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Abstract The paper combines a self-adaptive precise algo-
rithm in the time domain with Meshless Element Free Galer-
kin Method (EFGM) for solving viscoelastic problems with
rotationally periodic symmetry. By expanding variables at
a discretized time interval, the variations of variables can
be described more precisely, and iteration is not required
for non-linear cases. A space-time domain coupled problem
with initial and boundary values can be converted into a
series of linear recursive boundary value problems, which
are solved by a group theory based on EFGM. It has been
proved that the coefficient matrix of the global EFG equation
for a rotationally periodic system is block-circulant so long
as a kind of symmetry-adapted reference coordinate system
is adopted, and then a partitioning algorithm for facilitating
parallel processing was proposed via a completely orthogonal
group transformation. Therefore instead of solving the origi-
nal system, only a series of independent small sub-problems
need to be solved, leading to computational convenience and
a higher computing efficiency. Numerical examples are given
to illustrate the full advantages of the proposed algorithm.

Keywords EFGM · Cyclic symmetry · Precise algorithm ·
Viscoelastic problem

1 Introduction

Viscoelasticity is related to many engineering applications.
The activities in this field have been primarily due to the large
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scale development and utilization of polymeric materials [1].
Viscoelastic problems are time dependent. Due to complex
material properties, boundary conditions, and boundary
shapes etc., analytical solutions are hardly obtained in gen-
eral. A variety of step-by-step based numerical techniques
have been developed. The assumptions [2–4] that variables
remain constant or change linearly at a discretized time inter-
val were conventionally adopted. The adaptability of comput-
ing accuracy to the change of sizes of time steps [5], which is
generally difficult to be predicted in the computation, seems
not to be much concerned with. In addition to the computing
accuracy, computing expense in each time step is a decisive
factor affecting the whole computing efficiency.

With the above consideration, a self-adaptive precise algo-
rithm which was previously used for the solution of differ-
ential equation system only [5–8] is further developed in the
present paper. By expending all variables at two levels at
a discretized time interval, a differential-integral equation
system with boundary and initial values is converted into
a series of linear recurrent boundary value problems which
are solved via Element-Free Galerkin Method (EFGM). In
the procedure of solving recursive EFG equations, adaptive
computation can be carried out with different sizes of time
steps.

EFGM is a promising method which does not require any
element connectivity data and does not suffer much degrada-
tion in accuracy when nodal arrangements are very irregular
[9]. However higher computing expense, by comparison with
FEM etc., is one of the obstacles to limit its application. In
this paper, for a special kind of viscoelastic structure, i.e. the
structure with cyclic symmetry which was much exploited
in the structural FE and BE analysis [10–15], an effort has
been made to make up such deficiency by utilizing the cyclic
symmetry via a partitioning algorithm.

The benefits obtained by combining self-adaptive pre-
cise and partitioning algorithms are two folds. (1) In the time
domain a self-adaptive computation can result in a more
precise description for the variation of variables and com-
pensating any possible loss of computing accuracy caused
by improper choices of the size of time step. For non-linear
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cases, no assumption is made and no iteration is needed. (2).
In the space domain, only series of small subproblems are re-
quired to be solved independently instead of the whole EFG
equations. Thus the computational efficiency is significantly
increased.

The computational convenience and efficiency of pre-
sented approach are fully discussed and demonstrated by
means of numerical examples.

2 Recurrent governing equations

The governing equations of viscoelasticity can be described
by [16]

Hσ + b = 0, (1)

ε = HTu. (2)

The boundary conditions are specified by [16]

u = ũ x ∈ �u, (3)

P = P̃ x ∈ �σ , (4)

where σ and ε denote the vector of stress and strain, respec-
tively, b is the vector of body force, u is the vector of dis-
placement, P denotes the vector of traction, ũ, P̃ are the
prescribed values of u and P on the boundary, respectively.

H =
[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]
. (5)

Divide time domain into a number of time intervals, the
initial points and sizes of the time intervals are defined by
τ0, t1, t2, . . . , tk . . . and T1, T2, . . . , Tk . . ., respectively. At
a discretized time interval, in order to describe the varia-
tion of variables more precisely, all variables are expanded
in terms of s

σ =
∑
m=0

σmsm, (6)

ε =
∑
m=0

εmsm, (7)

b =
∑
m=0

bmsm, (8)

u =
∑
m=0

umsm, (9)

ũ =
∑
m=0

ũmsm (10)

P =
∑
m=0

Pmsm, (11)

P̃ =
∑
m=0

P̃
m

sm, (12)

s = t − tk−1

Tk
, (13)

where tk−1 and Tk represent the initial point and size of
the k-th time interval, respectively, σm and εm represent the

expanding coefficients of σ and ε, respectively, bm denotes
the expanding coefficient of b, um , Pm , ũm and P̃

m
are the

expanding coefficients of u, P , ũ, and P̃ , respectively. The
conversion relationship between the differentiations respect
to t and s is

d

dt
= 1

Tk

d

ds
, (14)

d2

dt2 = 1

T 2
k

d2

ds2 . (15)

Substituting Eqs. (6)–(12) into Eqs. (1)–(4) yields

Hσm + bm = 0, (16)

εm = HTum, (17)

um = ũm x ∈ �u, (18)

Pm = P̃
m

x ∈ �σ . (19)

3 Recurrent constitutive equations

A viscoelastic constitutive equation can be written in an inte-
gral form [1]

ε(t)= D∗−1
{
σ (t)A(t)−

∫ t

τ0

σ (τ )
∂

∂τ
[A(τ ) + C(t, τ )]dτ

}
,

(20)

where τ0 is the lower limit of integration, A(τ ) = 1

E(τ )
, E(t)

denotesYoung’smodulus,C(t, τ )=ϕ(τ)
(

1−
L∑

l=1
e−γl (t−τ)

)
,

l = 1, . . . , L , ϕ(τ) = (a + b/τ), ϕ(τ) and C(t, τ ) are the
known functions, γ , a and b represent material parameters,
ε(t) = {εx (t) εy(t) γxy(t)}T,σ (t) = {σx (t) σy(t) τxy(t)}T.
D∗ is defined by

D∗ = 1

1 − ν2




1 ν 0
ν 1 0

0 0
1 − ν

2


, (21)

where ν is the Poisson ratio. By utilizing a two-level expand-
ing technique [17], recursive equations of Eq. (20) can be
obtained.

At the first time interval, t ∈ [τ0, τ0 + T1], using the
precise algorithm, one has [17]

D∗ε0 = A0σ 0 R = 0, (22)

D∗εR =
R∑

m=0

Amσ R−m + ET (R) R �= 0, (23)
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where

ET (R) = − 1

R

R−1∑
m=0

(m + 1)Am+1σ R−m−1

− 1

R

R−1∑
m=0

(m + 1)ϕm+1σ R−m−1

+
L∑

l=1

( R−1∑
k=0

1

k + 1

( k∑
n=0

(n + 1)

×
( n+1∑

m=0

ϕmen−m+1
2l

)
σ k−n

)
eR−k−1

1l

)
, (24)

e−Tkγl s =
∑
m=0

em
1l s

m =
∑
m=0

(−Tkγl)
m

m! sm, (25)

eTkγlξ =
∑
m=0

em
2lξ

m =
∑
m=0

(Tkγl)
m

m! ξm . (26)

At the other intervals, one has

D∗εR =
R∑

m=0

Amσ R−m + E PT (R) R �= 0, (27)

E PT (R) =
L∑

l=1

(e−γl tk Gl e
R
1l) + ET (R), (28)

Gl =
∫ tk−1

τ0

σ (τ )
∂

∂τ
[ϕ(τ)eγlτ ]dτ. (29)

4 Recursive EFG equations

For Eqs.(16)–(19), EFG equations can be expressed as [18],
[

K G
GT 0

] {
uR

λR

}
=

{
f R

q R

}
R = 0, 1, 2, · · · , (30)

where K and G are the global coefficient matrices, uR rep-
resents the expanding coefficient of u = ∑

uRs R , λR is
the expanding coefficients of vector of Lagrange multiplier
λ = ∑

λRs R , u is the vector of parameters employed to rep-
resent the displacement u(x), and uR can be expressed in the
following form by utilizing the moving least square (MLS)
method [18]:

uR(x) =
n∑

I=1



I (x)uI = 

(x)uR, (31)

where 

I represents a shape function, 

 is a matrix of shape
functions.

G I K = −
∫

�u



I N K d�, (32)

K I J =
∫∫

�

BT
I DB J d�, (33)

B I =


I,x 0

0 
I,y

I,y 
I,x


 , (34)

Nk(x) =
[

Nk(x) 0
0 Nk(x)

]
, (35)

q R = −
∫

�1

NũRd�, (36)

D = D∗/A0

for plane stress problems, R = 0, 1, 2, . . . , (37)

where �u denotes the essential boundary, Nk(x) represents a
shape function. At the first time interval

f R
I =

∫
�σ



I P̃
R

d� +
∫

�



I bRd�

+
∫

�

BT
I ET (R)/A0d�. (38)

At the other time intervals

f R
I =

∫
�σ



I P̃
R

d� +
∫

�



I bRd�

+
∫

�

BT
I E PT (R)/A0d�. (39)

A self-adaptive computation is carried out at each of the time
intervals with a convergence criterion

Abs
((

u R
k s R

/ R−1∑
j=0

u j
k s j

)
s=1

)
≤ β, (40)

where β is an error bound, u j
k denotes the k-th component of

u j ( j = 1, 2, . . . , R). Every uR(R = 1, 2, · · · ) is required
to be checked with the above criterion, if the criterion is sat-
isfied consecutively 3 times, computing will stop at the time
interval considered, and step into the next one. If the criterion
is not met, the next order (R + 1) computation will continue
till reaching the convergence.

In the computation, mm, an upper bound of R, will be pre-
scribed in advance. If computing can not stop when R = mm,
it is necessary to reduce the size of the time step or increase
the value of mm, if condition (40) is satisfied when R � mm,
a bigger size of time step can be considered.

5 Rotationally periodic symmetry

A structure or a computational region � is said to possess
rotationally periodic symmetry of order N when its geometry
and physical properties and constraint conditions are invari-
ant under the following N symmetry transformations [13]
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i = (i − 1)θ, i = 1, 2, . . . , N , (41)

where 
i represents a rotation of � about its axis of rotation,
θ = 2π/N , N is defined as the order of symmetry.

It is convenient that the axis of rotation is defined as the
Z -axis in a rectangular or cylindrical coordinate system. Fig-
ure 1 shows a plane region possessing rotationally periodic
symmetry with N = 6.

It is obvious that � can be naturally divided into N iden-
tical parts. Arranging these N parts in an anti-clock wise
sequence, and designating them as �i (i = 1, . . . , N ), we
have

� = �1 ∪ �2 ∪ · · · ∪ �N , �i = 
i : �1 (42)

Equation (42) means that �i can be obtained from �1, which
is called “basic region” and can be arbitrarily chosen from
these identical parts. When the EFGM is employed to ana-
lyze a rotationally periodic system �, to make full use of its
symmetry, the background cells, nodes and discrete points
along essential boundaries are required to be arranged in a
symmetric way, so that all nodes and integration points keeps
the original symmetry of the system. Setting up nodal coor-
dinates and integral cells on �1 only, one can then obtain a
computational model by using Eq. (42). Provided the num-
bers of nodes belonging to �1 and discrete points along �1
are denoted as m and n, respectively, then the total computa-
tional nodes and discrete points will be Nm and Nn.

6 The properties of global EFG coefficient matricices

In a rotationally periodic system, uR and λR in Eq. (30) can
be described by [13]

uRT = {u1RT , u2RT , . . . , uN RT },
λRT = {λ1RT , λ2RT , . . . , λN RT }, (43)

Fig. 1 A rotationally periodic planar plate with N = 6

where uR
i and λR

i , belonging to the i-th symmetry region,
are sub-vectors of uR and λR with orders 2m and 2n, respec-
tively, and the superscript T denotes the transpose.

In such an ordering way, K and G can be written as

K =




K 11 K 12 · · · K 1N

K 21 K 22 · · · K 2N

...
...

. . .
...

K N1 K N2 · · · K N N


 ,

K i j =




K i j
11 K i j

12 · · · K i j
1m

K i j
21 K i j

22 · · · K i j
2m

...
...

. . .
...

K i j
m1 K i j

m2 · · · K i j
mm


 ,

i, j = 1, 2, · · · , N ,

(44)

G =




G11 G12 · · · G1N

G21 G22 · · · G2N

...
...

. . .
...

GN1 GN2 · · · GN N


 ,

Gi j =




Gi j
11 Gi j

12 · · · Gi j
1n

Gi j
21 Gi j

22 · · · Gi j
2n

...
...

. . .
...

Gi j
m1 Gi j

m2 · · · Gi j
mn


 ,

i, j = 1, 2, · · · , N .

(45)

In a symmetry-adapted systems [12], one has

uR = T m · ūR, f = T m · f̄ ,

λR = T n · λ̄
R
, q = T n · q̄, (46)

T m =



T̄
m
1 0

T̄
m
2

. . .

0 T̄
m
N


 ,

T̄
m
i =




T̄ i

T̄ i
. . .

T̄ i




2m×2m

, (47)

T n =




T̄
n
1 0

T̄
n
2

. . .

0 T̄
n
N ,


 ,

T̄
n
i =




T i
T i

. . .

T i




2n×2n

, (48)
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T i =

 cos(i − 1)θ − sin(i − 1)θ

sin(i − 1)θ cos(i − 1)θ


 , θ = 2π/N . (49)

Substituting Eqs. (47)–(48) into Eq. (30), yields

K T m ūR + GT nλ̄
R = T m f̄

R
, (50)

GTT m ūR = T n q̄ R . (51)

Multiplying Eqs.(50)–(51) by TmT and T nT, respectively,
then we get

[
K̄ Ḡ

Ḡ
T

0

]{
ūR

λ̄
R

}
=

{
f̄

R

q̄ R

}
, (52)

where K̄ = T mT K T m , Ḡ = T mTGT n , overbars correspond
to the symmetry-adapted systems.

7 Implementation of partitioning algorithm

Use a complete symmetrized orthogonal basis adopted in Ref.
[13], i.e.

e1 = {1, 1, . . . , 1}T/
√

N ,

e2i = √
2/N {cos iθ1, cos iθ2, . . . , cos iθN }T,

e2i+1 = √
2/N {sin iθ1, sin iθ2, . . . , sin iθN }T, (53)

i = 1, . . . , [(N − 1)/2],
θk = (k − 1)θ, k = 1, 2, . . . , N ,

eN = (1,−1, 1, . . . , −1)T/
√

N , when N is even,

where [(N−1)/2] is the largest integer which does not exceed

(N − 1)/2. ūR , λ̄
R

can be expended as

ūR = Em uR, (54)

λ̄
R = EnλR, (55)

Em = [ers · Im]T, (56)

En = [ers · In]T, (57)

where Im and In are unit matrices of 2m and 2n-dimensions,
respectively. ers is the s-th element of the basis er . Substitut-
ing Eqs. (54)–(55) into Eq. (52), we obtain

[
K G

GT 0

]{
uR

λR

}
=

{
f R

q R

}
, (58)

where K = EmT K̄ Em , G = EmTḠ En , f R = EmT f̄
R

,

q R = EnT q̄ R . It can be proved that K and G are block-diag-
onal and have the form

K =
[N/2]∑
m=0

⊕K mm, (59)

G =
[N/2]∑
m=0

⊕Gmm, (60)

where ⊕ represents the direct sum of matrices. K mm , Gmm
represent sub-matrices of K , G, respectively. For further de-
tailed description of Eqs.(59)–(60), please refer to Refs. [19,
20].

Based on Eqs. (59)–(60), it is obvious that the solution
problem of Eq. (58) can be naturally partitioned into [(N
+ 2)/2] decoupled subproblems,
[

K mm Gmm
GT

mm 0

]{
uR

m
λR

m

}
=

{
f R

m
q R

m

}
,

(m = 0, 1, . . . , [N/2]), (61)

where

uR
0 = u1R; uR

N/2
= uN R (when N is even),

uRT
m = {upRT, uq RT}

(p = 2m, q = 2m + 1; m = 1, 2, . . . , [(N − 1)/2]).
(62)

Therefore, instead of solving the original system Eq. (30),
now one needs only to solve a series of independent small
subproblems as given by Eq. (61). Obviously, the partition-
ing of the original problem into a series of small subproblems
will lead to a higher efficiency of computation, which will
also be demonstrated by the numerical example given in the
next section.

All discussed above is under arbitrary traction conditions;
now consider a specific traction case (Fig. 2) where the load
distributions have the same rotationally periodic symmetry
as the structures, i.e.

f̄
1R = f̄

2R = · · · = f̄
N R

. (63)

Fig. 2 A regular octagon plate subjected to tension along two opposite
edges
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Equation (63) leads to

f 2R = f 3R = · · · = f N R = 0, f 1R = √
N f̄

1R
. (64)

In the case of symmetric constraints, one has

q2R = q3R = · · · = q N R = 0, q1R = √
N q̄1R . (65)

In the case where Eqs. (64) and (65) are satisfied, one needs
only to solve the first subproblem, the other [N/2] subprob-
lems have zero solutions.

8 Numerical examples

In this paper, a cubic spline weight function [18] was used in
the EFG analysis with a scaling parameter dmax = 3.0.

Numerical Example 1
Consider a regular octagon viscoelastic plate subjected to

uniform tension along two opposite edges, as shown in Fig. 3
where its geometry, physical properties and constraint condi-
tions are invariant under N = 8 symmetry transformations.
Plane stress condition was assumed with Young’s Modulus
E = 106 N/m2 and Poisson ratio ν = 0.3. The constitutive
relationship can be described by Eq. (20) where τ0 = 28 d,
C(t, τ ) = ϕ(τ)(1−e−γ (t−τ)), ϕ(τ) = (0.9+4.82/τ)×10−5

and γ = 3.0093 × 10−7 s−1.
The above problem is solved via the proposed algorithm

with 440 nodes in the whole computational region, and com-
pared with the solutions given by ANSYS Program with 921
nodes and 280 higher order (2D) eight-node elements. The

Fig. 3 Numerical comparison of ux at node B (xB = 0.66108,
yB = 0.24314)

Table 1 Comparison of CPU time

Solution method 80 nodes 120 nodes 168 nodes

Partitioning algorithm 45.094s 86.218s 153.578s
EFGM without partitioning 95.625s 215.766s 503.344s

Fig. 4 A square plate subjected to uniform tension along two opposite
edges (xA = 0.5, yA = 0.0)

EFG meshes were graded with additional refinement around
the hinged-supports. A comparison of CPU times is shown
in Table 1. A comparison is given for ux at node B as shown
in Fig. 3.

Numerical Example 2
To compare the precision of the proposed method with

analytical solutions, a square viscoelastic plate subjected to
a uniform tension is examined as shown in Fig. 4(a) where
q = 1 N, N = 4, L = 1 m, computing parameters are the
same as those used in example 1. 144 nodes are used in the
whole computational region. The mesh in the basic region is
shown in Fig. 4(b) where the macula denotes node A. The
comparison of ux at node A is shown in Table 2. In Table 3,
a solution of ux given by the proposed algorithm with non-
uniform sizes of time steps is compared with the analytical
solution at node A.

Table 2 Comparison of ux at Node A (xA = 0.5, yA = 0.0)

Days Proposed Analytical
algorithm/10−6 solution/10−6

28 0.5000 0.5000
48 2.6739 2.6737
68 3.9664 3.9659
88 4.7347 4.7342

108 5.1916 5.1910
128 5.4631 5.4626
148 5.6246 5.6240
168 5.7206 5.7200
188 5.7777 5.7770
208 5.8116 5.8110
228 5.8318 5.8311

Table 3 Numerical comparison of ux at Node A with non-uniform sizes
of time steps

t β Sizes of time step Analytical
u
∣∣
x=l /10−6 solution/10−6

31 3.0 0.9023 0.9022
34 3.0 1.2744 1.2743
64 6.0 3.7587 3.7583
70 0.000001 6.0 4.0624 4.0620

127 9.0 5.4527 5.4521
136 9.0 5.5379 5.5373
220 12.0 5.8249 5.8243
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9 Conclusions

The major efforts of this paper are focused on improving
computing accuracy in the time domain and saving com-
puting expense at each discretized time interval. The major
merits of this paper include:

(1) By using a two level expanding technique, a differential-
integral equation system with boundary and initial values
is converted into a series of recurrent linear boundary
value problems. Self-adaptive computation can be car-
ried out, providing a more precise description for the
variation of variables, and compensating any possible
loss of computing accuracy caused by improper choices
of the size of time step.

(2) At each time step, by adopting a symmetry-adapted ref-
erence system, the coefficient matrices of EFG equation
can be transformed into a block-circulant form, and then
a partitioning algorithm was proposed, by which only
series of small subproblems are required to be solved
independently instead of the whole EFG equations under
arbitrary load distributions. Thus the computational effi-
ciency is significantly increased.

The overall approach presented, in terms of accuracy and
efficiency, can be recommended as a useful tool for solving
viscoelasticity problems.
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