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Abstract Analytical studies on electromagnetoelastic
behaviors are presented for the functionally graded pie-
zoelectric material (FGPM) solid cylinder and sphere
placed in a uniform magnetic field and subjected to
the external pressure and electric loading. When the
mechanical, electric and magnetic properties of the
material obey an identical power law in the radial direc-
tion, the exact displacements, stresses, electric potentials
and perturbations of magnetic field vector in the FGPM
solid cylinder and sphere are obtained by using the infin-
itesimal theory of electromagnetoelasticity. Numerical
examples also show the significant influence of material
inhomogeneity. It is interesting to note that selecting a
specific value of inhomogeneity parameter β can opti-
mize the electromagnetoelastic responses, which will
be of particular importance in modern engineering
designs.

Keywords Functionally graded piezoelectric material
(FGPM) · Electromagnetoelastic · Solid cylinder · Solid
sphere · Perturbation of magnetic field vector

1 Introduction

The functionally graded piezoelectric material (FGPM)
is a kind of piezoelectric material with material com-
position and properties varying continuously in certain
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direction. The piezoelectric devices can be entirely made
of FGPM or use FGPM as a transit interlayer between
two different piezoelectric materials. FGPM is the
composite material intentionally designed to possess
desirable properties for some specific applications. The
advantage of this new kind of materials can improve the
reliability or the service life of piezoelectric devices.

Recently there has been growing interest in mate-
rials with designed mechanical, electric and magnetic
properties varying continuously in space on the mac-
roscopic scale. This subject is so new that only a few
results can be found in the literatures. Previous studies
on the subject were performed by Wu et al. [1], Chen
et al. [2] and Pan and Han [3] et al. Lim and He [4]
obtained an exact solution for a compositionally graded
piezoelectric layer under uniform stretch, bending and
twisting. Jin and Zhong [5], Wang [6] investigated the
problems of antiplane crack in the FGPM. An exact
three-dimensional analysis was presented by Zhong and
Shang [7] for a functionally gradient piezoelectric rect-
angular plate that was simply supported and grounded
along its four edges. By means of an analytical-numer-
ical method, Han and Liu [8] studied elastic waves in
a functionally graded piezoelectric Cylinder. Utilizing
the Fourier transform technique, Ueda [9] investigated
the thermally induced fracture of a functionally graded
piezoelectric layer; Sun et al. [10] investigated the behav-
ior of a crack in the functionally graded piezoelectric/
piezomagnetic materials subjected to an anti-plane shear
loading. Ma et al. [11] investigated the electroelastic
behavior of a Griffith crack in a functionally graded
piezoelectric strip. A layerwise finite element formula-
tion developed by Lee [12] for piezoelectric materials
was used to investigated the displacement and stress re-
sponse of a functionally graded piezoelectric bimorph
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actuator. Ootao and Tanigawa [13] studied the transient
piezothermoelastic problem of a thick functionally
graded thermopiezoelectric strip due to nonuniform
heat supply. Guo et al. [14] investigated the transient
fracture behavior of a functionally graded layered struc-
ture subjected to an in-plane impact load. Huang and
Shen [15] dealt with the nonlinear vibration and dynamic
response of a functionally graded material plate with
surface-bonded piezoelectric layers in thermal environ-
ments. However, exact solutions for the FGPM solid
cylinder and sphere in a uniform magnetic field have
not been found in the literatures.

The present paper attempts to present the simple,
tractable closed-form solutions for the FGPM solid cyl-
inder and sphere. The emphasis of this research is laid
on the effects of the gradient index β on the electro-
magnetoelastic stresses, the electric potential and the
perturbation of magnetic field vector, and on the opti-
mum design of the FGPM solid structures.

The distributions of the stresses, the electric poten-
tial and the perturbation of magnetic field vector in the
FGPM solid cylinder and sphere will be calculated in this
paper. a is taken as the radius of the FGPM solid cylinder
and sphere. All the material constants, the magnetic per-
meability, the piezoelectric parameters and the dielec-
tric parameter are assumed to have the same power-law
dependence on the wall thickness of the FGPM struc-
tures, i.e.

cij(r) = c0
ijr
β ,

µ(r) = µ0rβ ,
eri(r) = e0

rir
β ,

εrr(r) = ε0
rrr
β ,

(i = r, θ ; j = r, θ) (1)

where cij are the elastic constants, µ the magnetic per-
meability, eri the piezoelectric constants, εrr the dielec-
tric constant, subscript 0 denotes corresponding value at
the outer surfaces (r = a) of the FGPM solid cylinder
and sphere, and β is the inhomogeneous constant deter-
mined empirically. The range −2 ≤ β ≤ 2 to be used
in the present study covers all the values of coordinate
exponent encountered in Refs. [7,16]. However, these β
values do not necessarily represent a specific material,
variable β is used to manifest the effect of inhomogene-
ity on the stresses, electric potential and perturbation of
magnetic field vector distributions.

2 Electromagnetoelastic responses in a FGPM solid
cylinder

2.1 Governing equations and solutions

A long, functionally graded piezoelectric solid cylin-
der with perfect conductivity is placed in a uniform

magnetic field H(0, 0, Hz). Let the cylindrical coordi-
nates of a representative point be (r, θ , z). For an
axisymmetry plane strain problem, the components of
displacement and electric potential in the cylindrical
coordinate (r, θ , z) are expressed as u(r) and ψ(r), and
the constitutive relations are

σr = crr
∂u
∂r

+ crθ
u
r

+ err
∂ψ

∂r
, (2a)

σθ = crθ
∂u
∂r

+ cθθ
u
r

+ erθ
∂ψ

∂r
, (2b)

Dr = err
∂u
∂r

+ erθ
u
r

− εrr
∂ψ

∂r
, (2c)

where σi(i = r, θ), Dr and ψ are the components of
stresses, radial electric displacement and electric poten-
tial, respectively.

The boundary conditions are expressed as

σr|r=a = P0,

ψ |r=a = ψ0,

u|r=0 = 0.

(3)

Omitting the displacement electric currents, one obtains
the governing electrodynamic Maxwell equations for a
perfectly conducting, elastic body as [17,18]

J = ∇ × h,

∇ × e = −µ(r)∂h
∂t

,

div h = 0,

e = −µ(r)
(∂U
∂t

× H
)

,

h = ∇ × (U × H),

(4)

where J is the electric current density vector, h the per-
turbation of electric field vector, e the perturbation of
electric field vector, U the displacement vector.

Applying an initial magnetic field vector H(0, 0, Hz)

in the cylindrical coordinate (r, θ , z) system to Eq. (4)
yields

U = (u, 0, 0),

e = −µ(r)
(

0, Hz
∂u
∂t

, 0
)

,
(5a)

h = (0, 0, hz),

J =
(

0, −∂hz

∂r
, 0

)
,

hz = −Hz

(∂u
∂r

+ u
r

)
.

(5b)

The equilibrium equation of the FGPM solid cylinder,
in the absence of body forces, is expressed as

∂σr

∂r
+ σr − σθ

r
+ fz = 0, (6)
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where fz is defined as Lorentz’s force which may be
written as [17,18]

fz = µ0H2
z
∂

∂r

(
rβ
∂u
∂r

+ rβ
u
r

)
. (7)

In the absence of free charge density, the charge equa-
tion of electrostatics is expressed as [19]

∂Dr

∂r
+ Dr

r
= 0, (0 ≤ r ≤ a). (8)

Solving Eq. (8), one gets Dr = 0
Thus, Eq. (2c) may be rewritten as

∂ψ

∂r
= err

εrr

∂u
∂r

+ erθ

εrr

u
r

. (9)

Substituting Eq. (9) into Eqs. (2a), (2b) and utilizing
Eq. (1) yields

σr = C1rβ
∂u
∂r

+ C2rβ
u
r

, (10a)

σθ = C2rβ
∂u
∂r

+ C3rβ
u
r

, (10b)

where

C1 = c0
rr + e0

rre
0
rr

ε0
rr

,

C2 = c0
rθ + e0

rre
0
rθ

ε0
rr

,

C3 = c0
θθ + e0

rθe0
rθ

ε0
rr

.

(11)

By substituting Eqs. (10), (7) into Eq. (6), the equi-
librium equation is expressed as

∂2u
∂r2 + (β + 1)

1
r
∂u
∂r

+�
u
r2 = 0, (12)

where � = C2β − C3 + µ0H2
z(β − 1)

C1 + µ0H2
z

.

It is obvious that the homogeneous solution to
Eq. (12) can be obtained by assuming

u = Krm, (13)

where K is an arbitrary constant, substituting Eq. (13)
into Eq. (12), one obtains

m2 + βm +� = 0, (14)

Thus, the characteristic equation’s roots are

m1 = 1
2

( − β +
√
β2 − 4�

)
,

m2 = 1
2

( − β −
√
β2 − 4�

)
.

(15)

These roots may be (a) real, distinct, (b) double roots,
(c) complex conjugate. For real distinct roots, the
solution is

u = A1rm1 + A2rm2 , (16)

where A1 and A2 are unknown constants.
For double roots m1 = m2 = m, the solution becomes

u = (A1 + A2 ln r)rm. (17)

In the case of complex roots m1 = x + yi, m2 = x − yi,
the solution takes the form

u = [A1 cos(y ln r)+ A2 sin(y ln r)]rx. (18)

For the numerical values to be used (� < 0 and
−2 ≤ β ≤ 2), only real, distinct roots will be obtained.
Thus, the stress expressions will be obtained by using
Eq. (16)

σr = (C1m1 + C2)A1rm1+β−1

+ (C1m2 + C2)A2rm2+β−1, (19a)

σθ = (C2m1 + C3)A1rm1+β−1

+ (C2m2 + C3)A2rm2+β−1. (19b)

By integrating Eq. (9) and utilizing Eq. (16), one have

ψ = errm1 + erθ

εrrm1
A1rm1 + errm2 + erθ

εrrm2
A2rm2 . (20)

From Eq. (3), Eq. (19a) and Eq. (20), one gets

A1 = k4P0 − k2ψ0

k1k4 − k2k3
,

A2 = k3P0 − k1ψ0

k2k3 − k1k4
,

(21)

where

k1 = (C1m1 + C2)am1+β−1,

k2 = (C1m2 + C2)am2+β−1,

k3 = errm1 + erθ

εrrm1
am1 ,

k4 = errm2 + erθ

εrrm2
am2 .

(22)
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Thus, the exact stresses, electric potential and pertur-
bation of magnetic field vector are obtained as follows:

σr = [(C1m1 + C2)(k4P0 − k2ψ0)rm1+β−1

+ (C1m2 + C2)(k1ψ0 − k3P0)rm2+β−1]/(k1k4

− k2k3), (23a)

σr = [(C2m1 + C3)(k4P0 − k2ψ0)rm1+β−1

+ (C2m2 + C3)(k1ψ0 − k3P0)rm2+β−1]/(k1k4

− k2k3), (23b)

ψ = errm1 + erθ

εrrm1

k4P0 − k2ψ0

k1k4 − k2k3
rm1

+ errm2 + erθ

εrrm2

k3P0 − k1ψ0

k2k3 − k1k4
rm2 , (23c)

hz = −Hz

[
(m1 + 1)

k4P0 − k2ψ0

k1k4 − k2k3
rm1−1

+ (m2 + 1)
k3P0 − k1ψ0

k2k3 − k1k4
rm2−1

]
. (23d)

2.2 Numerical results and discussion

The electromagnetoelastic responses are considered for
an FGPM solid cylinder placed in a uniform magnetic
field and subjected to the external pressure and elec-
tric loading. In the numerical calculations, the follow-
ing material constants for the FGPM solid cylinder are
adopted [20,21]:

c0
rr = 110.0 GPa, c0

rθ = 77.8 GPa,

c0
rz = c0

θz = 115.0 GPa, c0
θθ = 220.0 GPa,

e0
rr = 15.1 C/m2, e0

rθ = −5.2 C/m2,

ε0
rr = 5.62 × 10−9 C2/Nm2, µ0 = 4π × 10−7 H/m,

Hz = 1.796 × 109 A/m.

The radius of the FGPM solid cylinder is taken as
a = 0.01 m. The center point is taken as r = 1 × 10−6 m
in the calculation to ensure the precision of the result.
In all the examples, the gradient index β of the material
properties takes five values: −1.5, −1, 0, 1, 1.5.

Example 1 The corresponding boundary conditions are
expressed as

σr|r=a = −p0, ψ |r=a = 0, (24)

where p0 expresses the constant pressure, and dimen-
sionless variables R = r/a, σ ∗

i = σi/p0(i = r, θ) and
h∗

z = hz/Hz are adopted in the calculations.
The radial stress, circumferential stress and electric

potential distributions in the FGPM solid cylinder are
shown in Figs. 1, 2 and 3, respectively. The radial stresses

Fig. 1 Radial stress distribution for FGPM solid cylinder
subjected to external pressure

Fig. 2 Circumferential stress distribution for FGPM solid
cylinder subjected to external pressure

Fig. 3 Electric potential distribution for FGPM solid cylinder
subjected to external pressure
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Fig. 4 The perturbation of magnetic field vector distribution for
FGPM solid cylinder subjected to external pressure

corresponding to different β at R = 1 are equal to
1, which satisfies the external boundary condition (24)
(see Fig. 1). The values of stresses are increasing as the
position is approaching the center of the FGPM solid
cylinder; and the increasing trend of the curve becomes
milder with increasing β (see Figs. 1, 2). The distribu-
tion of electric potential are just opposite to that of the
stresses (see Fig. 3). Then, its values are very small in
the case of FGPM solid cylinder subjected to external
pressure. The variation of perturbation of magnetic field
vector in Fig. 4 is different from that shown in Figs. 1, 2
and 3, and the trend is affected greatly by the β value.

Example 2 The corresponding boundary conditions are
expressed as

σr|r=a = 0, ψ |r=a = ψ0, (25)

where ψ0 expresses the constant electric potential, and
σ ∗

i = σi/c0
rr(i = r, θ), ψ∗ = ψ/ψ0 and h∗

z = hz/Hz are
adopted in the calculations.

The radial stress and electric potential distributions in
the FGPM solid cylinder subjected to external electric
loading are shown in Figs. 5 and 6. The radial stresses
and the electric potential corresponding to different β
at R = 1 are, respectively, equal to 0 and 1, which satisfy
the external boundary condition (25). The absolute val-
ues of stresses is increasing gradually as the position is
approaching the center of the FGPM solid cylinder; and
the increasing trend of the curve becomes milder with
increasing β. The distribution of perturbation of mag-
netic field vector is shown in Fig. 7. The values of per-
turbation of magnetic field vector in the case of FGPM
solid cylinder subjected to the electric loading are bigger
than those in the case of FGPM solid cylinder subjected
to external pressure.

Fig. 5 Radial stress distribution for FGPM solid cylinder
subjected to external electric potential

Fig. 6 Electric potential distribution for FGPM solid cylinder
subjected to external electric potential

Fig. 7 The perturbation of magnetic field vector distribution for
FGPM solid cylinder subjected to external electric potential
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3 Electromagnetoelastic responses in an FGPM solid
sphere

3.1 Basic formulations and solutions

An FGPM solid sphere with perfect conductivity is
placed in a uniform magnetic field H(0, 0, Hφ). Let the
spherical coordinates of any representative point be
(r, θ ,φ), the components of displacement and electric
potential in the spherical coordinate (r, θ ,φ) are ex-
pressed as u(r) and ψ(r), the constitutive relations are
[22,23]

σr = crr
∂u
∂r

+ 2crθ
u
r

+ err
∂ψ

∂r
, (26a)

σθ = crθ
∂u
∂r

+ (cθθ + cθφ)
u
r

+ erθ
∂ψ

∂r
, (26b)

Dr = err
∂u
∂r

+ 2erθ
u
r

− εrr
∂ψ

∂r
. (26c)

Omitting the displacement electric currents, one obtains
the governing electrodynamic Maxwell equations for a
perfectly conducting, elastic body as

J = ∇ × h,

∇ × e = −µ(r)∂h
∂t

,

divh = 0, (27)

e = −µ(r)
(∂U
∂t

× H
)

,

h = ∇ × (U × H).

Applying an initial magnetic field vector H(0, 0, Hφ)

in the spherical coordinate (r, θ ,φ) system to Eq. (27)
yields [18,24]

U = (u, 0, 0),

e = −µ(r)
(

0, Hφ

∂u
∂t

, 0
)

,
(28a)

h = (0, 0, hφ),

J =
(

0, −∂hφ
∂r

, 0
)

,

hφ = −Hφ

(∂u
∂r

+ 2u
r

)
.

(28b)

The electomagnetic dynamic equation of the FGPM
solid sphere, in the absence of body forces, is expressed
as

∂σr

∂r
+ 2(σr − σθ )

r
+ fφ = 0, (29)

where fφ is defined as Lorentz’s force [17] which may be
written as

fφ = µ0H2
φ

∂

∂r

(
rβ
∂u
∂r

+ rβ
2u
r

)
. (30)

In the absence of free charge density, the charge equa-
tion of electrostatics [19] is expressed as

∂Dr

∂r
+ 2Dr

r
= 0, (0 ≤ r ≤ a). (31)

Solving Eq. (31) gives Dr = 0.
Thus, Eq. (26c) may be rewritten as

∂ψ

∂r
= err

εrr

∂u
∂r

+ 2
erθ

εrr

u
r

. (32)

Substituting Eq. (32) into Eqs. (26a), (26b) and utiliz-
ing Eq. (1), one obtains

σr = C1rβ
∂u
∂r

+ 2C2rβ
u
r

, (33a)

σθ = C2rβ
∂u
∂r

+ C4rβ
u
r

, (33b)

where C4 = c0
θθ + c0

θφ + 2
e0

rθe0
rθ

ε0
rr

, and Ci (i = 1, 2, 3) is

the same as Eq. (11).
Substituting Eqs. (33) and Eq. (30) into Eq. (29) yields

∂2u
∂r2 + (β + 2)

1
r
∂u
∂r

+ λ
u
r2 = 0, (34)

where λ = 2[C2(β + 1)− C4 + µ0H2
φ(β − 1)]

C1 + µ0H2
φ

.

The solution of Eq. 34 gives

σr = [(C1s1 + 2C2)(l4P0 − l2ψ0)rs1+β−1

+ (C1s2 + 2C2)(l1ψ0 − l3P0)rs2+β−1]/(l1l4 − l2l3),

(35a)

σr = [(C2s1 + C4)(l4P0 − l2ψ0)rs1+β−1

+ (C2s2 + C4)(l1ψ0 − l3P0)rs2+β−1]/(l1l4 − l2l3),

(35b)

ψ = errs1 + 2erθ

εrrs1

l4P0 − l2ψ0

l1l4 − l2l3
rs1

+ errs2 + 2erθ

εrrs2

l3P0 − l1ψ0

l2l3 − l1l4
rs2 , (35c)

hφ = −Hφ

[
(s1 + 2)

l4P0 − l2ψ0

l1l4 − l2l3
rs1−1

+ (s2 + 2)
l3P0 − l1ψ0

l2l3 − l1l4
rs2−1

]
. (35d)

The detailed solving process for Eq. (34) is given in
Appendix A.
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3.2 Numerical results and discussion

The electromagnetoelastic responses are studied for an
FGPM solid sphere placed in a uniform magnetic field
and subjected to the external pressure and the electric
loading.

Example 3 All conditions are the same as those for
example 1. The electromagneto elastic stresses and the
electric potential distributions in the FGPM solid sphere
subjected to the external pressure are shown in Figs. 8
and 9, respectively. The stresses and electric potential
distributions have the same trend as those in Figs. 1 and
3, but the magnitude in the case of FGPM solid sphere
are larger than that in the case of FGPM solid cylinder.
The same trend in the perturbation of magnetic field
vector of the FGPM cylindrical vessels is observed by

Fig. 8 Radial stress distribution for FGPM solid sphere subjected
to external pressure

Fig. 9 Electric potential distribution for FGPM solid sphere
subjected to external pressure

Fig. 10 The perturbation of magnetic field vector distribution for
FGPM solid sphere subjected to external pressure

comparing Figs. 4 with 10; however, the magnitudes in
the case of FGPM solid sphere are smaller than those
in the case of FGPM solid cylinder. The curves have the
same trend even though the structure is different.

4 Conclusions

1. Exact solutions are obtained by means of the infin-
itesimal theory of electromagnetoelasticity for the
FGPM solid structures in a uniform magnetic field
and subjected to the external pressure and elec-
tric loading. The mechanical, electric and magnetic
properties of the material are assumed to have the
same exponent-law dependence in the radial direc-
tion of the FGPM solid structures. The solution is
valid for arbitrary mechanical and electric loads ex-
erted on the external surface of the FGPM solid
structures.

2. The pure electric loading case has several charac-
teristics different from those of the pure mechani-
cal loading cases. Thus, applying proper mechanical
and electric loads to the FGPM solid structures can
control the distributions of stresses, electric poten-
tial and perturbation of magnetic field vector in the
FGPM solid structures.

3. The gradient index β has a great effect on the
stresses, electric potential and perturbation of mag-
netic field vector of the FGPM solid structures. Thus
selecting a proper β value, engineers can design a
specific FGPM solid structure that can meet some
special requirements.
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4. Although this paper considers the material con-
stants of only power function in the radial direction,
its technique is applicable to other inhomogeneous
material.

Appendix A

The solution of Eq. (34) for homogeneous materials can
be obtained by assuming

u = Krs. (A1)

where K is an arbitrary constant. Substituting Eq. (A1)
into Eq. (34), one obtains

s2 + (β + 1)s + λ = 0, (A2)

Thus, the characteristic equation’s roots are

s1 = 1
2

( − β − 1 +
√
(β − 1)2 − 4λ

)
,

s2 = 1
2

( − β − 1 −
√
(β − 1)2 − 4λ

)
.

(A3)

Here also, only real, distinct roots will be considered
(λ < 0 and −2 ≤ β ≤ 2). The general solution to
Eq. (34) is

u = B1rs1 + B2rs2 , (A4)

where B1 and B2 are unknown constants. By virtue of
Eq. (A4), the expressions of the radial and circumfer-
ential stresses for the FGPM solid sphere are derived as
follows:

σr = (C1s1 + 2C2)B1rs1+β−1

+ (C1s2 + 2C2)B2rs2+β−1, (A5a)

σθ = (C2s1 + C4)B1rs1+β−1

+ (C2s2 + C4)B2rs2+β−1. (A5b)

Integrating Eq. (27) and utilizing Eq. (A4), one has

ψ = errs1 + 2erθ

εrrs1
B1rs1 + errs2 + 2erθ

εrrs2
B2rs2 . (A6)

By means of the boundary condition (3), Eq. (A5a) and
Eq. (A6), one gets

B1 = l4P0 − l2ψ0

l1l4 − l2l3
,

B2 = l3P0 − l1ψ0

l2l3 − l1l4
,

(A7)

where

l1 = (C1s1 + 2C2)as1+β−1,

l2 = (C1s2 + 2C2)as2+β−1,

l3 =
(err

εrr
s1 + 2

erθ

εrr

)as1

s1
,

l4 =
(err

εrr
s2 + 2

erθ

εrr

)as2

s2
.

(A8)

Thus, the Eqs. (35) can be easily obtained by substituting
Eq. (A7) into Eqs. (A5), Eq. (A6) and the last term of
Eq. (28).
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