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Abstract This paper presents an analytical and
numerical analysis of free and forced transversal vibra-
tions of an elastically connected double-plate system.
Analytical solutions of a system of coupled partial differ-
ential equations, which describe corresponding dynami-
cal free and forced processes, are obtained using
Bernoulli’s particular integral and Lagrange’s method of
variation constants. It is shown that one-mode vibrations
correspond to two-frequency regime for free vibrations
induced by initial conditions and to three-frequency
regime for forced vibrations induced by one-frequency
external excitation and corresponding initial conditions.
The analytical solutions show that the elastic connec-
tion between plates leads to the appearance of two-
frequency regime of time function, which corresponds
to one eigenamplitude function of one mode, and also
that the time functions of different vibration modes are
uncoupled, for each shape of vibrations. It has been
proven that for both elastically connected plates, for
every pair of m and n, two possibilities for appearance
of the resonance dynamical states, as well as for appear-
ance of the dynamical absorption, are present. Using
the MathCad program, the corresponding visualizations
of the characteristic forms of the plate middle surfaces
through time are presented.
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1 Introduction

Plates have been extensively used as structural elements
in many industrial applications. The investigation of the
vibrations of plates dates back to the 19th century. There
had been a great amount of research and literature
over the last century. The problem of free vibration
of a circular plate was first investigated by Poisson [1].
Rayleigh (see Ref. [2] reprint 1945) presented a well-
known general method of solution to determine the res-
onant frequencies of vibrating systems. The method was
improved by Ritz and this approach is one of the most
popular approximate methods for the analysis of vibra-
tions. Reviews of these problems may be found in Refs.
[3,4].

With the availability of inexpensive and high perfor-
mance computers, the theoretical analysis is frequently
employed to optimize problems of the plate vibrations
in practical engineering designs [5,6].

The study of transversal vibrations of an elastically
connected double-plate system is important for both
theoretical and practical reasons. Many important struc-
tures can be modeled as composite structures. This elas-
tically connected double-plate system can be used for
the acoustic and vibration isolation as a wall or a ground.

Current research in the theory of discrete and contin-
uous dynamical system oscillations is directed to non-
linear phenomena as well as to nonstationary processes
[7], and also to stochastic and chaotic processes in pure
deterministic dynamical systems and conditions. In the
theory of oscillations of continuous systems nonlinear
phenomena [6,8,9] as well as damage and fracture are
the topics of some leading journals and international
scientific meetings while pure linear elastic systems are
not in the focus of researchers.
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In Refs. [10–12], the partial fractional differential
equations of creeping and vibrations of plate as well
as of the beam were derived by Hedrih. A fractional-
differential operator with the creep material parameters
was introduced. Plate material creeping and constitutive
relations were expressed by fractional order derivatives.
An equation of deformed middle surface of the plate
was derived for the case of plate free oscillations.

The one- and two-frequencies stationary and non-
stationary regimes of the nonlinear transversal free and
forced vibrations of the beams, plates and shells have
been studied in Hedrih’s articles (see Ref. [13]).
Transversal vibrating beam on the elastic Winkler’s foun-
dation exposed to the multi-frequency forces with fre-
quencies from first frequency resonant range of the beam
have also been studied, and some results of the inves-
tigation of multi-frequency vibrations in the single-fre-
quency regime in nonlinear systems with many degrees
of the freedom and with slow changing parameters were
presented in the article by Stevanović and Rašković from
1974 [14]. Application of the Krilov–Bogolyulybov–
Mitrolpolskiy asymptotic method (see Ref. [7] for the
study of nonlinear oscillations of elastic bodies and ener-
getic analysis of the elastic bodies oscillatory motions
gave new results in the theses by Stevanović in 1975
[9]. In Ref. [15] a mesh free approach, called displace-
ment boundary method, for anisotropic Kirchhoff plate
dynamic analysis was presented.

An accurate laminate model developed by Bruno
et al. [16] by using multi-layered shear deformable plate
modeling and interface elements, based on fracture
mechanics and contact mechanics, was proposed to ana-
lyse mixed mode delamination in composite laminates.

There were few papers on the bending and buck-
ling of functionally graded structures in contract with
the extensive investigations on isotropic and composite
plates and shells. By Ma and Wang [17], the third-order
shear deformation plate theory (TPT) was employed to
solve the axisymmetric bending and buckling problems
of functionally graded circular plates.

The first-known exact solutions for buckling and
vibration of stepped rectangular Mindlin plates with
two opposite edges being simply supported and the
remaining two edges being either free, simply supported
or clamped, are presented in Ref. [18]. The general Levy
type solution method and a domain decomposition tech-
nique are employed to develop an analytical approach
to deal with the stepped rectangular Mindlin plates.
The paper by Shukla et al. [6] presents an analytical
approach to examine the nonlinear dynamic responses
of a laminated composite plate composed of spatially
oriented short fibers in each layer of the composite.

Many researchers have studied plate mechanics using
experimental methods, but most of the papers on vibra-
tion analysis of the plates published in the literature
are analytical and numerical, and very few experimen-
tal results are available. In Ref. [19] the experimental
whole-field interferometry for investigation of the trans-
verse vibration of plates is used.

I think that it is very important to make some new
classical examples of the plate system vibrations with
corresponding analytical solutions useful for teaching
process in theory of vibrations of plate systems, as well
as for comparison with numerical solutions obtained by
numerical methods using powerful computer possibili-
ties.

New computer tools like MKE and BEM as well as
MathCad, Mathematica, MathLab offer powerful possi-
bilities for the visualization of the oscillatory processes
in dynamic systems applied in engineering practice. At
the same time they are very useful for the university
teaching of the theory of oscillations as tools for the
analytical method and pure mathematical explanations.

2 Theoretical problem formulation and governing
equations

Let us consider two isotropic, elastic, thin plates, with
width hi, modulus of elasticity Ei, Poisson’s ratio μi

and shear modulus Gi, mass density ρi, i = 1, 2 in this
paper. The plates have constant thickness in the z-direc-
tion (see Fig. 1). The contours of the plates are parallel.
The plates are interconnected by a linear elastic
Winkler-type layer with constant surface stiffness c. This
elastically connected double-plate system represents a
type of a composite structure, or sandwich or layered
plates.

Fig. 1 A elastically connected double plate system
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Fig. 2 The eigenamplitude functions for first four shapes

The origins of the two coordinate systems are at the
corresponding centers in the nondeformed plates middle
surfaces as shown in Fig. 1. and with parallel correspond-
ing axes. Both plates may be subjected to transversal
distributed external loads qi(x, y, t), along the corre-
sponding external surfaces of the plates. The problem
at hand is to determine solutions and the eigenfrequen-
cies for such a double-plate system elastically connected
by spring layer distributed along the contour surfaces of
the plates.

The use of Love–Kirchhoff approximation makes the
classical plate theory essentially a two dimensional phe-
nomenon, in which the normal and transverse forces and
bending and twisting moments on plate cross sections
can be found in term of the displacements wi(x, y, t) of
the middle surface points [20]. The plates are assumed
to be with the same contour forms and boundary condi-
tions.

Let us suppose that the plate middle surfaces are
planes for the undeformed system. The plate transverse
deflections wi(x, y, t) are small as compared to the thick-
ness of the plates, hi, and the vibrations occur only in
the vertical direction.

Let us denote with Di = Eih3/12(1 − μ2), the corre-
sponding bending cylindrical rigidity of plates. Differen-
tial operator is

�� = ∂4

∂x4 + 2
∂4

∂x2∂y2 + ∂4

∂y4 .

We suppose that the plate displacements ui(x, y, z, t),
and vi(x, y, z, t), of the corresponding plate point
Ni(x, y, z) in the direction of the coordinate axes x and y,
can be expressed as functions of its distance z from the
corresponding plate middle surface and its transversal
displacement wi(x, y, t) in the direction of the z-axis,
and also the displacements of the corresponding point
Ni0(x, y, 0) in the corresponding plate middle surface.

The governing equations are formulated in terms of
two unknowns: the transversal displacement w1(x, y, t)
and w2(x, y, t). The two coupled partial differential equa-
tions are derived using d’Alembert’s or variational prin-
ciple [20]. These partial differential equations of the
elastically connected double-plate system are:

ρ1h1
∂2w1(x, y, t)

∂t2
+ D1��w1(x, y, t)

− c[w2(x, y, t) − w1(x, y, t)] = q1(x, y, t),
(1)

ρ2h2
∂2w2(x, y, t)

∂t2
+ D2��w2(x, y, t)

+ c[w2(x, y, t) − w1(x, y, t)] = −q2(x, y, t).

Let us introduce the following notations: a2
(i) = c/ρihi,

and c4
(i) = Di/ρihi. Decoupling Eq. (1), we obtain two
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Fig. 3 The time history diagrams of the plate middle surface points corresponding to the time functions T(1)(t) and T(2)(t)

associated corresponding partial differential equations
which describe two partial plates founded on the elastic
foundation of the Winkler type. These partial differen-
tial equations are:

∂2w1(x, y, t)
∂t2

+ c4
(1)��w1(x, y, t) + a2

(1)w1(x, y, t) = 0,

∂2w2(x, y, t)
∂t2

+ c4
(2)��w2(x, y, t) + a2

(2)w2(x, y, t) = 0.

(2)

3 Particular solutions of governing basic decoupled
equations

Solutions of the previous partial-differential equations
are found using Bernoulli’s method of particular
integrals in the form of product of two corresponding

functions W(i)(x, y) and T(i)(t):

wi(x, y, t) = W(i)(x, y)T(i)(t). (3)

The assumed solution (3) is introduced into Eqs. (1)
and (2) and after transformation and introducing the
notation of the characteristic constants: ω2

(i), k4
(i), kT and

kW , we have:

(a) two second order ordinary differential equations
for the unknown time-functions T(i)(t)

T̈(i)(t) + ω2
(i)T(i)(t) = 0, (4)

(b) two four order partial differential equations of
the unknown amplitude eigenfunctions W(i)(x, y)

in the form:
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Fig. 4 The time history diagrams of the plate middle surface
points in the forced regime

c4
(1)

��W(1)(x, y)

W(1)(x, y)
+ a2

(1) − ω2
(1) = a2

(1)k
2
Tk2

W ,

(5)
c4
(2)

��W(2)(x, y)

W(2)(x, y)
+ a2

(2) − ω2
(2) = a2

(2)

1

k2
Tk2

W

,

where

k2
W = W(2)(x, y)

W(1)(x, y)
, k2

T = T(2)(t)
T(1)(t)

,

and corresponding basic system,

c4
(i)

��W(i)(x, y)

W(i)(x, y)
+ a2

(i) − ω2
(i) = 0. (6)

From Eqs. (4), (5) and (6), we see that

(a) if plates are rectangular, we can use Descartes’
coordinates

T̈(i)(t) + ω2
(i)T(i)(t) = 0,

��W(i)(x, y) − k4
(i)W(i)(x, y) = 0,

(7)

ω2
(i) = k4

(i)c
4
(i) + a2

(i). (8)

(b) if plates are circular, it is suitable to use the polar-
cylindrical coordinate system, and we have:

��W(i)(r, ϕ) − k4
(i)W(i)(r, ϕ) = 0. (9)

Circular eigenfrequencies are

ω2
(i) = k4

(i)c
4
(i) + a2

(i) = k4
(i)

D0(i)

ρihi
+ c

ρihi
. (10)

Substituting D0(i) = E0(i)h2
i /12(1 − μ2) into Eq. (10), we

obtain

ω2
(i) = k4

(i)
E0(i)h2

i

12ρi(1 − μ2)
+ c

ρihi
. (11)

It is easy to find the following time functions T(i)(t) in
the following forms

T(i)(t) = A(i) cos ω(i)t + B(i) sin ω(i)t. (12)

General solutions for the transversal middle surface
point displacement for the classical case are in the fol-
lowing forms:

(a) if the plate is rectangular, we can express them in
Descartes’ coordinates

wi(x, y, t) =
∞∑

n=1

∞∑

m=1

W(i)nm(x, y)T(i)nm(t), (13)

(b) if the plate is circular, it is suitable to use the cylin-
drical coordinate system:

w(i)(r, ϕ, t)=
∞∑

n=1

∞∑

m=1

[Jn(k(i)nmr)+K(i)nmIn(k(i)nmr)]

× sin(nϕ + ϕ(i)0n)T(i)mn(t), (14)

or

wi(r, ϕ, t) =
∞∑

n=1

∞∑

m=1

W(i)nm(r, ϕ)T(i)nm(t), (15)

where amplitude eigenfunctions W(i)(x, y), or
W(i)(r, ϕ) satisfy the corresponding boundary
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conditions. For more explanations see Appendices
A and B.

4 Particular solutions of the coupled partial differential
equations for free oscillations

To solve the corresponding coupled partial differential
Eq. (1) for free double plate oscillations, we use follow-
ing equations to describe their time evolution:

wi(x, y, t) =
∞∑

n=1

∞∑

m=1

W(i)nm(x, y)T(i)nm(t), (16)

where the eigenamplitude functions W(i)nm(x, y) are the
same, for both plates in the system, as in the case for
decoupled plate problems. Then introducing Eq. (16)
into the following coupled partial differential equations
for free double plate oscillations:

∂2w1(x, y, t)
∂t2

+ c4
(1)

��w1(x, y, t)

− a2
(1)

[w2(x, y, t) − w1(x, y, t)] = 0,

∂2w2(x, y, t)
∂t2

+ c4
(2)��w2(x, y, t)

+ a2
(2)[w2(x, y, t) − w1(x, y, t)] = 0,

(17)

multiplying first and second equation with W(i)sr

(x, y)dxdy, integrating along the middle plate surface
and taking into account orthogonality conditions (see
Appendix B (8)) and corresponding boundary condi-
tions, we obtain mn coupled second order ordinary
differential equations for determination of the unknown
time functions T(i)nm(t) in the following form:

T̈(1)nm(t) + ω2
(1)nmT(1)nm(t) − a2

(1)
T(2)nm(t) = 0,

T̈(2)nm(t)+ω2
(2)nmT(2)nm(t) − a2

(2)T(1)nm(t) = 0.
(18)

From Eq. (18), we obtain mn fourth order ordinary differ-
ential equations in the form:

¨̈T(1)nm(t) +
[
ω2

(1)nm + ω2
(2)nm

]
T̈(1)nm(t)

+
[
ω2

(1)nmω2
(2)nm − a2

(1)a
2
(2)

]
T(1)nm(t) = 0, (19)

with the corresponding mn frequency equations in the
form of the polynomial biquadratic equation with
respect to unknown circular eigenfrequencies ω̃2

nm:

ω̃4
nm + [

ω2
(1)nm + ω2

(2)nm

]
ω̃2

nm

+
[
ω2

(1)nmω2
(2)nm − a2

(1)a
2
(2)

]
= 0. (20)

Solving Eq. (20), we obtain,

ω̃2
nm(1,2) =

[
ω2

(1)nm + ω2
(2)nm

]

2

∓

√[
ω2

(1)nm − ω2
(2)nm

]2 + 4a2
(1)

a2
(2)

2
, (21)

or

ω̃2
nm(1,2) =

{
k4

(1)nm

[
c4
(1)

+ c4
(2)

]
+ a2

(1)
+ a2

(2)

}

2

∓

√{
k4

(1)nm

[
c4
(1)

−c4
(2)

]
+a2

(1)
−a2

(2)

}2+4a2
(1)

a2
(2)

2
.

(22)

The solutions of the ordinary differential equations (18),
are in the form:

T(1)nm(t) = Anm cos ω̃nm(1)t + Bnm sin ω̃nm(1)t

+ Cnm cos ω̃nm(2)t + Dnm sin ω̃nm(2)t,

T(2)nm(t) = A(1)
(2)nm[Anm cos ω̃nm(1)t

+ Bnm sin ω̃nm(1)t] (23)

+ A(2)
(2)nm[Cnm cos ω̃nm(2)t

+ Dnm sin ω̃nm(2)t],
where the unknown constants Anm, Bnm, Cnm, Dnm, are
determined by the initial conditions. For more detailed
explanations see Appendix C.

Then, the particular solutions of the coupled partial
differential equations for free oscillations are:

w1(x, y, t)

=
∞∑

n=1

∞∑

m=1

W(1)nm(x, y){Anm cos ω̃nm(1)t

+ Bnm sin ω̃nm(1)t + [Cnm cos ω̃nm(2)t

+ Dnm sin ω̃nm(2)t]},
w2(x, y, t)

=
∞∑

n=1

∞∑

m=1

W(2)nm(x, y) (24)

×{A(1)
(2)nm[Anm cos ω̃nm(1)t + Bnm sin ω̃nm(1)t]

+ A(2)
(2)nm[Cnm cos ω̃nm(2)t + Dnm sin ω̃nm(2)t]

}
.

The initial conditions are

wi(x, y, 0) = gi(x, y),
∂wi(x, y, t)

∂t

∣∣∣
t=0

= g̃i(x, y),
(25)

where the initial condition functions for the middle plate
point displacement gi(x, y) and for the middle plate point
velocity g̃i(x, y) satisfy boundary conditions. Then, with
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the previous initial conditions (25), unknown coefficients
Anm, Bnm, Cnm, Dnm, can be determined by nonhomo-
geneous algebraic equations as

Anm =
∫∫

A

[
A(2)

(2)nmg1(x, y)−g2(x, y)
]
W(1)nm(x, y)dxdy

[
A(2)

(2)nm−A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

,

Cnm =
∫∫

A

[
g2(x, y)−A(1)

(2)nmg1(x, y)
]
W(1)nm(x, y)dxdy

[
A(2)

(2)nm−A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

,

Bnm =
∫∫

A

[
A(2)

(2)nmg̃1(x, y)−g̃2(x, y)
]
W(1)nm(x, y)dxdy

ω̃nm(1)

[
A(2)

(2)nm−A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

,

Dnm =
∫∫

A

[
g̃2(x, y)−A(1)

(2)nmg̃1(x, y)
]
W(1)nm(x, y)dxdy

ω̃nm(2)

[
A(2)

(2)nm−A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

.

(26)

The solutions (24), with constants Anm, Bnm, Cnm,
Dnm in the form (26), are the first main analytical result
of our research on transversal vibrations of an elasti-
cally connected double-plate system. From the analyt-
ical solutions (24) and corresponding expressions (26),
we can conclude that for every pair of m and n, one
eigenamplitude function corresponds to two circular
eigenfrequencies and corresponding two-frequency time
function T(i)nm(t). We can also conclude that elastic
Winkler-type layer introduces the duplication of the
number of circular frequencies which correspond to one
eigenamplitude function.

5 Particular solutions of the coupled partial differential
equations for forced oscillations

Our next step is to derive the analytical solution of
the coupled partial differential equations for the forced
oscillations:

∂2w1(x, y, t)
∂t2

+ c4
(1)��w1(x, y, t)

− a2
(1)[w2(x, y, t) − w1(x, y, t)] = q̃1(x, y, t),

∂2w2(x, y, t)
∂t2

+ c4
(2)��w2(x, y, t)

+ a2
(2)[w2(x, y, t) − w1(x, y, t)] = −q̃2(x, y, t). (27)

For solving the corresponding coupled partial
differential equations (27) for the forced double-plate
oscillations, the eigenamplitude functions W(i)nm(x, y)

are expanded into series with time coefficients in the
form of the unknown time functions T(i)nm(t) describ-
ing their time evolution in the form of Eq. (16), where
W(i)nm(x, y) are the same as in the case with the decou-
pled-plate problem. Then introducing Eq. (16) into

Eq. (27), following the same procedure as in the pre-
vious section, we obtain the following nonhomogene-
ous second order ordinary differential equations with
respect to the time functions T(i)nm(t) as

T̈(1)nm(t) + ω2
(1)nmT(1)nm(t) − a2

(1)T(2)nm(t) = f(1)nm(t),

T̈(2)nm(t) + ω2
(2)nmT(2)nm(t) − a2

(2)T(1)nm(t) = f(2)nm(t),

(28)

where f(1)nm(t) and f(2)nm(t) are defined by the following
expressions:

f(1)nm(t) =
∫ a

0

∫ b
0 q̃1(x, y, t)W(1)nm(x, y)dxdy
∫ a

0

∫ b
0 [W(1)nm(x, y)]2dxdy

,

(29)

f(2)nm(t) =
∫ a

0

∫ b
0 q̃2(x, y, t)W(2)nm(x, y)dxdy
∫ a

0

∫ b
0 [W(2)nm(x, y)]2dxdy

.

The Lagrange’s method of the variations of the con-
stants Anm, Bnm, Cnm, Dnm be applied to the solutions
of Eq. (28) in the form Eq. (23). We assume that Anm(t),
Bnm(t), Cnm(t), Dnm(t) are time functions and write:

T(1)nm(t) = Anm(t) cos ω̃nm(1)t + Bnm(t) sin ω̃nm(1)t

+ Cnm(t) cos ω̃nm(2)t + Dnm(t) sin ω̃nm(2)t,

T(2)nm(t) = A(1)
(2)nm[Anm(t) cos ω̃nm(1)t

+ Bnm(t) sin ω̃nm(1)t]
+ A(2)

(2)nm[Cnm(t) cos ω̃nm(2)t

+ Dnm(t) sin ω̃nm(2)t]. (30)

In order to obtain the first and second derivatives
with respect to time of the proposed time functions,
we assume that first derivatives of the time functions
T(i)nm(t) are equal to those which correspond to the con-
stant coefficients and obtain the following equations:

dAnm(t)
dt

cos ω̃nm(1)t + dBnm(t)
dt

sin ω̃nm(1)t

+ dCnm(t)
dt

cos ω̃nm(2)t + dDnm(t)
dt

sin ω̃nm(2)t = 0,

A(1)
(2)nm

[dAnm(t)
dt

cos ω̃nm(1)t + dBnm(t)
dt

sin ω̃nm(1)t
]

+ A(2)
(2)nm

[dCnm(t)
dt

cos ω̃nm(2)t + dDnm(t)
dt

sin ω̃nm(2)t
]

= 0. (31)

After introducing the second derivatives of T(i)nm(t)
into the nonhomogeneous second order ordinary differ-
ential equations (28), we obtain the nonhomogeneous
algebraic equations with unknown first derivatives of
the unknown coefficients Anm(t), Bnm(t), Cnm(t), Dnm(t).
We can transform (see Appendix D) the previous non-
homogeneous algebraic equations into the following
form:
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dAnm(t)
dt

cos ω̃nm(1)t + dBnm(t)
dt

sin ω̃nm(1)t = 0,

dCnm(t)
dt

cos ω̃nm(2)t + dDnm(t)
dt

sin ω̃nm(2)t = 0,

−dAnm(t)
dt

sin nω̃nm(1)t + dBnm(t)
dt

cos ω̃nm(1)t

=
[
A(2)

(2)nmf(1)nm(t) − f(2)nm(t)
]

ω̃nm(1)

[
A(2)

(2)nm − A(1)
(2)nm

] , (32)

−dCnm(t)
dt

sin ω̃nm(2)t + dDnm(t)
dt

cos ω̃nm(2)t

= −
[
A(1)

(2)nmf(1)nm(t) − f(2)nm(t)
]

ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

] .

After solving (32), we obtain the first derivatives of
the unknown coefficients Anm(t), Bnm(t), Cnm(t), Dnm(t)
as:

dAnm(t)
dt

=
[
A(2)

(2)nmf(1)nm(t) − f(2)nm(t)
]

ω̃nm(1)

[
A(2)

(2)nm − A(1)
(2)nm

] cos ω̃nm(1)t,

dBnm(t)
dt

= −
[
A(2)

(2)nmf(1)nm(t) − f(2)nm(t)
]

ω̃nm(1)

[
A(2)

(2)nm − A(1)
(2)nm

] sin ω̃nm(1)t,

dCnm(t)
dt

= −
[
A(1)

(2)nmf(1)nm(t) − f(2)nm(t)
]

ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

] cos ω̃nm(2)t,

dDnm(t)
dt

=
[
A(1)

(2)nmf(1)nm(t) − f(2)nm(t)
]

ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

] sin ω̃nm(2)t.

(33)

Then integrating these expressions, we obtain the
expressions for the coefficients Anm(t), Bnm(t), Cnm(t),
Dnm(t) in the following forms:

Anm(t) = A0nm

+
∫ t

0

[
A(2)

(2)nmf(1)nm(τ ) − f(2)nm(τ )
]

cos ω̃nm(1)τdτ

ω̃nm(1)

[
A(2)

(2)nm − A(1)
(2)nm

] ,

Bnm(t) = B0nm

−
∫ t

0

[
A(2)

(2)nmf(1)nm(τ ) − f(2)nm(τ )
]

sin ω̃nm(1)τdτ

ω̃nm(1)

[
A(2)

(2)nm − A(1)
(2)nm

] ,

(34)
Cnm(t) = C0nm

−
∫ t

0

[
A(1)

(2)nmf(1)nm(τ ) − f(2)nm(τ )
]

cos ω̃nm(2)τdτ

ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

] ,

Dnm(t) = D0nm

+
∫ t

0

[
A(1)

(2)nmf(1)nm(τ ) − f(2)nm(τ )
]

sin ω̃nm(2)τdτ

ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

] ,

where A0nm, B0nm, C0nm, D0nm are integral constants.
The solutions of T(i)nm(t) for forced vibrations are

in the form:

T(1)nm(t)

= A0nm cos ω̃nm(1)t + B0nm sin ω̃nm(1)t

+C0nm cos ω̃nm(2)t + D0nm sin ω̃nm(2)t

+
∫ t

0

[
A(2)

(2)nmf(1)nm(τ )−f(2)nm(τ )
]

cos ω̃nm(1)(t−τ)dτ

ω̃nm(1)

[
A(2)

(2)nm − A(1)
(2)nm

]

−
∫ t

0

[
A(1)

(2)nmf(1)nm(τ )−f(2)nm(τ )
]

cos ω̃nm(2)(t−τ)dτ

ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

]

T(2)nm(t)

= A(1)
(2)nm[A0nm cos ω̃nm(1)t + B0nm sin ω̃nm(1)t]

+
∫ t

0

[
A(2)

(2)nmf(1)nm(τ )−f(2)nm(τ )
]

cos ω̃nm(1)(t−τ)dτ

ω̃nm(1)

[
A(2)

(2)nm − A(1)
(2)nm

]

+A(2)
(2)nm[C0nm cos ω̃nm(2)t + D0nm sin ω̃nm(2)t]

−
∫ t

0

[
A(1)

(2)nmf(1)nm(τ )−f(2)nm(τ )
]

cos ω̃nm(2)(t−τ)dτ

ω̃nm(2)

[
A(2)

(2)nm−A(1)
(2)nm

] ,

(35)

which contain the following set of the unknown constants
A0nm, B0nm, C0nm, D0nm to be determined by initial
plate-conditions.

Then, we obtain the particular solutions of the coupled
partial differential equations for the forced oscillations
in the form of corresponding plate displacements

w1(x, y, t) =
∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

×[A0nm cos ω̃nm(1)t + B0nm sin ω̃nm(1)t

+C0nm cos ω̃nm(2)t + D0nm sin ω̃nm(2)t] +
∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

×
⎧
⎨

⎩

∫ t
0

[
A(2)

(2)nmf(1)nm(τ )−f(2)nm(τ )
]

cos ω̃nm(1)(t−τ)dτ

ω̃nm(1)

[
A(2)

(2)nm−A(1)
(2)nm

]

−
∫ t

0

[
A(1)

(2)nmf(1)nm(τ ) − f(2)nm(τ )
]

cos ω̃nm(2)(t − τ)dτ

ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

]

⎫
⎬

⎭ ,

(36)
w2(x, y, t) =

∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

× [A(1)
(2)nm(A0nm cos ω̃nm(1)t + B0nm sin ω̃nm(1)t)

+ A(2)
(2)nm(C0nm cos ω̃nm(2)t + D0nm sin ω̃nm(2)t)]

+
∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

×
⎧
⎨

⎩A(1)
(2)nm

∫ t
0

[
A(2)

(2)nmf(1)nm(τ )−f(2)nm(τ )
]

cos ω̃nm(1)(t−τ)dτ

ω̃nm(1)

[
A(2)

(2)nm−A(1)
(2)nm

]

− A(2)
(2)nm

∫ t
0

[
A(1)

(2)nmf(1)nm(τ )−f(2)nm(τ )
]

cos ω̃nm(2)(t−τ)dτ

ω̃nm(2)

[
A(2)

(2)nm−A(1)
(2)nm

]

⎫
⎬

⎭.
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Fig. 5 The characteristic
shapes of the double plate
system middle surfaces

The solutions (36) are the second main analytical
result of our research of transversal forced vibrations
of elastically connected double-plates system. From the
analytical solutions (36) and corresponding expressions
(35), we can conclude that for every pair of m and n, two
circular eigenfrequencies and the corresponding num-
ber of the forced frequencies as well as corresponding
multy-frequency time function T(i)nm(t) correspond to
one eigenamplitude function. We can also conclude that
elastic Winkler-type layer introduces into system the du-
plication of the number of circular frequencies which
correspond to one eigenamplitude function.

For the initial conditions in the form of Eq. (25), the
initial condition functions gi(x, y) for the middle plate
point displacement and g̃i(x, y) for the middle plate point
velocity satisfy boundary conditions. Then, unknown co-
efficients A0nm, B0nm, C0nm, D0nm are determined by
nonhomogeneous algebraic equations.

5.1 Special case

For the case when the external excitations are one fre-
quency forces distributed along upper plate contour

surface, the system of differential equations (28) is in
the form:

T̈(1)nm(t) + ω2
(1)nmT(1)nm(t) − a2

(1)T(2)nm(t)

= h(1)nm cos �nmt, (37)

T̈(2)nm(t) + ω2
(2)nmT(2)nm(t) − a2

(2)T(1)nm(t) = 0,

with corresponding solutions in the form defined by
expressions:

T(1)nm(t)= A0nm cos ω̃nm(1)t + B0nm sin ω̃nm(1)t

+ C0nm cos ω̃nm(2)t + D0nm sin ω̃nm(2)t

+ h(1)nm
(
ω2

(1)nm − �2
nm
)

(
ω2

(1)nm − �2
nm
)(

ω2
(2)nm − �2

nm
)− a2

(1)
a2
(2)

× cos �nmt,
(38)

T(2)nm(t)= A(1)
(2)nm[A0nm cos ω̃nm(1)t+B0nm sin ω̃nm(1)t]

+ A(2)
(2)nm[C0nm cos ω̃nm(2)t+D0nm sin ω̃nm(2)t]

+ a2
(2)h(1)nm(

ω2
(1)nm − �2

nm
)(

ω2
(2)nm − �2

nm
)− a2

(1)
a2
(2)

× cos �nmt.
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Fig. 6 The characteristic shape of the plate middle surface free
vibrations (two first modes 11 and 12)

Then, the particular solutions of the coupled partial
differential equations for forced oscillations correspond-
ing to plate displacements under the external excitations
by one frequency forces distributed along the upper
plate contour surface with forced circular frequency �nm

are in the form:
Fig. 7 The characteristic shape of the plate middle surface free
vibrations
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w1(x, y, t) =
∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

×[A0nm cos ω̃nm(1)t + B0nm sin ω̃nm(1)t

+ C0nm cos ω̃nm(2)t + D0nm sin ω̃nm(2)t]
+

∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

×
[

h(1)nm
(
ω2

(1)nm − �2
nm
)

(
ω2

(1)nm − �2
nm
)(

ω2
(2)nm − �2

nm
)− a2

(1)
a2
(2)

× cos �nmt] , (39)

w2(x, y, t) =
∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

×[A(1)
(2)nm(A0nm cos ω̃nm(1)t + B0nm sin ω̃nm(1)t)

+A(2)
(2)nm(C0nm cos ω̃nm(2)t + D0nm sin ω̃nm(2)t)

]

+
∞∑

n=1

∞∑

m=1

W(1)nm(x, y)

×
[

a2
(2)h(1)nm(

ω2
(1)nm − �2

nm
)(

ω2
(2)nm − �2

nm
)− a2

(1)
a2
(2)

× cos �nmt

]
.

And,

A0nm =
∫∫

A

[
A(2)

(2)nmg1(x, y) − g2(x, y)
]
W(1)nm(x, y)dxdy

[
A(2)

(2)nm − A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

−
A(2)

(2)nm

[
h(1)nm

(
ω2

(1)nm−�2
nm
)
/
((

ω2
(1)nm−�2

nm
)(

ω2
(2)nm−�2

nm
)−a2

(1)
a2
(2)

)]

[
A(2)

(2)nm−A(1)
(2)nm

]

+
[
a2
(2)h(1)nm/

((
ω2

(1)nm−�2
nm
)(

ω2
(2)nm − �2

nm
)− a2

(1)
a2
(2)

)]

[
A(2)

(2)nm − A(1)
(2)nm

] ,

C0nm =
∫∫

A

[
g2(x, y) − A(1)

(2)nmg1(x, y)
]
W(1)nm(x, y)dxdy

[
A(2)

(2)nm − A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

−
[
h(1)nm

(
ω2

(1)nm − �2
nm
)
/
((

ω2
(1)nm − �2

nm
)(

ω2
(2)nm − �2

nm
)− a2

(1)
a2
(2)

)]

[
A(2)

(2)nm − A(1)
(2)nm

] (40)

+
A(1)

(2)nm

[
a2
(2)h(1)nm/

((
ω2

(1)nm−�2
nm
)(

ω2
(2)nm−�2

nm
)−a2

(1)
a2
(2)

)]

[
A(2)

(2)nm−A(1)
(2)nm

] ,

B0nm =
∫∫

A

[
A(2)

(2)nmg̃1(x, y)−g̃2(x, y)
]
W(1)nm(x, y)dxdy

ω̃nm(1)

[
A(2)

(2)nm−A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

, D0nm =
∫∫

A

[
g̃2(x, y)−A(1)

(2)nmg̃1(x, y)
]
W(1)nm(x, y)dxdy

ω̃nm(2)

[
A(2)

(2)nm−A(1)
(2)nm

] ∫∫
A[W(1)nm(x, y)]2dxdy

.

Then, the time functions T(i)nm(t) describing their
time evolution and satisfying initial and boundary con-
ditions are in the form (38) with coefficients A0nm, B0nm,
C0nm, D0nm determined by expressions (40).

The solutions (39) are the third main analytical result
of our research. From the analytical solutions (39), and
from the corresponding expressions (38) and (40), we
can conclude that for every pair of m and n, two circular
eigenfrequencies and one forced frequency as well as
corresponding three-frequency time functions T(i)nm(t)
correspond to one eigenamplitude function. We can also
conclude that the elastic Winkler-type layer introduced
into the two plate system is the origin of the duplica-
tion of the number of circular frequencies which cor-
responds to one eigenamplitude function. From (38),
the following conclusions can be drawn: the time func-
tion T(i)nm(t), corresponding to one pair of m and n,
contain four terms corresponding to pure free two-
frequency vibrations with two circular eigenfrequencies
[determined by expression (21) or (22)], four terms of
two frequency vibrations also with two corresponding
circular eigenfrequencies, but with amplitudes depend-
ing on the external force frequency, and one term of
the one-frequency forced vibrations with corresponding
external force circular frequency �nm.

When �2
nm = ω2

(1)nm, from (38) to (40), we can con-
clude that the value of the external force frequency can
provide a condition of the dynamical absorption into the
forced vibration mode for the upper plate. It is the case

that the forced part of the upper plate forced vibration
displacement is equal to zero, when the external exci-
tation is distributed along the upper contour surface of
the upper plate. Then, the lower plate is under forced
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vibration regime, without direct external excitation dis-
tributed along the lower contour surface of the lower
plate and the upper plate is only in the state of the free
two-frequency vibration regime.

When
(
ω2

(1)nm − �2
nm
)(

ω2
(2)nm − �2

nm
) − a2

(1)
a2
(2) = 0,

from (38) to (40), we can conclude that the value of the
external force frequency can provide the condition of
the resonance state for both elastically connected plates
and that external force resonant frequency values are in
the form:

�2
rez(1,2) = ω̃2

nm(1,2)

=
[
ω2

(1)nm + ω2
(2)nm

]∓
√[

ω2
(1)nm − ω2

(2)nm

]2 + 4a2
(1)

a2
(2)

2
.

(41)

Then, we can also conclude that for one pair of m and n,
two possibilities for appearance of the resonance states
are present for both elastically connected plates.

6 Numerical experiment and visualizations

For the numerical experiment and analysis, we consider
a rectangular plate made of steel with dimensions 20 ×
10 ×1 cm3. Using the MathCad, we present the numeri-
cal results in the form of the plate middle-surface against
the time, and also the time-history diagrams of the plate
middle-surface point displacements.

Our intention is to make qualitative analysis of the
numerical results, so we do not present tables of numer-
ical results, but only graphical presentations.

In Fig. 2, we can see the form of the eigenamplitude
functions for the first four shapes among the infinite
family with different modes of free vibrations of the
rectangular plate with hinged-edge plate contour, for
the following mn pairs: 11, 12, 21, 22 and 32 in Fig.
2a–d. These visualizations show also the shapes of the
plate middle surface, and the forms of the functional
dependence of the plate middle-surface displacement
for one frequency vibration of the single plate systems
on the ideal elastic foundations unperturbed by initial
displacements in the form of corresponding eigenampli-
tude function at initial time.

In Fig. 3, the time histories of the plate middle surface
points corresponding to the time functions T(1)nm(t) and
T(2)nm(t) are presented in separate Fig. 3a and b and
both in Fig. 3c. We can see that these time functions for
free vibrations are in two-frequency regime for every
shape of the modes.

In Fig. 4 the time history diagrams of the plate middle
surface points corresponding to time functions T(1)(t)

and T(2)(t) in the forced regime are presented in sepa-
rate Fig. 3 a and b and both in Fig. 4c.

We can conclude that the upper contour surface of
the upper plate is excited by the external one-frequency
forced excitation and the excited oscillation process is
in the three-frequency dynamic state of the plate oscil-
lations. These oscillation frequencies are two circular
eigenfrequencies and one forced circular frequency of
the external forced excitation frequency.

The space surfaces in Fig. 5 present characteristic
shapes of the double-plate system middle surfaces at the
time A, B and C, with rectangular plates, hinged-edge
plate contour and for initial conditions which initiate
only 11-family oscillations. We can see that the upper
plate middle surface (a) and the lower plate middle sur-
face (b) oscillate in the same direction, as well as in the
opposite directions. The regime is a two-frequency one.

Figure 6 shows the characteristic shape of the plate
middle surface free vibrations at the time A, B, C, D,
E, F and G, which are initiated by initial plate middle
surface displacements in the form of the two first modes
11 and 12.

We can see that the plate middle surfaces, at the time
A, B, C, D, E, F and G, are in the different resultant
forms, when they are in the form of deformed eigen-
amplitude functions 11 and 12, with the same, or oppo-
site direction displacements of the middle plate surfaces
points. We can conclude that the plates oscillate trans-
versally with four frequency regimes, corresponding to
the sum of the two shape four-frequency colinear oscil-
lations.

Figure 7 shows characteristic shapes of the plate mid-
dle surface free vibrations, at the time A, B, C, D, E, F,
initiated by the initial plate middle surface displace-
ments in the form of the four first modes 11, 12, 21
and 22.

We can see that the plate middle surfaces are in differ-
ent resultant forms, at the time A, B, C, D, E, F, when
they are in the form of deformed eigen-amplitude func-
tions 11, 12, 21 and 22, with the same, or opposite direc-
tion displacements of the middle plate surface points.
We can conclude that the plates oscillate transversally
with eight frequency regimes, corresponding to the sum
of the eight-frequency co-linear oscillations.

7 Concluding remarks

The analytical solutions of the system of coupled par-
tial differential equations of corresponding dynamical
free and forced processes are obtained by using the
method of Bernoulli’s particular integral and Lagrange’s
method of variation constants. It is shown that one mode
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vibrations correspond a two-frequency regime for free
vibrations and a three-frequency regime for forced vibra-
tions induced by the initial conditions and one-frequency
external excitation. The analytical solutions show that
the elastic connection between the plates leads to the
appearance of a two-frequency regime of time function
corresponding to one eigenamplitude function of one
mode, and also that time functions of different vibra-
tion modes are uncoupled, for each shape of vibrations.
Using the MathCad program the corresponding visual-
izations of the characteristic forms of the plate middle
surfaces through time are presented.
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Appendix A

Spatial coordinates, eigenamplitude functions and time
function for classical case

Let us consider that the spatial coordinate amplitude
functions W(i)(x, y), are expressed in the form W(i)(x, y)

= X(i)(x)Y(i)(y), and then we can write:

X ′′
(i)(x) +

(
±n2 ± k2

(i)

)
X(i)(x) = 0,

Y ′′
(i)(y) ∓ n2Y(i)(y) = 0. (42)

If the plates are rectangular, and when we take into
consideration a solution in Descartes’ coordinates with
different boundary conditions along contours, then

X(x) := sin mx; cos mx; sinh mx; cosh mx,

where m2 = ±n2 ± k2, and

Y(y) := sin ny; cos ny; sinh ny; cosh ny.

If the plates are in the circular form, it is suitable
to use the polar-cylindrical coordinate system, and then
the set of the partial differential equations in the space
cylindrical-polar coordinates r, ϕ and z is:

�W(i)(r, ϕ) ± k2W(i)(r, ϕ) = 0,

or
(

∂2

∂r2 + 1
r

∂

∂r
+ 1

r2

∂2

∂ϕ2

)
W(i)(r, ϕ) ± k2W(i)(r, ϕ) = 0.

We write the solutions in the form W(i)(r, ϕ) =
	(i)(ϕ)R(i)(r) and obtain the following system of the
ordinary differential equations:

R′′
(i)(r) + 1

r
R′

(i)(r) +
(

±k2
(i) ∓ n2

r2

)
R(i)(r) = 0,

	′′
(i)(ϕ) ± n2	(i)(ϕ) = 0.

The second equation has particular solutions in the
form of Neuman’s and Bessel’s functions, but Neuman’s
functions for r = 0 have an infinite value, then the partic-
ular solutions contain only Bessel’s function of the first
kind with real argument Jn(x) as well as with imaginary
arguments In(x), where x = kr. Modified Bessel’s func-
tion of the first kind with imaginary arguments In(x), of
order n, is in the following form:

In(x) = (i)−nJn(ix) = (−1)n

2π

∫ +π

−π

e−x cos t cos ntdt,

i =
√

−1.

If n is an integer, this function satisfies the following
differential equation:

I′′
n(ix) + 1

(ix)
I′

n(ix) −
(

1 + n2

(ix)2

)
In(ix) = 0. (43)

Using the previous considerations with respect to Eq.
(17) for their solutions in the polar coordinates for the
circular plate, we can write the following expressions:

	(i)n(ϕ) = C(i)n sin(nϕ + ϕ(i)0n),
(44)

R(i)nm(r) = Jn(k(i)nmr) + K(i)nmIn(k(i1)nmr).

Appendix B

Boundary conditions of the rectangular plates with the
hinged edges on the plates contours

Let us, now, study the case of the rectangular plates
with basic edges a and b, and with the hinged edges
on the middle surface plate contour – simply supported
plate. Boundary conditions of these rectangular plates
are that the transversal displacements on the corre-
sponding middle surface plate contour points are equal
to zero, and also at same points the bending moments are
equal to zero. So the boundary conditions are expressed
in the following forms:

for x = 0 w(i) (0, y, t) = 0,
M′

(i)(x)(0, y, t) = M′
(i)yx(0, y, t)

= −D(i)

[∂2w(i)(0, y, t)
∂y2

+μ(i)
∂2w(i)(0, y, t)

∂x2

]
= 0,
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for x = a w(i) (a, y, t) = 0,
M′

(i)(x)(a, y, t) = M′
(i)yx(a, y, t)

= −D(i)

[∂2w(i)(a, y, t)
∂y2

+μ
∂2w(i)(a, y, t)

∂x2

]
= 0, (45)

for y = 0 w(i) (x, 0, t) = 0,
M′

(i)(y)(x, 0, t) = M′
(i)(xy)(x, 0, t)

= −D(i)

[∂2w(i)(x, 0, t)
∂x2

+μ
∂2w(i)(x, 0, t)

∂y2

]
= 0,

for y = b w(i) (x, b, t) = 0,
M′

(i)(y)(x, b, t) = M′
(i)(xy)(x, b, t)

= −D(i)

[∂2w(i)(x, b, t)
∂x2

+μ
∂2w(i)(x, b, t)

∂y2

]
= 0.

Partial differential equations with boundary condi-
tions are satisfied by the following solutions:

W(i)mn(x, y) = C(i)mn sin
mπ

a
x sin

nπ

b
y, (46)

where

k2
(i)mn = k2

mn =
[(mπ

a

)2 +
(nπ

b

)2]
, (47)

w(i)(x, y, t) =
∞∑

m=1

∞∑

n=1

T(i)mn(t) sin
mπ

a
x sin

nπ

b
y. (48)

The space coordinate eigenamplitude functions
W(i)nm(x, y), satisfied the following conditions of orthog-
onality:

∫ a

0

∫ b

0
W(i)mn(x, y)W(i)sr(x, y)dxdy

=
⎧
⎨

⎩
0, nm �= sr,

vmnnm = 4ab
π2 , nm = sr,

(49)

s, r = 1, 2, 3, 4, . . . , ∞,

which can be obtained by using the system of Eq. (10).

Appendix C

Time functions
We can write formally the system equation (18) with

the following matrices of Anm and Cnm of two degrees
of freedom:

Anm =
(

1 0
0 1

)
,

(50)

Cnm =
(

ω2
(1)nm −a2

(1)

−a2
(2) ω2

(2)nm

)
,

and by using the solutions in the form of:

T(1)nm(t) = A(1)nm cos(ω̃nmt + αnm),
(51)

T(2)nm(t) = A(2)nm cos(ω̃nmt + αnm),

where ω̃2
nm, are unknown circular eigenfrequencies,

A(i)nm unknown amplitudes, and αnm unknown phases.
Then the frequency equation is in the form:

fnm

(
ω̃2

nm

)
= ∣∣Cnm − ω̃2

nmAnm
∣∣

=
∣∣∣∣∣
ω2

(1)nm − ω̃2
nm −a2

(1)

−a2
(2) ω2

(2)nm − ω̃2
nm

∣∣∣∣∣ = 0. (52)

The frequency equation may be expanded to obtain
Eq. (33) with the sets of the two roots ω̃2

nm(s), s = 1, 2.
The relations of the amplitudes for each set are in the

form:

A(s)
(1)mn

a2
(1)

= A(s)
(2)mn[

ω2
(1)nm − ω̃2

nm(s)

] = C(s), s = 1, 2. (53)

If we take into account that:

A(1)

(1)nm = A(2)

(1)nm = 1,

we obtain:

A(1)
(2)nm =

[
ω2

(1)nm − ω2
(2)nm

]

2a2
(1)

+1
2

√√√√
[ω2

(1)nm − ω2
(2)nm

a2
(1)

]2 + 4
a2
(2)

a2
(1)

,

A(2)
(2)nm =

[
ω2

(1)nm − ω2
(2)nm

]

2a2
(1)

(54)

−1
2

√√√√
[ω2

(1)nm − ω2
(2)nm

a2
(1)

]2 + 4
a2
(2)

a2
(1)

,

or in the form:

A(1,2)
(2)nm =

{
k4

(1)nm

[
c4
(1)

− c4
(2)

]+ a2
(1)

− a2
(2)

}

2a2
(1)

±1
2

√√√√
[

k4
(1)nm

[
c4
(1)

−c4
(2)

]+a2
(1)

−a2
(2)

a2
(1)

]2

+ 4
a2
(2)

a2
(1)

,

(55)
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Appendix D

System determinants are in the forms

�̃a =
∣∣∣∣∣
1 1
A(1)

(2)nm A(2)
(2)nm

∣∣∣∣∣

= A(2)
(2)nm − A(1)

(2)nm �= 0,

�̃b =
∣∣∣∣∣
ω̃nm(1) ω̃nm(2)

ω̃nm(1)A
(1)
(2)nm ω̃nm(2)A

(2)
(2)nm

∣∣∣∣∣

= ω̃nm(1)ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

]
�= 0,

�̃a = A(2)
(2)nm − A(2)

(2)nm (56)

=
√√√√
[

ω2
(1)nm − ω2

(2)nm

a2
(1)

]2

+ 4
a2
(2)

a2
(1)

,

�̃b = ω̃nm(1)ω̃nm(2)

[
A(2)

(2)nm − A(1)
(2)nm

]

=
√[

ω2
(1)nmω2

(2)nm − a2
(1)

a2
(2)

]

×
√√√√
[

ω2
(1)nm − ω2

(2)nm

a2
(1)

]2

+ 4
a2
(2)

a2
(1)

.
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8. Hedrih (Stevanović), K.: Selected Chapters from Theory of
Nonlinear Vibration s (in Serbian), Faculty of Mechanical
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MF Niš
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12. Hedrih (Stevanović), K.: Transveral vibrations of creep
connected multi plate homogeneous systems. In: van
Campen, D.H., Lazurko, M.D., van den Over, W.P.J.M. (eds.)
CD Proceedings, 5th EUROMECH Nonlinear Dynamics
Conference, Eindhoven University of Technology, ID of
contribution 11-428, pp.1445–1454. ISBN 90 386 2667 3.
www.enoc2005.tue.nl
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