
Vol.:(0123456789)1 3

Microfluidics and Nanofluidics (2023) 27:56 
https://doi.org/10.1007/s10404-023-02667-y

RESEARCH

Synthesis of gold nanoparticles with different sizes and morphologies 
using a single LTCC‑based microfluidic system for point‑of‑care use 
in personalized medicine

Natália Cristina Dalibera1,2   · Aline Furtado Oliveira3   · Adriano Rodrigues Azzoni2 

Received: 3 February 2023 / Accepted: 24 July 2023 / Published online: 31 July 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The potential of microfluidics for point-of-care diagnosis and personalized medicine has been drawing attention to this 
technology in biomedical fields. Low Temperature Co-Fired Ceramics (LTCC) is a promising material for the construction 
of microfluidic systems for point-of-care use since it has favorable inherent physico-chemical properties, and its fabrica-
tion methods are simple and easy to adapt to further needs. Here, we design and construct a microdevice for the continuous 
synthesis of gold nanoparticles (AuNPs), based on reduction using modified citrate protocols. The AuNPs produced were 
characterized using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and Zeta Potential analysis. 
Depending on the temperature, residence time, and citrate concentration chosen during synthesis, a range of nanoparticle sizes 
and shapes were consistently produced, indicating that the process could be suitable for the production of nanoparticles for 
personalized medicine. By using a single microreactor, AuNPs were produced with sizes ranging from 19 to 117 nm, with 
at least 7 different shapes, including complex morphologies, such as nanodendrites and tadpole-shaped particles, indicating 
the simplicity and versatility of the microfluidic device.
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1  Introduction

Microfluidics is a multidisciplinary field in which small 
amounts of fluids are processed. Microfluidic devices 
exploit hydrodynamic characteristics to control the organi-
zation of different molecules within microchannels (Whi-
tesides 2006). The advantages of microfluidic systems over 
conventional systems include faster reactions, minimal 
device size, lower sample and reagent consumption, pre-
cise control of energy and mass transfer phenomena, low 
energy consumption and dissipation, and low relative cost 
of production per device (Li 2008). Mainly due to their 
small size, the microfluidic devices can be used according 
to the recent perspectives of personalized medicine, such 
as gene therapy and immunotherapies (Whitesides 2006). 
For these applications, point-of-care use can facilitate 
therapeutic treatment, reducing the amount of oxidized 
and degraded compounds. The potential of microfluidics 
for point-of-care diagnosis has been drawing attention in 
biomedical fields (Sista et al. 2008; Linder 2007). Micro-
fluidics offers the potential to satisfy all the main demands 
for an ideal point-of-care system: portability, biocompat-
ibility, low cost per unit and the ability to deliver instan-
taneous results (Gervais et al. 2011; Vasudev et al. 2013).

Microfluidic devices can be fabricated using different 
classes of materials, including glass, silicon and differ-
ent polymers (Becker and Locascio 2002; Bilitewski et al. 
2003; Chan et al. 2003, 2005). However, many employed 
micro-manufacturing techniques require a post-fabri-
cation sealing that may produce leaks and may exhibit 
poor chemical and thermal inertness and slow prototyping 
procedures (Gómez-De Pedro et al. 2010; Leatzow et al. 
2002). For this reason, low temperature co-fired ceramics 
(LTCC) has gained attention as an alternative material for 
fabrication of microfluidics systems (Vasudev et al. 2013; 
Gongora-Rubio et al. 2001; Golonka et al. 2011).

LTCC-based fabrication of microdevices consists of the 
parallel processing of multiple layers and final integra-
tion into a multilayer stack, which facilitates the design 
modification during initial development. The multi-
layer approach not only allows the incorporation of 3-D 
structures, but also results in a leak-free compact device 
(Vasudev et al. 2013). The relatively simple and inexpen-
sive fabrication methods, fast prototyping, and the low 
turn-around time in a semi-clean room environment with 
minimal use of expensive tools significantly reduce the 
cost and production time of LTCC microfluidic systems. 
Furthermore, LTCC inherent properties offer a number 
of advantages over polymers and glass, such as chemical 
inertness, biocompatibility, high-temperature and pressure 
stability, excellent high frequency dielectric properties, 
mechanical strength and corrosion resistance (Vasudev 

et al. 2013; Gómez-De Pedro et al. 2010; Shafique and 
Robertson 2009).

LTCC microdevices have been used to synthesize nano-
particles made of a large range of materials, such as metals, 
polymers and biomolecules (Gongora-Rubio et al. 2001, 
2013; Schianti et al. 2013; Gomez et al. 2018; Hung and Lee 
2007). Nanoparticles show unique properties based on their 
composition, size, shape and morphology; thus methods and 
devices that enable a fine control of the synthesis are highly 
pursued to achieve desired characteristics (Hung and Lee 
2007). In the past few years, many nanoparticles have been 
developed for biomedical applications (Ma et al. 2017; Hao 
et al. 2018; Li et al. 2017), highlighting gold nanomateri-
als as especially promising (Wang et al. 2015; Singh et al. 
2018; Liu et al. 2014; Salazar-González et al. 2015; Dykman 
2020). The tunable shape, size and surface characteristics of 
gold nanoparticles (AuNPs), along with their excellent bio-
compatibility, render them ideal candidates for applications 
in biomedical imaging, biological sensing, drug and gene 
delivery, vaccines and photothermal therapy, among other 
purposes (Sasidharan and Monteiro-riviere 2015).

Gold nanoparticles of different sizes, ranging from 5 nm 
(Paquin et al. 2015) to 1 µm (Zhang et al. 2003), and dif-
ferent morphologies, such as spheres (Niikura et al. 2013), 
rods (Uson et al. 2016), dendritic particles (Iost et al. 2019), 
cubes (Thiele et al. 2016), hexagons (Weng et al. 2008) and 
chiral particles (Xu et al. 2022), have been applied to bio-
medicine. Although great progress has been made in syn-
thesizing AuNPs with high degree of monodispersity, the 
synthesis of these particles with different sizes and aspect 
ratios still requires a complicated tuning process (Ye et al. 
2020). The expensive process of preparing the growth solu-
tion and the structural instability of the gold seeds result 
in limitation of yield, shape and reproducibility of AuNPs 
colloids, which has greatly hampered their potential for prac-
tical applications (Ye et al. 2020). To overcome these limita-
tions, automated and miniaturized continuous flow methods 
have been recently proposed to allow rapid, controlled and 
precise adjustment of most required experimental variables 
(Gómez-De Pedro et al. 2010). Moreover, simple and robust 
microfluidic systems make it possible to obtain AuNPs with 
desired properties on demand (De Mello et al. 2004; Lin 
et al. 2004; Wagner et al. 2004).

In this study, we present a simple-to-use, inert, robust, 
portable, LTCC-based microfluidic system able to produce 
a variety of AuNPs of different sizes and shapes on demand 
in a single device, making it ideal for point-of-care uses, in 
personalized medicine.
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2 � Materials and methods

2.1 � Reagents

During the conduction of the experiments, ultrapure water, 
tannic acid (Sigma-Aldrich, analytical grade), sodium cit-
rate dihydrate (NaCt) (Sigma-Aldrich, purity ≥ 99%) and 
gold(III) chloride trihydrate (Sigma-Aldrich, purity ≥ 99.9%) 
were used. All other chemicals used in this work were at 
least analytical grade.

2.2 � Microfluidic system

The microdevice used in this study was made of 
DuPont Green Tape 951PXLTCC with a raw thick-
ness of 254 ± 13 µm, with a X,Y shrinkage coefficient of 
12.7 ± 0.3 µm and a Z shrinkage coefficient of 15 ± 0.5 µm, 
density of 3.1 g/cm3 and thermal conductivity of 3.3 W/m.K. 
The device was composed of stacked LTCC layers, which 
were designed using AutoCAD® software version 2021. The 
device is divided into two sections: heating section (top lay-
ers) and reaction section (bottom layers), as seen in Fig. 1. 
There is no mixing of the inlet fluids in the heating section, 
its purpose is to allow the currents to reach desired tempera-
ture before the mixing. The reaction section is where the 

synthesis actually occurs. It features cross-channel geometry 
with a volume of 270 µL and 400 µm width square-base 
channels. The residence time of the fluids within the device 
starts when the currents enter the reaction section.

The ceramic sheets were cut using a LPKF Laser & Elec-
tronics laser printer model Proto Laser U3. After cutting, 
the lamination step was carried out, in which the layers were 
stacked in order and aligned on a metallic support. The 
material was then kept in a Sppencer Scientific oven model 
SP2420-12 at 60 ℃ for 20 min. After that, the sheets were 
pressed together by a hydraulic press, at 70 ℃ and 4 tons for 
20 min. Then, the device was subjected to the sintering pro-
cess. At this stage, the microdevice was removed from the 
metallic support and placed on a porous ceramic platform, in 
which it was taken to an EDG Equipamentos muffle furnace 
model FCVE-II. Inside the muffle, the material was sub-
jected to a temperature ramp of 6 ℃/min to 450 ℃, remain-
ing at this temperature for 60 min. Then, the temperature 
was raised to 850 ℃, again at a rate of 6 ℃/min, remaining 
at this temperature for another 60 min. After the complete 
sintering of the material, the device was left overnight inside 
the muffle to cool down.

In order to construct the experimental setup (microreac-
tor device) for the synthesis of gold nanoparticles, hydraulic 
connection adaptors and other apparatus were assembled. 
The connections for the tubes were custom made using 

Fig. 1   3D scheme of the microdevice. A Top view of the heating sec-
tion; B top view of the reaction section; C top view of both heating 
section (top layers) and reaction section (bottom layers); D side view 

of the reaction section; E closer side view of the cross-channel geom-
etry of the channels in the reaction section
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3 pairs of pieces of polyamide 6 (Nylon®) and 3 pairs of 
rubber o-rings attached to the device with screws. A Swa-
gelok 316 stainless steel double ferrule male connector was 
threaded into each piece attached to the reactor, securing 
the Darwin 1/8″ OD and 1/16″ ID PTFE tubes. The free 
ends of the inlet tubes were connected to 5 mL luerlock 
plastic syringes. The syringes were attached to a Harvard 
Apparatus syringe pump model PHD 2000. The device was 
immersed in a PolyScience oil bath model SD07H170-A12E 
for temperature control. Images of the device after the sin-
tering process, the assemble of the microfluidic system and 
the assemble of the whole experimental apparatus are shown 
in Fig. 2.

2.3 � Synthesis of gold nanoparticles

For the synthesis of gold nanoparticles, two series of studies 
were performed: the first one used sodium citrate (NaCt) as 
reducing and stabilizing agent, varying the reaction tempera-
ture from 25 to 100 ℃; the second one used tannic acid as 
the main reducing agent, with different amounts of NaCt as 
the stabilizing agent at room temperature. For the first series 
of tests, a 2.5 mM gold chloride solution in ultrapure water 

(precursor solution) and a 7.5 mM NaCt solution in ultrapure 
water (reducing solution), were prepared in order to keep the 
NaCt to Gold molar ratio at 3:1 (Cardoso 2018). The synthe-
ses were carried out at temperatures of 25 ℃, 35 ℃, 45 ℃, 
55 ℃, 65 ℃, 75 ℃, 85 ℃, 95 ℃ and 100 ℃, respectively. 
For the second series of tests, the same precursor solution 
containing 2.5 mM gold chloride was used. The reducing 
solution, this time, contained 0.1 mM of tannic acid with 
different amounts of NaCt (1.25 mM, 2.5 mM, 5.0 mM and 
7.5 mM, respectively). All the syntheses using tannic acid 
were carried out at 25 ℃. All reactions were performed in 
triplicate using the same device, adjusting the flow rate of 
the pumps in order to set the residence time at 90 s. The pre-
cursor and reducing solutions entered the device at different 
inlets at the same flow rate (0.18 mL.min−1). The reaction 
products were stored for 24 h at room temperature before 
the characterization.

2.4 � Dynamic light scattering (DLS) and zeta 
potential analysis

Particle size analyses were performed using the Dynamic 
Light Scattering (DLS) technique at 25 ℃, in a glass cuvette, 

Fig. 2   Experimental apparatus. 
A Microdevice after the sinter-
ing process; B assemble of the 
microfluidic system connected 
to the PTFE tubes; C assemble 
of the experimental apparatus
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with a Particulate Systems NanoPlus equipment. Samples 
were diluted to 10% in ultrapure water and each reading was 
performed in triplicate. The surface charge of the particles in 
water was assessed through zeta potential analysis with the 
same NanoPlus equipment at 25 ℃. Samples were diluted to 
10% in ultrapure water and readings were taken at 5 different 
points with 10 readings per point for each sample.

2.5 � Transmission electron microscopy (TEM)

TEM analyses were performed using a transmission electron 
microscope JEOL JEM 2100 (JEOL, USA). The samples 
were dripped onto a formvar/carbon supported copper grid 
mash 300. The microscopy images obtained were analyzed 
using Image J software. Statistical analyzes were performed 
using Minitab 19.1.1 software, considering a sample number 
n ≥ 300 and the average based on 3 images from distinct 
regions of each triplicate.

3 � Results and discussion

As expected for any newly designed microreactor device, a 
series of preliminary experiments were first conducted to 
determine the ideal reaction parameters in order to maxi-
mize the conversion during the synthesis of the gold nano-
particles. These experiments lead to a fixed residency time 
of 90 s and concentration of reactant fixed at 2.5 mM for 
the gold precursor solution. The results of these studies are 
shown and discussed in the Supplementary Information of 
this article. Following these preliminary studies, a series of 
synthesis experiments were performed using 7.5 mM NaCt 
as a reducing and stabilizing agent and varying only the tem-
perature of the synthesis. The results of size, zeta potential 
and polydispersity are shown in Table 1.

We observed that the higher the temperature of the syn-
thesis, the bigger the size of the synthesized particles for 
temperatures up to 75 ℃. For temperatures higher than 75 ℃, 
the AuNPs showed no significant difference in size. On the 
other hand, PD values showed a similar behavior in the 
contrary direction: the higher the temperature, the smaller 
the PD up to 85 ℃, as shown in Fig. 3A. All PD values 
obtained, however, were up to 0.35, showing low polydisper-
sity. The conversion of gold salt to AuNPs, assessed using 
an indirect methodology (Haiss et al. 2007), was > 95% for 
all the synthesis studied, as shown in the Supplementary 
Information. These results reveal that it was possible to 
tune the size of AuNPs synthesized using the microdevice, 
from 19 to 117 nm, by simply altering the temperature of 
the process. All particles show negative surface charge, as 
it is expected from AuNPs synthesized using NaCt as the 
only reducing agent (Park and Shumaker-Parry 2014), and 
good colloidal stability, evidenced by zeta potential values 

lower than − 30 mV (Malvern Ltd. 2011). Furthermore, 
macroscopic characteristics such as color varies among the 
AuNPs produced. The particles synthesized at temperatures 
from 25 to 45 ℃ showed a deep dark purple color, while the 
synthesis at 60 ℃ resulted in a dark blue color. Finally, those 
particles produced at temperatures from 75 to 100 ℃ turned 
out pink, as seen in Fig. 3B.

The color difference among AuNPs may be explained not 
only by the difference in the mean hydrodynamic diameter of 
the particles but also by the morphology, since both size and 
shape directly influence the color of the colloidal suspension 
(Aldewachi et al. 2018). This characteristic makes AuNPs 
suitable for applications such as colorimetric biosensors 
(Aldewachi et al. 2018). For spherical AuNPs, it is usual to 
observe a red color in suspension, which changes to blue/
purple and eventually progresses to a clear color with precip-
itates upon aggregation (McFarland et al. 2004). However, 
the purple and blue colloids produced here showed good 
stability over time and there was no sign of precipitation. 
This suggests that maybe the morphology of the particles 
were responsible for the non-red color displayed, as previ-
ously reported in the literature (Zhang et al. 2016), instead of 
their state of aggregation. To prove that hypothesis, samples 
of products of syntheses performed at 25 ℃, 60 ℃ and 95 ℃ 
were observed by TEM, and the results are shown in Fig. 4.

The synthesis carried out at 25 ℃ resulted in oval AuNPs 
with mean aspect ratio (R/r) of 2. The product of the syn-
thesis performed at 60 ℃ showed the presence of particles 
with different morphologies, with predominance of 59.4% 
hexagon-like shapes. For the synthesis carried out at 95 ℃, 
the results show particles with many different morpholo-
gies such as spheres, rods, hexagons and triangles mixed 
together. Unlike the products usually obtained in bulk syn-
thesis of AuNPs from gold chloride and NaCt (Dong et al. 
2020; Kimling et al. 2006; Wuithschick et al. 2015), it is 
common to obtain non-spherical particles by microfluidic 
routes (Ye et al. 2020; Abalde-Cela et al. 2018; Calamak and 

Table 1   Results of size, zeta potential and polydispersity (PD) for the 
products of syntheses carried out using NaCt as reducing and stabiliz-
ing agent, varying only the temperature of the synthesis from 25 to 
100 ℃

Temperature 
(℃)

Size (nm) Zeta potential (mV) PD

25 19.1 ± 0.17  − 45.60 ± 0.16 0.35
30 32.0 ± 0.68  − 36.46 ± 0.79 0.34
45 64.9 ± 0.83  − 35.12 ± 0.87 0.28
60 83.4 ± 1.85  − 34.94 ± 0.39 0.26
75 107.5 ± 0.23  − 33.37 ± 0.85 0.23
85 106.4 ± 2.19  − 35.61 ± 0.49 0.21
95 108.4 ± 0.82  − 37.43 ± 0.24 0.22
100 117.1 ± 2.31  − 32.60 ± 0.61 0.25
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Ulubayram 2019). The reason behind this is not completely 
elucidated, however there are reported mechanisms that 
use the hypothesis that larger nanostructures of a variety of 
shapes are formed by the fusion of smaller triangular nano-
particles that are randomly synthesized (Wagner et al. 2004; 
Jana et al. 2001; Mukherjee et al. 2002; Jin et al. 2003). It is 
known that the precise control of process variables enabled 
by microfluidic technologies makes it possible to obtain high 
quality non-spherical metal nanoparticles, giving scientists 
new insights for the development of particles with desired 
characteristics (Köhler and Knauer 2017).

In order to further investigate if it would be possible to 
obtain even more types of AuNPs using the same assembled 
microfluidic device and the same reaction conditions (same 
residency time of 90 s and same 2.5 mM precursor solution, 
now with fixed temperature of 25 ℃), we studied the synthe-
sis with tannic acid 0.1 mM mixed with different amounts 
of NaCt as the reducing solution. The results of size, zeta 
potential and polydispersity and the macroscopic appearance 
of the products of syntheses with tannic acid are shown in 
Table 2 and Fig. 5, respectively.

The colors of the AuNPs produced using tannic acid with 
NaCt varied from deep red (for NaCt 1.3 mM) to deep dark 

purple (for NaCt 7.5 mM). The use of higher concentrations 
of NaCt not only decreased the mean hydrodynamic diame-
ter of the particles (from 85.7 to 21.6 nm for NaCt at 1.3 mM 
and 7.5 mM, respectively), but also increased the module 
of their zeta potential (from 35.07 to 46.47 mV for NaCt at 
1.3 mM and 7.5 mM, respectively), indicating that the excess 
of NaCt makes the colloid suspension more stable, probably 
due to a larger layer of citrate molecules (negatively charged) 
protecting the particles from aggregation as a consequence 
of electric repulsion. However, all colloids showed good 
stability even with low NaCt concentration, since all results 
for zeta potential are lower than − 30 mV. Both AuNPs syn-
thesized using tannic acid with NaCt at 1.3 mM and using 
only NaCt at reaction temperature of 60 ℃ showed simi-
lar mean particle size (85.7 nm and 83.4 nm, respectively) 
but presented different suspension color (Figs. 4B–D and 
5A, respectively), indicating that the shape of the particles 
varied between them. To verify the morphologies of the 
AuNPs produced in the second series of tests, samples were 
observed by TEM, and the results are shown in Fig. 6. The 
conversions of gold salt to AuNPs were also > 95% for all 
the synthesis in this series, as shown in the Supplementary 
Information.

Fig. 3   Synthesis of gold nano-
particles (AuNPs) using the 
microdevice at different reaction 
temperatures. The syntheses 
were carried out using NaCt 
as reducing and stabilizing 
agent. A Results of the size 
(blue circles) and polydispersity 
(orange asterisks) of the AuNPs. 
B Macroscopic appearance of 
the different AuNPs produced 
at (a) 25 ℃; (b) 30 ℃; (c) 45 ℃; 
(d) 60 ℃; (e) 65 ℃; (f) 75 ℃; 
(g) 85 ℃; (h) 95 ℃; (i) 100 ℃ 
(Color figure online)
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Fig. 4   TEM images of AuNPs produced using NaCt as reducing and stabilizing agent, for reactions carried out at: A and B 25 ℃; C and D 
60 ℃; E and F 95 ℃
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The synthesis carried out using tannic acid with NaCt 
1.3 mM resulted predominantly in dendritic AuNPs with 
different degrees of ramification (Fig. 6A and B). Varia-
tions of this particular morphology have been seen before in 

the literature and have the potential to be used in electron-
ics and sensing applications (Iost et al. 2019; Calamak and 
Ulubayram 2019; Uppal et al. 2013). Reactions with NaCt 
2.5 mM resulted mostly in spheres with a mean diameter of 
79.5 nm (Fig. 6C and D). The synthesis carried out using 
NaCt 5.0 mM resulted in irregular shapes with no predomi-
nant morphology (Fig. 6E and F). Finally, syntheses carried 
out with tannic acid and NaCt 7.5 mM produced tadpole-
shaped particles (Fig. 6G and H). Tadpole-shaped AuNPs 
have been reported in literature before (Wu et al. 2012; Bai 
et al. 2009; Li et al. 2013; Hu et al. 2004) and there is evi-
dence that this particular structure may be the result of the 
ripening of particles with other morphologies (Wu et al. 
2012). Reports applying tadpole-shaped AuNPs are scarce, 
however the synthesis of novel metallic nanostructures are 
important since they may exhibit a wide range of unique 

Table 2   Results of size, zeta potential and polydispersity for the prod-
ucts of syntheses carried out using tannic acid mixed with different 
amounts of NaCt as reducing solution, varying NaCt concentration 
from 1.3 to 7.5 mM

NaCt concentra-
tion (mM)

Size (nm) Zeta potential (mV) PD

1.3 85.7 ± 0.21  − 35.07 ± 1.20 0.207
2.5 79.5 ± 1.19  − 42.22 ± 1.91 0.225
5.0 47.2 ± 0.76  − 44.84 ± 1.65 0.323
7.5 21.6 ± 0.61  − 46.77 ± 2.09 0.344

Fig. 5   Macroscopic appearance 
of the products of syntheses 
carried out using tannic acid 
mixed with different amounts of 
NaCt as reducing solution, vary-
ing NaCt concentration in A 
1.3 mM; B 2.5 mM; C 5.0 mM; 
D 7.5 mM

Fig. 6   TEM images of products of syntheses carried out using tannic acid mixed with different amounts of NaCt as reducing solution, varying 
NaCt concentration in: A and B 1.3 mM; C and D 2.5 mM; E and F 5.0 mM; G and H 7.5 mM
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electrical and optical properties and may find applications 
in a variety of areas, such as nanodevices, biomaterials, elec-
trochemistry and so on (Li et al. 2013; Hu et al. 2004).

4 � Conclusion

We have developed an LTCC-based microfluidic system 
that is simple, low-cost, low-maintenance, chemically inert, 
portable, and robust for point-of-care use. Utilizing a single 
device, with just a few adjustments in the process, we dem-
onstrated that it is possible to synthesize stable AuNPs of 
different colors, sizes and shapes, including complex mor-
phologies such as nanodendrites and tadpole-shaped parti-
cles, in a controlled and reproducible way, thus being ideal 
for applications in personalized medicine.

It is possible to adapt the technology presented in this 
study adding, for example, sensors for online monitoring of 
the reaction and sections for inline functionalization of the 
synthesized particles. Furthermore, we believe that it is pos-
sible to produce AuNPs with even more sizes and morpholo-
gies by altering other process parameters, such as retention 
time, nature and concentration of reagents and pH. In the 
future, we intend to evaluate the cytotoxicity, surface char-
acteristics and interaction of the synthesized AuNPs with 
different biomolecules (e.g. proteins and mRNA) provid-
ing new applications of the functionalized nanoparticles in 
advanced vaccines, therapies, and diagnostics.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10404-​023-​02667-y.
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