p3

27
= d

2

(
1 + 2α − 2β + 1

3
β2 + γ

)1/2
, (B9)
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where α = (b/3)3 · (2/d), β = (b/3) · (c/d), γ = (4/27) ·
(c/d)2 · c.

Using the values of m, Iy, Mu etc. in Tables 1 and 3, it
can be shown that α and β are generally much smaller than
1 and that γ is the same order of magnitude as β2. Thus,
approximate, but simple, expressions for λ1,2 and λ3 can be
obtained using the binomial series expansion with the higher
order terms (HOT) dropped. This is done as follows:

3
√−A + B =

[
− d

2
(1 + α − β)+ d

2

(
1 + α − β − 1

2
α2

−2

3
β2 + αβ + 1

2
γ + HOT

)]1/3

≈ − 3
√

d
3

√
α2

4
+ β2

3
− αβ

2
− γ

4
, (B10)

3
√−A − B =

[
− d

2
(1 + α−β)− d

2
(1 + α − β + HOT)

]1/3

≈ − 3
√

d
(

1 + 1

3
α − 1

3
β
)

≈ − 3
√

d. (B11)

Using Eqs. (B10) and (B11), we have

−1

2

( 3
√−A + B + 3

√−A − B
) − b

3
≈ 1

2
3
√

d
(

1 − 2 3

√
α

2

)
,

(B12)√
3

2

( 3
√−A + B + 3

√−A − B
) ≈

√
3

2
3
√

d, (B13)

3
√−A + B + 3

√−A − B − b/3 = − 3
√

d
(

1 + 3

√
α

2

)
.

(B14)

Finally the roots (Eqs. B4–B7) can be written as:

λ1,2 = n̂ ± iω̂, (B15)

where

n̂ = 1

2
3
√

d(1 − 2 j), (B16)

ω =
√

3

2
3
√

d, (B17)

and

λ3 = − 3
√

d(1 + j), (B18)

where j = 3

√
α

2
= b

/(
3 3
√

d
)
; in terms of I +

y , M+
u , etc., j is:

j = −1

3

(
M+

q

I +
y

+ X+
u

m+
bd

)/
3

√
M+

u g+

I +
y

. (B19)
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