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Abstract The fractional calculus is used in the
constitutive relationship model of viscoelastic fluid. A
generalized Maxwell model with fractional calculus is
considered. Based on the flow conditions described, two
flow cases are solved and the exact solutions are ob-
tained by using the Weber transform and the Laplace
transform for fractional calculus.
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1 Introduction

The non-Newtonian fluids are being considered more
important and appropriate in technological applications
as compared with the Newtonian fluids. A large class of
real fluids do not follow the linear relationship between
stress and the rate of strain [1]. Because of the non-linear
dependence, it is much more difficult to obtain the exact
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analytic solutions for the flows of the non-Newtonian
fluids.

Recently, fractional calculus has successfully been
used in the description of the complex dynamics. In par-
ticular, it has been proved to be a valuable tool to handle
viscoelastic properties. The starting point of the frac-
tional derivative model of non-Newtonian fluid is usu-
ally a classical differential equation being modified by
replacing the time derivative of an integer order by the
so-called Riemann–Liouville fractional calculus opera-
tor. This generalization allows one to define precisely
non-integer order integrals or derivatives [2]. Fractional
calculus has been found to be quite flexible in describing
viscoelastic behavior [3–5]. More recently, Huang et al.
[6–11] discussed some unsteady flows of the generalized
second grade fluid. The unidirectional flow of viscoelas-
tic fluid with the fractional Maxwell model was studied
by Tan et al. [12–14]. The unsteady flow with a gener-
alized Jeffreys model in an annular pipe was studied by
Tong et al. [15,16]

The purpose of this paper is to study the flows of
a viscoelastic fluid with the fractional derivative Max-
well model between two coaxial cylinders. The flows
are generated by a simple harmonic motion or impul-
sively rotating motion of the outer cylinder. By using the
Weber transform and the inverse Laplace transform of
fractional derivative, we have obtained the exact solu-
tions of the flows.

2 The fractional Maxwell model and basic equation

Generally, the constitutive relationship of a viscoelastic
material with the fractional derivative Maxwell model
is given by [3,12–14]
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σ + λα dασ

dtα
= Gλβ dβε

dtβ
, (1)

where σ is the shear stress, ε is the shear strain, G is the
shear modulus, λ = µ/G is the relaxation time with the
viscosity constant µ, α and β are fractional parameters
such that 0 ≤ α ≤ β ≤ 1. Also, dα/dtα , dβ/dtβ are the
Riemann-Liouville fractional derivative operators, and
the fractional derivative of order α [2] is defined as

dα

dtα
f (t) = 1

�(1 − α)

t∫

0

f (τ )

(t − τ)α
dτ , (2)

where �(·) is the Gamma function. It should be noted
that this model includes the ordinary Maxwell model as
a special case when α = β = 1 and the Navier-Stokes
model when α = 0, β = 1. Friedrich [3] proved that this
kind of rheological constitutive equation shows fluid-
like behavior only in the case that α takes a value be-
tween 0 and 1 and β = 1, that is,

σ + λα dασ

dtα
= µε̇, (3)

where ε̇ = dε/dt is the shear rate. Equation (3) is used
as the constitutive equation of the fractional Maxwell
model.

If the fluid is incompressible, then the equation of
continuity is

∇ · V = 0, (4)

and the equation of motion, in the absence of pressure
gradient and body forces, is

ρ
DV
Dt

= ∇ · T, (5)

where ρ is the density of fluid, D/Dt the material deriv-
ative, T the stress tensor, and V the velocity.

Now we consider the rotating flows of a fluid
modeled by Eqs. (3)–(5) and between two very long
coaxial cylinders of radius R0 and R1(> R0). We will con-
struct the exact solutions for the following two boundary
value problems: (a) the outer cylinder makes a simple
harmonic motion and the inner cylinder keeps rest; (b)
the outer cylinder rotates at a constant speed and the
inner cylinder keeps rest. It is obvious that the motion
between the two cylinders is axially symmetric. Under
the cylindrical coordinate system (r, θ , z), the velocity
components can be expressed as Vr = 0, Vθ = u(r, t),
Vz = 0. Based on the above conditions, the constitutive
equation becomes

σrθ + λα ∂ασrθ

∂tα
= µr

∂

∂r

(u
r

)
, (6)

and the equation of motion is

ρ
∂u
∂t

= 1
r2

∂

∂r
(r2σrθ ). (7)

Substituting Eq. (6) into Eq. (7), we obtain

ρλα ∂α+1u

∂tα+1
+ ρ

∂u
∂t

= µ
(∂2u

∂r2 + 1
r

∂u
∂r

− u
r2

)
. (8)

Let us introduce dimensionless variables u∗ = u/U0,
r∗ = r/R0, t∗ = U2

0ρt/µ, where U0, R0 and µ/U2
0ρ

denote characteristic velocity, length and time, respec-
tively. Using the mean value theorem of the integral, it
can be easily proved [7] that the operator dα/dtα takes a
fractional time dimension (µ/U2

0ρ)−α . Thus, the dimen-
sionless fractional order equation is obtained as follows
(for simplicity, the superscript * is omitted)

ηα ∂α+1u

∂tα+1
+ ∂u

∂t
= ζ

(∂2u
∂r2 + 1

r
∂u
∂r

− u
r2

)
, (9)

where η = ρU2
0/G, ζ = µ2/U2

0ρ2R2
0 are dimensionless

parameters.

3 Exact solution of the first problem

We assume that the outer cylinder makes a simple har-
monic motion, while the inner cylinder keeps still. Then
the dimensionless initial and boundary conditions are

u(r, t) = 0, t = 0, (10)

u(1, t) = 0, t > 0, (11)

u(b, t) = cos ωt, t > 0, (12)

where b = R1/R0, ω = ω0µ/U2
0ρ, ω0 is the frequency

factor of the simple harmonic motion. Let ū(r, s) =
L{u(r, t)} = ∫ ∞

0 e−stu(r, t)dt be the image function of
u(r, t), where s is the transform parameter. According to
the Laplace transform of fractional derivatives [2], we
have

(ηαsα+1 + s)ū = ζ
(∂2ū

∂r2 + 1
r

∂ū
∂r

− ū
r2

)
, (13)

ū(1, s) = 0, (14)

ū(b, s) = s
s2 + ω2 . (15)

In order to obtain the exact solution of this problem, we
make the Weber transform to Eqs. (13), (14) and (15).
The Weber transform [17] is

˜̄u(ρi, s) =
b∫

1

rū(r, s)H(ρi, r)dr. (16)
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The inverse Weber transform is

ū(r, s) =
∞∑

i=1

˜̄u(ρi, s)
H(ρi, r)
N(ρi)

, (17)

where H(ρi, r) = J1(ρir)Y1(ρi) − J1(ρi)Y1(ρir), ρi is the
positive root of H(ρi, b) = 0 and

1
N(ρi)

= π2

2

ρ2
i J2

1(ρib)

J2
1(ρi) − J2

1(ρib)
, (18)

where J1(x) and Y1(x) are the Bessel functions of the
first kind and second kind of order one. Through the
Weber transform, we obtain

˜̄u(ρi, s) = 2
π

J1(ρi)

ρ2
i J1(ρib)

ζρ2
i

ηαsα+1 + s + ζρ2
i

s
s2 + ω2 . (19)

Here, the Wronskian relationship of Bessel function is
used [18],

J1(x)Y′
1(x) − J′

1(x)Y1(x) = 2
πx

. (20)

Substituting Eq. (19) into Eq. (17), we have

ū(r, s) = b
b2 − 1

r2 − 1
r

s
s2 + ω2 −

∞∑
i=1

Ā(ρi, s)

× πJ1(ρi)J1(ρib)

J2
1(ρi) − J2

1(ρib)
H(ρi, r), (21)

where

Ā(ρi, s) = ηαsα+1 + s

ηαsα+1 + s + ζρ2
i

s
s2 + ω2 . (22)

Therefore, we can obtain the exact solution of this prob-
lem as long as the inverse Laplace transform of Ā(ρi, s)
is found. From [2,5], we obtain

A(ρi, t) = L−1[Ā(ρi, s)]
=

{ ∞∑
n=0

(−1)n

n!
tnα+α−1

ηnα+α
E(n)

α+1,α−n(−Bitα+1)

+
∞∑

n=0

(−1)n

n!
tnα−1

ηnα
E(n)

α+1,−n(−Bitα+1)

}
∗ cos ωt,

(23)

where Bi = ζρ2
i /ηα , the sign ∗ represents the convolu-

tion integral, Eα,β(z) is a Mittag–Leffler function [2]. To
obtain Eq. (23), we have applied the following formula
[2,7]

L−1
( n!sα−β

(sα + c)n+1

)
= tαn+β−1E(n)

α,β(−ctα), (24)

where Re(s) > |c|1/α .

By Eq. (23), the exact solution of the first problem
can be obtained as

u(r, t) = b
b2 − 1

r2 − 1
r

cos ωt −
∞∑

i=1

A(ρi, t)

× πJ1(ρi)J1(ρib)

J2
1(ρi) − J2

1(ρib)
H(ρi, r). (25)

Particularly, if α = 0, from Eq. (22) we can easily
simplify (23) as

A(ρi, t)= 4ω2cos ωt − 2ζρ2
i ω sin ωt + ζ 2ρ4

i e−(ζρ2
i t/2)

ζ 2ρ4
i + 4ω2 .

(26)

Substituting Eq. (26) into Eq. (25), we get the velocity
formula for the Newtonian fluid.

4 Exact solution of the second problem

In this section, we assume that the outer cylinder sud-
denly starts up and rotates at a constant speed U0 at the
initial time, while the inner cylinder keeps stationary at
all time. Then the governing partial differential equation
is Eq. (9) and the dimensionless initial and boundary
conditions are Eqs. (10) and (11) and

u(b, t) = 1, t > 0. (27)

Using the same method in section 3, we have

u(r, t) = b
b2 − 1

r2 − 1
r

−
∞∑

i=1

A(ρi, t)

× πJ1(ρi)J1(ρib)

J2
1(ρi) − J2

1(ρib)
H(ρi, r), (28)

where

A(ρi, t) =
∞∑

n=0

(−1)n

n!
tnα+n

ηnα+n E(n)

α+1,α+1−n(−Bitα+1)

+
∞∑

n=0

(−1)n

n!
tnα

ηnα
E(n)

α+1,1−n(−Bitα+1). (29)

In particular, when α = 0, we get the classical solution
for the Newtonian fluid

u(r, t) = b
b2 − 1

r2 − 1
r

−
∞∑

i=1

πJ1(ρi)J1(ρib)

J2
1(ρi) − J2

1(ρib)

×H(ρi, r) exp
(
−ζρ2

i t
/

2
)

. (30)
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Fig. 1 Velocity profile u(r, t) corresponding to the first problem.
The variations of velocity with r, ω = 1.5, η = 0.5 and t = 0.25 for
various values of α (solid line α = 0, dash line α = 0.3, dot line
α = 0.5, dash-dot line α = 0.8)

Fig. 2 Velocity history u(r, t) corresponding to the first problem.
The variations of velocity with t, ω = 1.5, r = 1.5 and α = 0.5 for
various values of η (solid line η = 0.5, dash line η = 3, dot line
η = 5)

5 Numerical results and conclusions

In this paper, two types of unsteady rotating flows of
the viscoelastic fluid are studied. The fractional calcu-
lus is used in the constitutive relationship of a general-
ized Maxwell fluid. Using the Weber transform and the
Laplace transform, we have obtained the exact solutions
of velocity profile, given by Eqs. (23), (25) and (28), (29).
In particular, when α → 0, our solutions can be simpli-
fied to solutions for the Navier-Stokes fluid. Thus, the
technique and the fractional Maxwell model used here
will be useful in the theory of non-Newtonian fluids.

Further, it is found that the dimensionless constitutive
equation of the fractional Maxwell model is governed
by the relaxation time η and fractional derivative α. We

Fig. 3 Velocity profile u(r, t) corresponding to the second prob-
lem. The variations of velocity with r, η = 0.5 and t = 0.25 for
various values of α (solid line α = 0, dash line α = 0.3, dot line
α = 0.5, dash-dot line α = 0.8)

Fig. 4 Velocity history u(r, t) corresponding to the second prob-
lem. The variations of velocity with t, r = 1.5 and α = 0.5 for
various values of η (solid line η = 0.5, dash line η = 3, dot line
η = 5)

plot Figs. 1, 2, 3 and 4 for various values of η and α,
corresponding to the above two problems, when b = 2
and ζ = 1. In Fig. 1 and Fig. 3, the variations of velocity
field u(r, t) are plotted for different values of α when
t = 0.25, corresponding to relations (23), (25) and (28),
(29), respectively. It is clearly seen from the figures that
the propagation of motion for large α is faster than that
for smaller one at the neighborhood of the outer cyl-
inder, but it is quite the contrary at the neighborhood
of the inner cylinder. This phenomenon is due to the
boundary conditions. Figures 2 and 4 are the histories
of velocity for selected parameters η and a fixed space
point. The larger the parameter η is, the longer time it
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is needed such that the velocity approaches the periodic
motion state or the steady state.
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