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Abstract The Hamiltonian dynamics is adopted to solve the
eigenvalue problem for transverse vibrations of axially mov-
ing strings. With the explicit Hamiltonian function the canon-
ical equation of the free vibration is derived. Non-singular
modal functions are obtained through a linear, symplectic
eigenvalue analysis, and the symplectic-type orthogonality
conditions of modes are derived. Stability of the transverse
motion is examined by means of analyzing the eigenvalues
and their bifurcation, especially for strings transporting with
the critical speed. It is pointed out that the motion of the
string does not possess divergence instability at the criti-
cal speed due to the weak interaction between eigenvalue
pairs. The expansion theorem is applied with the non-singular
modal functions to solve the displacement response to free
and forced vibrations. It is demonstrated that the modal func-
tions can be used as the base functions for solving linear and
nonlinear vibration problems.

Keywords Axially moving strings · Symplectic · Modal
analysis · Stability · Divergence

1 Introduction

Transverse vibrations of axially moving strings have been
extensively studied in the past decades. Here is a brief
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review. Swope and Ames[1] solved the linear, free vibration
of threadlines by the method of characteristic line. Wickert
and Mote [2] systematically investigated the classic linear
vibration through a complex modal analysis. They used a
complex eigenvalue analysis in the state space to determine
modal functions of the string. The orthonormal modal func-
tions they obtained become singular when the string trans-
ports at a so-called critical speed. The completeness of the
modal functions was not discussed. The modal characteris-
tics of the translating system were investigated later by Lee
and Renshaw [3]. Perkins and Mote [4] used the Hamilto-
nian principle to develop the nonlinear equations of motion
for three-dimensional traveling cables. For eigenvalues and
critical speed stability of axially moving media, Parker [5]
adopted a perturbation analysis to determine approximate
eigenvalue loci and stability properties near the critical speed.
Nonlinear motions can be encountered when complicated
material properties are involved for the strings. For instance,
Chen, Zhang and Zu [6] investigated bifurcation and chaos
of an axially moving viscoelastic string. The Galerkin trun-
cation method was employed and bifurcation diagrams were
presented for periodic, quasi-periodic and chaotic motions.
Chen, Zu et al. considered geometrically nonlinear vibrations
of an axially accelerating viscoelastic string. The method of
multiple scales was applied to obtain the existence condi-
tions of nontrivial steady-state response in two-to-one para-
metric resonance, and the stability of the trivial and nontrivial
solutions was analyzed with Lyapunov’s linearized stability
theory [7]. This paper concerns mainly with eigenvalue anal-
ysis of linear vibration, the detailed literature reviews may
be found in Ref. [8].

In spite of the fruitful studies in this respect, string
dynamics remains an interesting topic. The modal analysis
for moving strings leads to a symplectic type of eigenvalue
problems due to the gyroscopic term in the governing equa-
tion of motion, and the eigenvectors of the system appear in
conjugate pairs and constitute a complete set in the Hilbert’s
space, similar to what was shown by Zhong [9].

In this paper, the Hamiltonian dynamics is adopted to
investigate the transverse vibration of the strings in an exact
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modal analysis. Considering the transport speed, the Hamil-
tonian of the continuum system is obtained as a function of
displacement and its dual variable. The Hamilton’s canonical
equation is obtained with the variational principle, result-
ing in a symplectic eigenvalue problem for which the eigen-
values and eigenfunctions are determined in closed forms
with the symplectic-type orthogonality conditions of the
eigenfunctions. The symplectic modal functions do not suf-
fer from singularity problems related with the critical speed
like the normalized eigenfunctions obtained by, e.g. Wickert
and Mote. The eigenfunctions are complete and are used as
base functions in the modal space for determination of both
linear and nonlinear vibrations with various transport speeds.
The stability of the transverse motion is examined through an
eigenvalue analysis for strings transporting with the critical
transport speed. It is shown that the eigenvalue pairs become
zero and collide to each other at the critical speed. However,
the motion is stable and does not possess divergence instabil-
ity due to the weak interaction between eigenvalue pairs. This
is important for understanding stability properties of axially
moving strings in transverse vibrations.

2 Mechanical model

A simply supported, axially moving string is shown in Fig. 1,
where η̄ is the curvilinear coordinate of a particle, c̄ is the
transport speed, x̄0

k = x̄0
k (η̄), k = 1, 2, 3 are coordinates of

the particle resting in its equilibrium position in the Cartesian
system Ox̄1x̄2x̄3. The dynamic configuration of the string
is denoted by x̄k = x̄k(η̄, t̄ ), k = 1, 2, 3, where t̄ stands
for the temporal variable. For convenience of derivation, the
non-dimensionalization in Ref. [10] is used

η = η̄/S, t = t̄
√
g/S,

x0
k = x̄0

k /S, xk = x̄k/S,

c = c̄/
√
gS, c0 =

√
T̄0/ρAgS,

where S is the total length of the string in the equilibrium
configuration, g is the gravitational acceleration, T̄0 is the
tension force, A and ρ are the cross-sectional area of the
string and the mass density, respectively. t is the non-dimen-
sional temporal variable, 0 ≤ η ≤ 1 is the non-dimensional
curvilinear coordinate. With the non-dimensionalization, the

Fig. 1 An axially moving string

non-dimensional displacement of the particle in the trans-
verse direction is defined as U(η, t) = x2(η, t) − x0

2 (η, t)
with homogeneous boundary condition

U(0, t) = U(1, t) = 0 (1)

at both ends. It is assumed that the vibration is small and
the tension force does not vary with the curvilinear coordi-
nate, thus the vibration assumes a linear motion. In this case,
the in-plane (Ox̄1x̄2 planar) and out-plane (Ox̄1x̄3 planar)
motions are decoupled so that only a planar motion (hereby
the in-plane motion) needs to be considered.

For axially moving strings, the non-dimensional Hamil-
tonian is expressed as

H(U, p) = 1

2

∫ 1

0
(p2 + c2

0(∂U/∂η)
2 − 2cp(∂U/∂η))dη,

(2)

where c0 �= 0 is the non-dimensional tension force in the
string associated with its equilibrium configuration. The dual
variable, p(η, t) = DU(η, t)/Dt = ∂U/∂t+c∂U/∂η, is the
generalized momentum of the particle. Note that potential
energy resulted from the initial tension is constant and has
been dropped from Eq. (2) when the following Hamilton’s
variational principle in phase space[11] is formulated:

δ

∫ τ

0

∫ 1

0
[p∂U/∂t −H(U, p)]dηdt = 0, (3)

which leads to the Hamilton’s canonical equations

∂U

∂t
= −c ∂U

∂η
+ p,

∂p

∂t
= c2

0

∂2U

∂η2
− c

∂p

∂η
.

(4)

The foregoing can be expressed compactly with an oper-
ator matrix H, as

u̇uu(η, t) = Huuu(η, t), (5)

where uuu(η, t) = (U(η, t), p(η, t))T and H =[ −c∂/∂η 1
c2

0∂
2/∂η2 −c∂/∂η

]
.

For a comparison of the modal analysis techniques pre-
sented in this paper with the previous ones, we go back to the
Lagrangian dynamics for a moment. The governing equation
of the transverse motion is obtained from the second equation
of Eq. (4), as

∂2U

∂t2
+ 2c

∂2U

∂η∂t
+ (c2 − c2

0)
∂2U

∂η2
= 0,

t ≥ 0, η ∈ [0, 1], (6)

which is essentially the same as the governing equation
presented in many existing publications. For instance,
Wickert and Mote [2] derived the governing differential equa-
tion through a different non-dimensionalization procedure as

∂2U

∂t2
+ 2v

∂2U

∂x∂t
+ (v2 − 1)

∂2U

∂x2
= f,
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where v is the non-dimensional transport speed, x is the cur-
vilinear coordinate and f is the external loading. For free
vibration problems the above hyperbolic equation is exactly
identical to Eq. (6) if one lets f = 0, c = v and c0 = 1.

By using the state space representation and a modal anal-
ysis method, Wickert and Mote obtained a pair of complex
conjugate modal functions:

ψR
n = 1

nπ

√
2

1 − ν2
sin(nπx) cos(nπνx),

ψ I
n = 1

nπ

√
2

1 − ν2
sin(nπx) sin(nπνx),

(7)

where the positive integer n is the frequency order. Appar-
ently, this pair of modal functions become singular as the
transport speed v approaches unity, i.e. the critical speed by
definition. However, when the speed becomes critical, there
is a standing wave resulting from the transverse displace-
ment, and the magnitude of the displacement decreases to
zero [1]. This will also be demonstrated in Section 4 with
a stability analysis based on the eigenvalue bifurcation. As
a result, the configuration of the string remains unchanged
as the initial configuration. To keep the modal function valid
for the whole range of transport speed, the singularity gen-
erated from Eq. (7) must be removed. This is realized by a
new modal analysis based on the Hamiltonian dynamics in
the next section.

3 Modal analysis and symplectic orthogonality
conditions

Assuming a solutionuuu(η, t) = 			(η)eλt , the eigenvalue prob-
lem of the dual system of Eq. (4) can be derived as

H			 = λ			, (8)

where the eigenvalue, λ, is solved to be one of the two con-
jugate complex roots (see Appendix A):

λ±n = ±inπ(c2
0 − c2)/c0 (n = 1, 2, 3, . . . ) (9)

with i = √−1. The eigenfunctions of operational matrix H
are determined explicitly, as

			n(η) = einπηc/c0

[
A
B

]
,

			−n(η) = e−inπηc/c0

[−A
C

]
,

(n = 1, 2, 3, . . . ) (10)

where

A = sin nπη,

B = nπ(c cos nπη + ic0 sin nπη),

C = −nπ(c cos nπη − ic0 sin nπη),

The real and imaginary parts of the displacement term in
			n(η), referred to as 	n,1(η) hereafter, have the same shape
as the ψR

n and ψ I
n of Eq. (2), i.e.

Re	n,1/ψ
R
n = Im	n,1/ψ

I
n

if one lets c0 = 1 and replaces c and η with v and x, respec-
tively. However, the coefficients, or amplitudes, of the modal
functions of Eq. (10) are different from those of ψR

n and ψ I
n.

It should be pointed out that the eigenvectors in Eq. (10) are
complete eigenfunctions of the dual system (cf.[9], where
a proof is provided in detail). As modes of the string, the
eigenfunctions satisfy the symplectic orthogonality condi-
tions

〈			m,			n〉 = 〈			−n,			−n〉 = 0,

〈			m,			−n〉 = 〈			−m,			n〉 = 〈			−m,			−n〉 = 0,

〈			n,			−n〉 = − 〈			−n,			n〉 = inπc0,

(m �= n; m, n = 1, 2, 3, . . . )

(11)

as shown in Ref. [9], where the symplectic inner product of
the complex field vectors is defined as

〈µµµ1,µµµ2〉 =
∫ 1

0
µµµT

1 (η)JµJµJµ2(η)dη, JJJ =
[

0 1
−1 0

]
.

With the orthogonality conditions of Eq. (11), the nor-
malized modal functions are expressed as

	̃		n(η) = einπηc/c0

√
inπc0

[
A
B

]
,

	̃		−n(η) = e−inπηc/c0

√
inπc0

[−A
C

]
,

(n = 1, 2, 3, . . . ) (12)

which satisfy the symplectic orthogonality condition with
respect to the Hamiltonian matrix

〈	̃		n, 	̃		−m〉 = δmn,

〈	̃		−n, 	̃		m〉 = −δmn, (m, n = 1, 2, 3, . . . ) (13)

with δmn being the Kronecker delta. It can be proved that
owing to the symplectic orthogonality conditions, the sym-
plectic modal functions of (12) do not suffer from numerical
singularity like the modal functions of Eq. (7) near and at the
critical speed.

To present the modes of the axially moving string, the first
three normalized modal functions are illustrated with trans-
port speed c = 0.5 and tension force c0 = 1 in Figs. 2(a) and
2(b), where the real and imaginary parts are both shown.

To observe the influence of the transport speed, the real
parts of modal functions are computed with three different c
and shown in Figs. 3(a) through 3(c). It can be seen that the
shape of modal functions is strongly related to the transport
speed. That is why the dynamic configuration of string varies
with the transport speed significantly.

4 Eigenvalues and stability at the critical speed

The stability of motion can be determined by analyzing the
eigenvalues of the natural vibration. The stability of motion
will be lost when at least one eigenvalue comes with a pos-
itive real part or becomes multiple zeroes with geometrical
multiplicity less than its algebraic multiplicity for both dis-
crete and continuous gyroscopic systems [12, 13]. When the
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Fig. 2 The first three normalized modal functions. c0 = 1, c = 0.5. (a) Real Part; (b) Imaginary part

Fig. 3 Real parts of the first three normalized modal functions with different transport speeds. c0 = 1.8. (a) First mode, (b) Second mode,
(c) Third mode
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Fig. 4 Bifurcation of eigenvalues. (a) Before the critical speed, (b) After the critical speed

string transports with the critical speed, i.e. c = c0, the eigen-
value pairs of Eq. (9) become λn = λ−n = 0. Hence, the
two complex conjugate eigenvalues for the nth mode collide
and merge at the critical speed, as shown in Fig. 4(a), where
the real and imaginary parts of the eigenvalues are depicted.
The dot at the origin shows the exact collision of an eigen-
value-pair when c = c0. When c > c0 the two eigenvalues
exchange signs and separate from each other again, as shown
in Fig. 4(b). Therefore, λ = 0 serves as a bifurcation point
of eigenvalues λn and λ−n.

To examine if there exists any divergence instability of the
motion at the critical speed as claimed in Ref. [2] and other
references, the eigenfunctions are expressed by substituting
c = c0 into Eq. (12). One obtains

	̃		n(η) = einπη

[
sin nπη/

√
inπc0√

nπc0einπη/
√

ic0

]
,

	̃		−n(η) = e−inπη

[− sin nπη/
√

inπc0

−√
nπc0e−inπη/

√
ic0

]
.

(n = 1, 2, 3, . . . )

Clearly, the modal functions are linearly independent for all
modes at the critical speed. As a matter of fact, all eigen-
value pairs collide for each order of the natural motion. How-
ever, it can be demonstrated that any single eigenfunction
remains linearly independent of other eigenfunctions at the
critical speed. Therefore, the eigenvalues are semi-simple
and the motion is stable for the cable translating with the
critical speed. After the collision the eigenvalues of each pair
exchange their signs of imaginary part, and separate from
each other again. No real part of the eigenvalues will come
up after the collision. In Ref. [12] this is called weak inter-
action of eigenvalues when stability remains unchanged.

It is concluded that, based on the aforementioned stabil-
ity analysis, the divergence instability of normalized modal
functions suggested by Ref. [2] does not exist and the motion
is still bounded at the critical speed. This may be resulted
from the fact that the tensile rigidity of the string becomes

zero when c = c0, and the restoring force for moving the
string from its current configuration vanishes. Consequently,
the string moves axially through a fixed configuration deter-
mined by the initial configuration. See Appendix B for the
derivation.

5 Free vibration response

Using the theorem of the modal expansion [9], the displace-
ment and its dual are expressed as

uuu(η, t) =
∞∑

n=1

(ξn	̃		n(η)e
λnt + ξ−n	̃		−n(η)eλ−nt ), (14)

where ξn and ξ−n are amplitudes of modal coordinates. The
initial conditions of the dual variables are denoted by

uuu0(η) = (φ(η), p0(η))
T,

p0(η) = ϕ(η)+ c · dφ(η)/dη, (15)

where φ(η) and ϕ(η) are inital displacement and velocity

functions. Multiplying both sides of Eq. (14) by 	̃		
T
i (η)JJJ and

integrating it over the total length of the string at time t = 0,
one obtains
∞∑

n=1

(ξn〈	̃		i, 	̃		n〉 + ξ−n〈	̃		i, 	̃		−n〉) = 〈	̃		i,uuu0〉. (16)

Insertion of the normalized, symplectic orthogonality con-
dition of Eq. (13) into the above equation yields the modal-
coordinate amplitudes

ξn = −〈	̃		−n,uuu0〉 and ξ−n = 〈	̃		n,uuu0〉. (17)
Substituting Eq. (12) into Eq. (17), the transverse dis-

placement solution can be explicitly determined

U(η, t) =
∞∑

n=1

[ξnFn(η, t)+ ξ−nF−n(η, t)],

Fn = ei(nπηc/c0+nπt(c2
0−c2)/c0) sin nπη/

√
inπc0,

F−n = −F̄n, (18)
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where 	̃1,±i (η) are the first elements of vectors 	̃		±i (η); and
the bar denotes the conjugate complex. Figure 5 shows the
transverse displacement at the central point with c0 = 1.8 and
three different transport speeds. Note that the initial configu-
ration is assumed as a parabola with a 0.1 maximum sag-to-
span ratio. Apparently, the period of displacement response
increases if the string translates faster.

The string’s configuration is symmetric about the central
cross section for non-axially moving strings. For a non-zero
transport speed, the shape of the configuration distorts and
the symmetry is destroyed. Figure 6 shows the displacements
at three different locations on the string with c0 = 1.8 and
c = 0.8.

Fig. 5 Displacement at the central point with various transport speeds.
c0 = 1.8

Fig. 6 Displacements at three locations. c0 = 1.8, c = 0.8

6 Forced vibration response

Assuming a small elastic deformation, the equation of motion
of the string in canonical form with respect the dual vector uuu
is obtained

u̇uu(η, t) = Huuu(η, t)+ hhh(uuu, η, t), (19)

where hhh(uuu, η, t) = (0, f (U, U̇ , η, t))T. f (U, U̇, η, t) is the
distributed excitation acting on the string. Note that it is diffi-
cult to obtain an analytical solution of the string response
for nonlinear vibration problems. In this paper, the expan-
sion theorem of modal functions is used again to determine
the approximate solution of displacement. To this end, one
selects the normalized eigenvectors as base functions and
expands uuu in the following form

uuu(η, t) =
M∑

n=1

[qn(t)	̃		n(η)+ q−n(t)	̃		−n(η)], (20)

whereM is the truncation number of modes kept in the expan-
sion. Substitution of Eq. (20) into Eq. (19) yields the nonlin-
ear equation in generalized coordinates q±1, . . . , q±M
±M∑

n=±1

q̇n	̃		n(η) =
±M∑

n=±1

qnH	̃		n(η)

+hhh(q±1, . . . , q±M, q̇±1, . . . , q̇±M, η, t).
(21)

Multiplying the above equation on both sides with 	̃		
T
i (η)JJJ

and 	̃		
T
−i (η)JJJ , respectively, and integrating it over the to-

tal length of the string yield first-order ordinary differential
equations:

q̇i = λiqi + bi,
q̇−i = λ−iq−i + b−i ,

(22)

where

b±i = ∓
∫ 1

0
	̃		

T
∓i (η)JhJhJhdη (i = 1, 2, . . . ,M) (23)

are generalized excitation functions. Note that the orthogo-
nality conditions of normalized modes in Eq. (13) are used
to obtain Eq. (22).

6.1 Linear vibration solution

In this case one has hhh = (0, f (η, t))T. The generalized exci-
tation function b±i of Eq. (23) can be explicitly determined:

b±i = ∓
∫ 1

0
	̃T

1,∓i (η)f (η, t)dη. (i = 1, 2, , . . . ,M) (24)

The transient response can be solved by the Duhamel’s
integral

U(η, t) =
±M∑

i=±1

∫ t

0
bi(τ )e

λi(t−τ)	̃1,i (η)dτ, (25)
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which leads to the exact solution of U(η, t) as the truncation
number M approaches infinity.

To demonstrate the application of the exact modal func-
tions, a uniformly distributed loading f (η, t) = sinωt is
applied on the string. Let c = 0.1, c0 = 1.414, ω = 1.0,
the configuration varying with time is depicted in Fig. 7 over
a single period T = 1.421. Figure 8 shows the configura-
tion varying with the excitation frequency, where c = 0.1,
c0 = 1.414 and t = 1.57. Figure 9 depicts the string config-
uration varying with different transport speeds at t = 1.57
with c0 = 1.414, ω = 1.0. The effect of transport speed on
the configuration can easily be observed. When c is large,
the symmetry of the string about its central cross section is
noticeably lost. Figure 10 illustrates the configuration solu-
tion obtained from expansion of Eq. (20) with different num-
ber of modal function terms, where t = 1.57, c = 0.1, c0 =
1.414, ω = 1.0. The solution obtained with a single, lowest
mode in displacement expansion is close to the ones using

Fig. 7 Configurations in a single period. T = 1.421, c = 0.1, c0 =
1.414, ω = 1.0

Fig. 8 Configurations vs. excitation frequencies. t = 1.57, c = 0.1,
c0 = 1.414

Fig. 9 Configurations vs. transport speeds. t = 1.57, c0 = 1.414,
ω = 1.0

Fig. 10 Configurations vs. numbers of expansion terms. t = 1.57,
c = 0.1, c0 = 1.414, ω = 1.0

two and ten modes, and the convergence of the solution is
good with term number M equal to two or more.

6.2 Nonlinear vibration: an example

It is now demonstrated that the symplectic modal functions
can be used for approximate solutions to nonlinear vibrations
with no sigularity at the critical speed. Let the non-dimen-
sional excitation on the string be f (U, U̇, η, t) = a1U +
a3U

3, where a1 and a3 are constant coefficients. The expres-
sion of the excitation functions of Eq. (21) becomes

hhh =
(

0, a1

±M∑

n=±1

qn	1,n(η)+ a3

[ ±M∑

n=±1

qn	1,n(η)
]3

)T

.

(26)
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Upon substituting Eq. (26) into Eq. (19), multiplying both
sides by 			T

i (η)JJJ and 			T
−i (η)JJJ , respectively, and integrating

it over the length of the string, equation (19) is decoupled
into a series of ordinary differential equations

q̇±n = λ±nq±n ∓ b′
±n

inπc0
, (n = 1, 2, . . . ,M) (27)

where

b′
±n = 〈			∓n,hhh〉. (28)

For an approximate solution one may set M = 1. The
above equation can be expressed in the cubic function of the
generalized coordinates as

b′
±1 = Q±1q1 +Q±2q−1 +Q±3q

3
1 +Q±4q

3
−1

+Q±5q1q
2
−1 +Q±6q

2
1q−1, (29)

where the coefficients can be derived explicitly, as

Q1 = −a1

∫ 1

0
	̃		1,−1	̃		1,1dη = −a1/2,

Q2 = a1

∫ 1

0
			2

1,−1dη = −ia1c0(e
−2iπc/c0 − 1)

×[4πc(c2/c2
0 − 1)]−1,

Q3 = a3

∫ 1

0
			1,−1			

3
1,1dη = −3ia3c0(e

2iπc/c0 − 1)

×[4πc(c2/c2
0 − 1)(c2/c2

0 − 4)]−1,

Q4 = a3

∫ 1

0
			4

1,−1dη = 3ia3c0(e
−4iπc/c0 − 1)

×[32πc(c2/c2
0 − 1)(4c2/c2

0 − 1)]−1,

Q5 = 3a3

∫ 1

0
			1,1			

3
1,−1dη = 3Q̄3, (30)

Q6 = 3a3

∫ 1

0
			2

1,−1			
2
1,1dη = 9a3/8,

Q−1 = a1

∫ 1

0
			2

1,1dη = Q̄2,

Q−2 = a1

∫ 1

0
			1,1			1,−1dη = Q1,

Q−3 = a3

∫ 1

0
			4

1,1dη = Q̄4,

Q−4 = a3

∫ 1

0
			1,1			

3
1,−1dη = Q̄3,

Q−5 = 3a3

∫ 1

0
			2

1,1			
2
1,−1dη = Q6,

Q−6 = 3a3

∫ 1

0
			3

1,1			1,−1dη = 3Q3.

Note that the overbar denotes conjugate complex of a quan-
tity. It is observed that

lim
c/c0→1

Q2 = −a1/4,

lim
c/c0→1

Q3 = −a3/4, (31)

lim
c/c0→1

Q4 = a3/16

and
lim

c/c0→2
Q3 = a3/8,

lim
c/c0→1/2

Q4 = −8a3.
(32)

Apparently, all coefficients on the right hand side of
Eq. (29) are bounded, which eliminates the singularity of
b′

±1 at the critical speed c = c0. This shows the advantage
of the proposed symplectic modal functions. In addition, no
divergence occurs for the other two speeds, c = c0/2 and
c = 2c0. The governing equations (27) can be solved with
perturbation methods or numerical methods, e.g. the method
of multiple scale [14].

The exact modal analysis can be combined with approx-
imate methods, e.g. the Galerkin’s approach, too. In this
case, the symplectic eigenfunctions of Eq. (10) or Eq. (12)
are introduced as the trial functions into the discretization
scheme, and no divergence of the trial functions will occur
when c approaches c0. Naturally, the precision of the approxi-
mate solution of Eq. (27) is mainly determined by the number
of modal functions involved in the truncation expression.

7 Conclusions

It is shown in this paper that the symplectic eigenvalue analy-
sis can be adopted to study transverse vibrations of traveling
string based on the Hamiltonian dynamics. This method pro-
vides not only exact natural frequencies but also complete,
non-singular modal functions with transport speeds near or
equal to the critical speed, which is an improvement on the
traditional complex eigenfunctions. The symplectic modal
functions can be used to obtain both linear and nonlinear
vibration responses. The convergence of the displacement
solution with different number of modal expansion terms is
also discussed with examples.

The stability of motion at the critical transport speed is
examined based on an eigenvalue analysis. Though the com-
plex conjugate eigenvalue pairs become zeroes, their eigen-
functions remain linear independent at the critical speed,
which confirms the stability of the natural motion. There-
fore, the divergence instability of the transverse motion at
the critical speed does not exist. It is worthwhile to men-
tion that at the critical speed, the stability property of axially
moving strings is basically different from translating beams
subjected to additional bending forces and governed by a
fourth-order differential equation of motion (see, e.g. [13]).
A similar comparison of flutter stability characteristics can be
found for thin-films and thin-plates excited by aerodynamic
loadings [15].
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Appendix A

Based on the Hamilton’s canonical equations of (4), a sym-
plectic eigenvalue problem can be formulated as Eq. (8).
Assuming 			 = (	1, 	2)

T and substituting it into Eq. (7)
yield

(c2 − c2
0)	

′′
1 + 2cλ	 ′

1 + λ2	1 = 0. (A1)

Therefore, one obtains the eigenfunction for displacement as

	1(η) = D1e
−λη
c−c0 +D2e

λη

c+c0 . (A2)

Then, the boundary condition of Eq. (1) leads to
[

1 1

e
−λ
c−c0 e

λ
c+c0

] (
D1
D2

)
=

(
0
0

)
. (A3)

Let
2c0

c2
0 − c2

= β �= 0, λ = σ + iω. For a non-trivial

solution of D1 and D2, it must be required that

eβσ (cosβω + i sin βω) = 1. (A4)

It gives the natural frequencies of the vibration:

ω±n = ±β−1(2nπ) = ±nπ(c2
0 − c2)/c0,

(n = 1, 2, 3, . . . ) (A5)

where n is the frequency order. The eigenvalue pairs become

λ±n = iω±n = ±inπ(c2
0 − c2)/c0.

(n = 1, 2, 3, . . . ) (A6)

The eigenvector is determined from (A3) as: (D1,D2)
T =

D1,±n(1,−1)T. Hence, the modal functions of 	1(η) are
expressed as

	1,±n(η) = D1,±n(e−λ±nη/(c−c0) − e−λ±nη/(c+c0)). (A7)

Note that as c → c0, the limits of the modal functions
remain bounded, i.e. lim

c→c0

	1,±n(η) = 2ie±inπη sin nπη. For

convenience, by assigning D1,±n = ±1/(2i) one obtains

	1,±n(η) = ±e±inπηc/c0 sin nπη.

(n = 1, 2, 3, . . . ) (A8)

	2,±n(η) is determined from 	2,±n = c	 ′
1,±n + λ	1,±n.

Consequently, the modal functions of the transverse linear
vibration are obtained as Eq. (10):

			n(η) = einπηc/c0

[
A
B

]
,

			−n(η) = e−inπηc/c0

[−A
C

]
, (A9)

where

A = sin nπη,

B = nπ(c cos nπη + ic0 sin nπη),

C = −nπ(c cos nπη − ic0 sin nπη),

(n = 1, 2, 3, . . . )

It can be easily observed that, when c = c0, the nat-
ural frequencies become zero and the motion of the cable
will no longer be periodical, but the modal functions remain
bounded. So are the normalized modal functions.

Appendix B

Consider the string transporting with the critical speed c =
c0. The equation of motion becomes

∂W

∂t
= −2c

∂W

∂η
, (A10)

whereW(η, t) = ∂U/∂t is the velocity function which satis-
fies the fixed-fixed boundary condition: W(0, t) =
W(1, t) = 0. Assuming a solution W(η, t) = Z(η)�(t)
and substituting it to (A11) lead to a separation of temporal
spatial functions �̇/� = −2cZ′/Z = const and

Z′ = �Z, (A11)
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where� is a constant. Solution Z(η) takes the form Z(η) =
Z0e�η, where Z0 is the integration constant. Applying the
boundary condition Z(0) = Z(1) = 0, it follows that Z0 =
0. As a result, Z(η) = 0 and, eventually, W(η, t) = 0. In

other words, the velocity function of the string vanishes at the
critical speed.And so is the acceleration function if we differ-
entiateW(η, t)with respect to time. In conclusion, the string
will stay at the initial configuration in this circumstance.


