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Abstract
We propose here a semi-analytical formalism to describe the flow dynamics of non-Newtonian Carreau fluid in a

microfluidic channel under the conjugated effect of electroosmosis and applied pressure gradient. We show that the

proposed method, consistent with the perturbation technique, accounts for the electrical double-layer phenomenon accu-

rately and can solve the non-linear transport equations quite efficiently for any values of shear-thinning parameter,

including non-integers up to three decimal points, without requiring time-consuming as well as expensive computational

schemes. By validating our theoretical results with the numerical solutions under identical conditions as well as with the

reported experimental results pertaining to a purely electro-osmotic flow, we establish the credibility of the methodology

developed here in capturing the underlying intricate transport features of the chosen flow configuration. We believe that the

semi-analytical tool developed here can be employed to solve the flow dynamics of complex non-Newtonian fluids under

varied flow actuation scenarios and will be of practical use in analytical microfluidics.

1 Introduction

Over the past two decades, a remarkable progress has been

made in the field of biotechnology, biomedical and bio-

chemical processes, attributed primarily to the rapid

advancement of microfluidic technology (Stone et al. 2004;

Li and Zhou 2013). Pertaining to the applications men-

tioned above, the conjugation of microfluidic technology

has offered a few distinctive beneficial features, which

include a reduction in reagent/sample volume, decreasing

the analysis time, increasing sensitivity, augmented speci-

ficity, etc. It may be mentioned here that various flow

actuation mechanisms have already established their per-

tinence to transport liquid in microfluidic set-up namely,

electric field modulated transport (Devasenathipathy et al.

2002; Mondal et al. 2015; Gaikwad et al. 2016; Abhimanyu

et al. 2016; Gaikwad and Mondal 2017), pressure-driven

flow (Chen et al. 2004), thermocapillary actuated transport

(DasGupta et al. 2014; Mondal and Chaudhry 2018),

magnetic field-induced flow (Gorthi et al. 2017), surface

tension driven transport (Gaikwad et al. 2020a, b; Gorthi

et al. 2019). Among these, flow actuation parameter con-

sistent with the combined influences of applied pressure

gradient and electric field has gained huge prominence at

the microfluidic scale (Shuai et al. 2022; Jiali et al. 2022)

owing to its capability of ensuring better dispersion, finer

control over the underlying flow.

Most of the biological fluids exhibit non-Newtonian

behavior and as witnessed in the reported literature (Cho

and Kensey 1991), several constitutive laws have been

used to characterize their non-Newtonian rheology as well

(Goswami et al. 2015; Siva et al. 2020; Mehta et al. 2021;

Gaikwad et al. 2019a; Anantha et al. 2018a; Anantha et al.

2019; Ventaka et al. 2021).The Carreau fluid model (Car-

reau et al. 1979), established as the most commonly used

non-Newtonian model in describing several biofluids (Zhao

and Yang 2011), offers flexibility in describing the fluid

rheological behavior at relatively high shear rates. In par-

ticular, this rheological model describes the accurate

physical behavior of inelastic non-Newtonian fluids as

compared to the power-law model in regions where the

shear rate tends to be zero. The solution of transport

equations governing the flow dynamics of non-Newtonian

fluids even in the paradigm of microscale transport,
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typically known as low Reynolds number flows, is ana-

lytically intractable, attributed primarily to involved non-

linearity stemming from the constitutive laws (Chaffin and

Rees 2018; Jing et al. 2019; Sun et al. 2021). The under-

lying solution process becomes even more convoluted

pertaining to the transportation of rheological fluid under

the combined influences of electric field and applied

pressure gradient (Gaikwad et al. 2016b). Accounting for

this inevitable complexity in solving applied field-driven

flows (precisely, the transport equations) using the analyt-

ical framework, researchers have mostly focused on several

numerical methods for describing the flow field of non-

Newtonian fluids (Gaikwad et al. 2016, 2018, 2019b;

Ferrás et al. 2016). Albeit the solution of the transport

equations governing the flow dynamics of non-Newtonian

fluids using analytical/semi-analytical tools is deemed to be

of demanding importance in the arena of micro/nanoflu-

idics, this endeavor is indeed scarce in the open literature.

In the present work, we demonstrate a semi-analytical

formalism, consistent with the perturbation method, to

describe the flow dynamics of non-Newtonian fluid driven

by the combined effects of applied electric field and pres-

sure gradient in a microchannel. We here consider the

Carreau fluid model to describe the rheology of the non-

Newtonian fluid. The deviatoric stress tensor of the Carreau

fluid model reads as (Johnston et al. 2004)

s ¼ l _cð Þ rU þ rUð ÞT
� �

; ð1Þ

with l _cð Þ ¼ l1 þ l0 � l1ð Þ 1þ k _cð Þ2
� �n�1

2

; where lð _cÞ is
the apparent viscosity; _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2ÞS : S

p� �
is the invariant

rate of deformation tensor with strain rate tensor

S ¼ ½rU þ rUð ÞT �; l1 is the infinite-shear rate viscosity

and l0 is the zero-shear rate viscosity. The parameter n

represents the degree of shear-thinning, while the param-

eter k is a time constant which indicates the onset of the

shear-thinning behavior. It is worth mentioning here that

the method proposed here is capable of providing flow-field

distribution of Carreau fluid for any values, including non-

integers, of parameter n without requiring time-consuming

and complex computational simulations. This part,

although remained unexplored in the literature until present

endeavor, is unique pertaining to the field-driven transport

of non-Newtonian Carreau fluid at microfluidic scale.

2 Problem formulation

We consider hydrodynamically fully developed, laminar,

incompressible flow of an inelastic non-Newtonian fluid

(electrolyte) through a microchannel of height 2H. As

mentioned in Eq. (1), we consider the Carreau model to

represent the rheology of inelastic non-Newtonian fluid in

this analysis. The flow is driven by the combined effects of

both applied pressure gradient and electroosmosis. The

geometry and coordinate system of microchannel is shown

in Fig. 1. The length and width of the channel are suffi-

ciently larger than the height of the channel. The channel

walls are considered to bear a net charge as manifested in

terms of surface potential w
0
, which leads to the formation

of the electrical double layer (EDL) in contact with ionic

liquid (Masliyah and Bhattacharjee 2006). The externally

applied electric field Ex along the axial direction sets in the

underlying flow of the chosen fluid by virtue of elec-

troosmosis. Below, in sub-section A, we write the

momentum transport equations in their generic form.

However, in sub-sections B–C, the transport equations are

written in their reduced form pertinent to the assumptions

made above together with the case of non-overlapping

EDLs and uniform surface potential.

2.1 Transport equations

We begin with the full set of momentum transport equa-

tions as written below.

Continuity equation:

r � U ¼ 0: ð2Þ

Momentum equation:

q
oU

ot
þ U � rU

	 

¼ �rpþr � sþ F; ð3Þ

where U is the velocity vector, p is the fluid pressure, q is

the fluid density, F is the electroosmotic body force per

unit volume. Note that s in Eq. (3) is the stress tensor, and

its expression following the constitutive behavior of the

Carreau model is already described in Eq. (1).

2.2 Electric double-layer phenomenon:
development of induced potential

For the description of induced potential due to interfacial

electrochemical interaction, we invoke the Poisson–Boltz-

mann equation in this analysis. Consistent with the one-

dimensional form of the Poisson–Boltzmann equation, the

EDL potential distribution w
0
yð Þ pertaining to the problems

considered here and for symmetric electrolyte using the

Debye–Hückel approximation can be written as (Masliyah

and Bhattacharjee 2006):

d2w
0

dy2
¼ � qe

e
¼ 2n0ez

e
ezw

0

T0kB

 !

; ð4Þ

where e; z; n0; e; T0 and kB signify the single electron

charge, valence number of ions, bulk ionic concentration,
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electric permittivity, reference temperature and Boltzmann

constant, respectively.

Introducing non-dimensional number Y ¼ y
H and

w ¼ zew
0

kBT0
; we can write Eq. (4) in the following form as

d2w

dY2
¼ j2w: ð5Þ

Here, j ¼
ffiffiffiffiffiffiffiffiffiffiffi
2n0e2z2

ekBT0

q� �
and inverse of this quantity, i.e.,

j�1 ¼ kD is the characteristic EDL thickness (also, known

as the Debye length). Note that j ¼ jH is the dimension-

less EDL thickness (Soong et al. 2010). In order to solve

Eq. (5), we employ the following boundary conditions.

Y ¼ 0;
dw
dY

¼ 0; andw ¼ 0: ð6Þ

Note that the boundary condition in Eq. (6) is justified

due to symmetry and non-overlapping EDL situation.

Hence, Eq. (5) can be simplified as:

w Yð Þ ¼ f
cosh jYð Þ
coshj

; ð7Þ

where f is the zeta potential.

2.3 Description of flow field

In a steady-state and hydrodynamically fully developed

flow, the momentum equation [Eq. 3] pertinent to present

problem can be written as

d sxy
� �

dy
¼ � dp

dx
þ Fx: ð8Þ

Note that Fx in Eq. (8) includes the forcing due to the

electroosmotic effect. Pertaining to the present flow sce-

nario, the electroosmotic body force can be written in the

following form (Sarma et al. 2018; Sadeghi and Saidi

2010):

Fx ¼ qeEx; ð9Þ

where Ex is an applied external electric field along the x

direction and qe is the net electric charge density (Gaikwad

et al. 2016). For this case, the momentum transport equa-

tion (Eq. 8) can be written as

d sxy
� �

dy
¼ � dp

dx
þ qeEx: ð10Þ

From Eq. (4), using qe ¼ �e d
2w

0

dy2
in Eq. (10), we get

d sxy
� �

dy
¼ � dp

dx
� eEx

d2w
0

dy2
: ð11Þ

From Eq. (1), the stress tensor sxy of Carreaufluidperti-
nent to the flow configuration considered in this analysis

can be expressed as (Cho and Kensey 1991; Johnston et al.

2004):

sxy ¼ l1 þ l0 � l1ð Þ 1þ k
du

dy

	 
2
 !n�1

2

2

4

3

5 � du

dy

	 

:

ð12Þ

For the solution of Eq. (11), the following boundary

conditions are used.sxy ¼ 0 at y = 0 and u ¼ 0 at y ¼ H:

We invoke to the symmetric EDL potential condition

and assuming the zero-shear stress at the center of the

microchannel (Sarma et al. 2018), i.e., at y ¼ 0; sxy ¼ dw
0

dy ¼
0 to obtain the solution of Eq. (10). Now, on integrating

Eq. (11), we get,

sxy ¼ � dp

dx
y� eEx

dw
0

dy
: ð13Þ

On substituting Eq. (13) into Eq. (12),we get the

following:

� dp

dx
y� eEx

dw
0

dy

¼ l1 þ l0 � l1ð Þ 1þ k
du

dy

	 
2
 !n�1

2

2

4

3

5 � du

dy

	 

:

ð14Þ

Fig. 1 Schematic diagram

showing the flow configuration.

Flow takes place along the

x direction under the combined

influences of applied pressure

gradient and electroosmosis.

The coordinate system is

attached at the left center of the

channel
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Now by making use of the dimensionless numbers

mentioned in Section II.B, the following non-dimensional

numbers are defined as:

U ¼ u

uHS
;C ¼ k2

u2HS
H2

: ð15Þ

with uHSð¼ � eExkBT0

zel0
Þ as a Helmholtz–Smoluchowski

velocity, the Eq. (14) can be simplified to the following:

� dp

dx
YH � eExkBT0

Hze

dw
dY

¼ l1uHS
H

� dU

dY

	 


þ uHS l0 � l1ð Þ
H

1þ C
dU

dY

	 
2
 !n�1

2

2

4

3

5 � dU

dY

	 

:

ð16Þ

3 Solution methodology

3.1 Semi-analytical solution

The non-dimensional form of the momentum transport

equation governing the flow dynamics of the Carreau fluid

as in Eq. (16), obtained under the framework of a few

assumptions, is highly non-linear in nature. Hence, we look

for the solutions for the velocity profile (and the corre-

sponding flow rate) by using a semi-analytical framework

consistent with the perturbation method. Following this

method, the analytical solution for Carreau fluid flow in

microchannel can be obtained by considering C ¼ k2
u2HS
H2 is

small C � 1ð Þ and
l1
l0

� 1. We here take an effort to

establish the typical values of these two quantities through

their order of magnitude analysis as follows: For a channel

height H*100 lm, which is typical to microfluidic con-

figuration and uHS ¼ 10�4 m=s (Mukerjee et al. 2017;

Hsieh and Yang 2006; Hsieh et al. 2016), we obtain the

order of C� 10�2 for a relaxation parameter k ¼ 0:1 s, the

zero-shear rate viscosity l0 ¼ 38:73 Pa � s and infinite-

shear rate viscosity l1 ¼ 0:05 Pa � s. Hence, the ratio of
l1
l0

for Carreau fluid becomes 10�3(Sun et al. 2021). This order

of magnitude analysis is justifiable for applying the per-

turbation method as employed here to solve the transport

equation.

Consistent with the methodology employed here, the

solution for flow velocity can be written in the form as

written below.

U ¼ U0 þ CU1 þ O C2
� �

: ð17Þ

Note that the leading order solution refers to the solution

for the Newtonian fluid.

3.1.1 Zeroth-order solution

For C ¼ 0, the corresponding U ¼ U0 is the solution of the

following zeroth-order equation:

� dp

dx
YH � eExkBT0

Hze

dw
dY

¼ � l0uHS
H

dU0

dY
: ð18Þ

Equation(18) can be further simplified using the Eqs. (5)

and (7) as:

� dp

dx
YH � eExkBT0

zeH
j
sinh jYð Þ
coshj

¼ � l0uHS
H

dU0

dY
: ð19Þ

Now, by defining A ¼ � H2

l0uHS
dp
dx, and for uHS ¼ � eExkBT0

zel0
;

we can write Eq. (19) in the following form as given

below.

� dU0

dY
¼ AY þ j

sinh jYð Þ
coshj

: ð20Þ

Now, integrating Eq. (20), we get zeroth-order solution

as follows:

U0 ¼ �A
Y2

2
� cosh jYð Þ

coshj
þ C1: ð21Þ

The constant of integration C1 can be determined by the

boundary conditions Y ¼ 1;U0 ¼ 0.

Hence, the dimensionless zeroth-order velocity U0 is

obtained as:

U0 ¼
A

2
1� Y2
� �

� cosh Yjð Þ
cosh jð Þ þ 1: ð22Þ

Henceforth, we remove overbar symbol from the

dimensionless EDL thickness for the sake of convenience

in writing only.

3.1.2 First-order solution

We next take an effort to obtain the solution of the first-

order problem for small value of C. In doing so, the first-

order solution U ¼ U0 þ CU1ð Þ is substituted into

Eq. (19). We consider the non-linear part of Eq. (19),

which reads as

N Cð Þ ¼ 1þ C
d U0 þ CU1ð Þ

dY

	 
2
 !n�1

2

2

4

3

5 � d U0 þ CU1ð Þ
dY

	 

:

ð23Þ

Denoting:

N1 Cð Þ ¼ 1þ C
dU0

dY

	 
2

þ 2C2 dU0

dY

dU1

dY
þ C3 dU1

dY

	 
2
 !n�1

2

:

ð24aÞ

Linearization of Eq. (24a) yields:
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N1 Cð Þ � N1 C ¼ 0ð Þ þ dN1 Cð Þ
dC

����
C¼0

Cþ . . .

¼ 1þ n� 1ð Þ
2

1þ C
dU0

dY

	 
2

þ 2C2 dU0

dY

dU1

dY
þ C3 dU1

dY

	 
2
" #

C¼0

n�3
2

dU0

dY

	 
2

þ 4C
dU0

dY

dU1

dY
þ 3C2 dU1

dY

	 
2
" #

C¼0

Cþ . . .

ð24bÞ

Accordingly, the linear expression for N Cð Þ reads as

N Cð Þ � 1þ C
n� 1ð Þ
2

dU0

dY

	 
2
" #

� dU0

dY
� C

dU1

dY

	 


� � dU0

dY
� C

dU1

dY
� C

n� 1ð Þ
2

dU0

dY

	 
3

:

ð25Þ

Now, on substituting Eqs. (20), (25) into Eq. (16) and

equating the terms proportional to (of like powers of) C, we
get the following and written as:

� dU1

dY
¼ 1� nð Þ

2
� dU0

dY

	 
3

: ð26Þ

The Eq. (26) further implies.

� dU1

dY
¼ 1� nð Þ

2
AY þ k

sinh kYð Þ
cosh k

	 
3

: ð27Þ

On integrating Eq. (27), we get

U1 ¼
n� 1ð Þ
2

1

4
A3Y4 þ 3A2cosh kYð ÞY2

cosh kð Þ

	

þ 3

2

Asinh kYð Þcosh kYð ÞkY
cosh kð Þ2

� 3

4

Ak2Y2

cosh kð Þ2
� Y6A2sinh kYð Þ

cosh kð Þk

þ 1

3

cosh kYð Þ3k2

cosh kð Þ3
� 3

4

Acosh kYð Þ2

cosh kð Þ2
þ 6A2cosh kYð Þ

cosh kð Þk2

� k2cosh kYð Þ
cosh kð Þ3

Þ þ C2:

ð28Þ

Now, by utilizing the boundary conditions (U ¼ 0 at

Y ¼ 1), the constant C2 is obtained as follows.

C2 ¼ � n� 1ð Þ
2

1

4
A3 þ 3A2 þ 3kAtanh jð Þ

2
� 3

4

Ak2

cosh kð Þ2
� 6A2tanh jð Þ

k
þ 1

3
k2

� 3

4
Aþ 6A2

k2
� k2

cosh kð Þ2

0

BBB@

1

CCCA
:

ð29Þ

Hence, the solution for the first-order problem ðU1Þ is

given by

U1 ¼
n� 1ð Þ
2

1

4
A3Y4 þ 3A2cosh kYð ÞY2

cosh kð Þ

	�

þ 3

2

Asinh kYð Þcosh kYð ÞkY
cosh kð Þ2

� 3

4

Ak2Y2

cosh kð Þ2

� Y6A2sinh kYð Þ
cosh kð Þk þþ 1

3

cosh kYð Þ3k2

cosh kð Þ3
� 3

4

Acosh kYð Þ2

cosh kð Þ2

þ 6A2cosh kYð Þ
cosh kð Þk2

� k2cosh kYð Þ
cosh kð Þ3




� 1

4
A3 þ 3A2 þ 3kAtanh jð Þ

2
� 3

4

Ak2

cosh kð Þ2

 

� 6A2tanh jð Þ
k

þ 1

3
k2 � 3

4
Aþ 6A2

k2
� k2

cosh kð Þ2

!#

:

ð30Þ

Finally, we obtain an approximate solution for U up to

the first order of the perturbation parameter C following the

perturbation method as used in this analysis. Thus, the final

solution of U, which is obtained by substituting the

expressions of zeroth-order solution U0 and first-order

solution U1 from Eqs. (22) and (30), into Eq. (17), reads

as:

U ¼ A

2
1� Y2
� �

� cosh Yjð Þ
cosh jð Þ þ 1

þ C
n� 1ð Þ
2

1

4
A3Y4 þ 3A2cosh kYð ÞY2

cosh kð Þ

	�	

þ 3

2

Asinh kYð Þcosh kYð ÞkY
cosh kð Þ2

� 3

4

Ak2Y2

cosh kð Þ2

�Y6A2sinh kYð Þ
cosh kð Þk þþ 1

3

cosh kYð Þ3k2

cosh kð Þ3
� 3

4

Acosh kYð Þ2

cosh kð Þ2

þ 6A2cosh kYð Þ
cosh kð Þk2

� k2cosh kYð Þ
cosh kð Þ3

!

� 1

4
A3 þ 3A2 þ 3kAtanh jð Þ

2
� 3

4

Ak2

cosh kð Þ2

 

� 6A2tanh jð Þ
k

þ 1

3
k2 � 3

4
Aþ 6A2

k2
� k2

cosh kð Þ2

!#!

:

ð31Þ

3.2 Numerical solution

To establish the efficacy of the perturbation method as

employed in this study, we also take an effort to compare

the approximate analytical results with the corresponding

numerical solutions as well. To this end, we look for the

numerical solutions of the flow configuration considered in

this analysis from two perspectives as discussed next.
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3.2.1 Shooting technique

First, we appeal to shooting method, which is simple and

an efficient technique, to solve the non-linear boundary

value problems (Eqs. 10, 11) (Hoffman 1992; Keskin

2019). In this method, we first transform the differential

equations into the system of first order equations (initial

value problems (IVPs)), which are then solved using

Runge–Kutta fourth-order scheme (Anantha et al.

2018b, 2022a, b). The given boundary conditions on one

side of the interval considered as initial conditions. Other

required initial conditions are assumed, and first order

equations (IVPs) are solved. The initial conditions assumed

on one boundary are iterated until the boundary conditions

on the other boundary are satisfied.

From Eqs. (11) and (12), we have the following

� dp

dx
� eEx

d2w
dy2

¼ l1 þ l0 � l1ð Þ 1þ k
du

dy

	 
2
 !n�1

2

2

4

3

5 � d2u

dy2

	 


þ � du

dy

	 

ðn� 1Þ l0 � l1ð Þ 1þ k

du

dy

	 
2
 !n�1

2

k
du

dy

d2u

dy2

2

4

3

5:

ð32Þ

On using non-dimensional quantities, as defined in

Eq. (15), the above equation [Eq. 32] can be written as

�A� k2
cosh kYð Þ
cosh kð Þ ¼ l1

l0
þ 1� l1

l0

	 

1þ C

dU

dY

	 
2
 !n�1

2

2

4

3

5 d2U

dY2

	 


þ n� 1ð Þ 1� l1
l0

	 

1þ C

dU

dY

	 
2
 !n�3

2

C
dU

dY

	 
2 d2U

dY2

2

4

3

5:

ð33Þ

We solve Eq. (33) numerically using shooting method

consistent with the Runge–Kutta scheme.

3.2.2 Full-scale simulations

To obtain full-scale simulated results for the flow field of

the chosen set-up, we use finite element framework of

COMSOL� Multiphysics to solve the transport equations

described above in Eqs. (2–4), accounting for the expres-

sion of electrical forcing given in Eq. (8). The transport

equations are solved by adapting Multiphysics modules

(laminar flow model for the momentum transport equations

describing the Carreau fluid transport and the classical PDE

module for the Poisson’s equation for potential distribu-

tion. Since we take this endeavor essentially for the com-

parison of our approximate analytical solutions with the

full-scale simulated results, we consider only electroos-

motic effect as the flow forcing parameter (corresponds to

trivially small forcing comparison parameter Að¼� 1Þ, as

defined in sub-section A.1) and consider channel length is

much higher than the channel width. For the numerical

computations, we fix the relative residual criteria as 10�6

satisfying the convergence of all the field variables. For the

solution of momentum transport equation, we consider no

slip condition at the channel walls, while gauge pressure is

considered to be zero at both ends of the channel. For the

description of potential distribution, we consider specified

wall potential, while no flux condition is imposed at other

boundaries.

4 Volumetric flow rate and wall shear stress

The dimensionless flow rate is obtained by integrating the

normalized velocity profile across the channel height

Q ¼ 2

Z 1

0

Udy: ð34Þ

The expression of wall shear stress in non-dimensional

form is given by

sw ¼
sxy
� �

y¼H

l0uHS=H

¼ l1
l0

� dU

dY

	 


Y¼1

þ 1� l1
l0

	 

1þ C

dU

dY

	 


Y¼1

2
 !n�1

2

2

4

3

5 � dU

dY

	 


Y¼1

:

ð35Þ

Fig. 2 Plot depicting the variation of flow velocity along the

transverse direction of the channel, obtained for n ¼ 0:356; 0:818.
The lines are used to denote the approximate analytical solutions

while markers are used to indicate the simulated results. The other

parameters considered for this plotting are A ¼ 0:01, j ¼ 20 and

C ¼ 0:01. As seen, approximate solutions match with the full-scale

simulated results in a fairly accurate manner
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5 Model benchmarking

To ascertain the efficacy of the proposed method, we also

benchmark our theoretical model from different perspec-

tives. In Fig. 2, we have shown the comparison analysis of

present approximate analytical results with full scale

numerical solutions for two distinct values of shear-thin-

ning parameter n ¼ 0:356 and 0:818. The lines are used to

denote the approximate analytical solutions while the

markers are used to indicate the simulated results. The

other parameters considered for this plotting being

A ¼ 0:01, j ¼ 20 and C ¼ 0:01. As seen in Fig. 2,

approximate solutions match with the full-scale simulated

results in a fairly accurate manner. For both the cases

(n ¼ 0:356 and 0:818), the approximate analytical solu-

tions match well with the reported experimental results.

These observations justify the credibility of the proposed

theoretical modeling framework in predicting the flow

physics of our interest.

6 Results and discussion

In this section, we discuss the variation of flow variables

like flow velocity, flow rate, and shear stress for a window

of parameters typically considered in microscale set-up

such as A ¼ 0:01; 0:1; 2, rheological parameter

C ¼ 0:01; 0:05; 0:08, and the Debye–Hückel parameter

j ¼ 15; 20; 25. The chosen range of the parameters is in

accordance with their permissible values typically consid-

ered in the microfluidic set-up (Siva et al. 2020; Sun et al.

2021; Horiuchi et al. 2006; Gaikwad et al. 2020a, b). It is

worth mentioning here that conforming with the prime

focus of this analysis, i.e., to obtain analytical solution for

any arbitrary value of shear-thinning parameter n, we pri-

marily consider several values of n ¼ 0:356; 0:528; 0:818

(Cho and Kensey 1991). These values are used to describe

the non-Newtonian rheology of many fluids, including

biofluids, typically used in the realm of practical applica-

tions (Cho and Kensey 1991). Note that seeking for a

purely analytical solution of the transport equation

[Eq. (10)] for these selected values of n, which is otherwise

not impossible using numerical method, is indeed a con-

voluted task. Nevertheless, we have also shown the varia-

tion of flow velocity obtained for n ¼ 0:3; 0:5; 0:6; 0:8, as

given in inset of Fig. 3a. Albeit the results demonstrated in

this analysis are typical to microscale transport under the

combined influences of applied pressure gradient and

electrokinetic effect, nevertheless, we take an effort in this

endeavor to represent results for several non-integers of n

(for the chosen values of n analytical solution is deemed

impossible) with the prime objective of establishing the

efficacy of the proposed approximate analytical method.

For the sake of completeness, we must mention here that,

for each case, we plot the variation obtained from both

approximate analytical method and numerical solutions

obtained from shooting technique (Section B.1). The effect

of the aforementioned parameters on the flow velocity, net

throughput and wall shear stress is aptly discussed in the

forthcoming paragraphs.

6.1 Description of flow velocity

(i) Effect of force comparison parameter

The variation of flow velocity ðUÞ distribution obtained

from the approximate analytical technique is presented

graphically in Figs. 3, 4, 5 for different values of pertinent

parameters, i.e., n;A and j with fixed value of C. Also, we
take an effort here to confirm the accuracy of approximate

solutions obtained from perturbation technique with the

results obtained from numerical analysis, consistent with

the shooting technique. To do this, in Figs. 3, 4, we plot

and compare the approximate analytical solutions of flow

velocity ðUÞ vis-à-vis the numerical results, obtained for

different values of n, A and j. In all the cases, the

approximate analytical solutions show excellent match

Fig. 3 Plot depicting the

variation of velocity distribution

a for different value of shear-

thinning parameter n, while
other parameters are fixed at

A ¼ 0:01, j ¼ 20 and

C ¼ 0:01; and b for different

values of pressure gradient

parameter A, keeping at

n ¼ 0:356, j ¼ 20 and

C ¼ 0:01
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with numerical results, which largely emphasizes the effi-

cacy of the methodology employed in the present work.

The effect of n on the flow velocity U of the Carreau fluid

(for definite values of A; j; and C) is shown in Fig. 3a. As

seen in Fig. 3a, with increasing the value of n, the flow

velocity U decreases. The smaller the values n, the stronger

is the shear-thinning behavior of the fluid. It is because of

the increasing shear-thinning nature of the fluids with

lower n, the underlying flow velocity of these fluids

becomes relatively higher as witnessed in Fig. 3a. This

primary reason behind this observation is attributed to the

lesser apparent viscosity of the fluids having smaller n and

so is the lesser viscous resistance being offered to the

underlying transport. However, as seen in Fig. 3a, with

increasing the value of n, the flow velocity decrease and

tends to exhibit Newtonian fluid velocity (the maximum

velocity approaches to 1).

The dimensionless U-velocity profile for distinct values

of pressure-gradient parameter A with fixed j ¼ 20; n ¼
0:356 and C ¼ 0:01 is demonstrated in Fig. 3b. The value

of A considered for plotting Fig. 3b ranges from 0.01 to

1.0. In Fig. 3b, the shape of U-velocity profile changes

from plug-like to parabolic profile as the pressure-gradient

parameter A increases from 0.01 to 1.0. The flow field

corresponding to smaller value of A ¼ 0:01ð Þ conforms to

electro-osmotic flow scenario to the closer extent. On the

other hand, for a higher value of Að¼ 1:0Þ, the velocity

resembling with the combined pressure-driven and elec-

troosmotic flows. As witnessed in Fig. 3b, for A ¼ 0:01,

velocity profile becomes plug-type (uniform flow) in the

core region. Also, as can be verified from Fig. 3b, the

effect of pressure gradient combined with electroosmotic

effect is seen to be higher i.e., A[ 0:01, while with

increasing the magnitude of A, the U-velocity increases

significantly and attains its maximum value at the central

region. The approximate analytical results, as plotted in

Fig. 3b, are also compared with the corresponding

numerical results. A good match between approximate

solutions and numerical results indeed vouches for the

efficacy of the proposed method employed in this analysis.

(ii) Effect of electrokinetic parameter

We next look into the impact of Debye parameter j on

velocity distribution Uð Þ as graphically shown in Fig. 4.

The value of j considered for the variations plotted in

Fig. 4 are j ¼ 15; 20 and 25. Important to mention here

that j�1 signifies the characteristics EDL thickness. For the

value of A ¼ 0:01, a case signifying the prominence of

electrokinetic effect on the underlying transport, consid-

ered in plotting Fig. 4, the velocity profile showing simi-

larity with a purely electroosmotic flow looks like plug-

type (Gaikwad et al. 2016b). It is seen that, the dimen-

sionless flow velocity (U-velocity) profile increases for

increasing the value of j. From the definition, for higher

value of j, the EDL becomes thinner and a greater number

of ions get squeezed in a smaller region (EDL is thinner).

This effect, in turn, boosts-up the electrical body force

being applied on the fluid mass inside the EDL, and results

in an enhance of flow velocity with j as witnessed in

Fig. 4 Plot of the velocity variation for different value of Debye

parameter j. The other parameters considered are n ¼ 0:356, A ¼
0:01 and C ¼ 0:01

Fig. 5 Plot showing the

variation of velocity distribution

obtained for different value of

Carreau fluid parameter C with

respect to a pressure-gradient

parameter A, keeping fixed

n ¼ 0:356, j ¼ 20; and b
Debye parameter j, while other

parameters being n ¼ 0:356,
A ¼ 0:01
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Fig. 4. For a thinner EDL (higher j), a stronger elec-

troosmotic body force enhances the flow velocity even by

reducing the electro-viscous effect in the EDL and a rela-

tively higher velocity gradient near the wall region (pre-

cisely, within EDL) for higher j is the results as confirmed

by the inset of Fig. 4.

(iii) Effect of fluid rheological parameter

In Fig. 5a, the effect C on the variation of flow velocity is

shown for two distinct values of A with fixed j ¼ 20 and

n ¼ 0:356. For plotting Fig. 5a, the value of C varies in the

range 0:01\C\0:08. When pressure-gradient parameter

Að¼ 0:01Þ is considered to be lesser, the flow velocity

profile exhibits plug-like shape for different value of C
considered. This is mainly because of the dominating effect

of electroosmotic actuation on the underlying transport

pertaining to smaller value of A. On the other hand, for the

higher value of Að¼ 1:0Þ, the velocity profile takes a

parabolic shape for the chosen values of C, and this

observation underlines the negligible electroosmotic effect

on the flow dynamics for this case. Having a look at the

variations plotted in Fig. 5a, it is seen that the for both the

values of A considered, the magnitude of flow velocity

increases significantly with increasing the value of C. The
Carreau fluid parameter C is directly related to time con-

stant k, which affect the fluid’s shear-thinning behavior.

Precisely, the higher value of C decrsaes the shear rate and

the Carreau fluid behaves like a Newtonian fluid. As such,

this lower shear rate leads to an enhancement of the flow

velocity as witnessed in Fig. 5a.

Figure 5b plots the approximate analytical solutions of

flow velocity ðUÞ vis-à-vis the numerical results, obtained

for different values of Carreau fluid parameter, depicted for

varying values of j ranging from 15 to 30. It is seen from

Fig. 5b that for higher j(i.e., for thinner EDL), the influ-

ence of C on the underlying flow velocity becomes much

more prominent. A higher j, being the representative

measure of thinner EDL, results in a stronger flow velocity

gradient inside EDL (cf. inset of Fig. 4). Note that the

variations depicted in Fig. 5b correspond to A ¼ 0:01, and

hence pertaining this case, the electroosmotic effect

becomes the main driving force for the underlying flow.

Thus, a higher shear rate developed inside the EDL for

higher j (since, the velocity gradient is higher) brings

about a notable change in the flow velocity with a change

in C for this case as seen from the depicted variations in

Fig. 5b. It is worth adding here that for the chosen values

of C ¼ 0:01; 0:05 and 0:08, the approximate analytical

solutions match well with the corresponding numerical

results. This observation once more underlines the efficacy

of the semi-analytical method as proposed in this endeavor.

6.2 Description of net throughput/flow rate

We here briefly discuss the variation of net throughput/flow

rate with a change in parameters pertinent to this analysis.

In particular, we depict the variation of QCarreau=QN , which

henceforth is termed as the ‘flow rate ratio’ only to

establish the relative enhancement of the net throughput/

flow rate of the Carreau fluid in the chosen flow configu-

ration. Figure 6a, b plot the flow rate ratio versus force

comparison parameter, obtained for different values of

shear-thinning parameter n and Carreau fluid parameter C;
respectively. It is interesting to observe two distinct

regimes from Fig. 6a, b, the existence of those is explained

later. The decreasing trend of flow rate ratio ðQCarreau=QNÞ
with increasing the value of n is observed for the range of A

considered. With increasing the value of n, the flow

velocity of Carreau fluid reduces (cf. Fig. 3a), which in

turn leads to a decrease in the flow rate ratio to unity. Flow

rate ratio for smaller Að\1Þ is almost independent of

shear-thinning parameter (regime-I), while for Að[ 1Þ,
i.e., in regime-II, the flow rate ratio is seen to be greater

than unity, signifying a relatively higher flow rate of Car-

reau fluid. The higher flow rate ratio ðQCarreau=QN [ 1Þ for
higher Að[ 1Þ is suggestive of a relatively higher flow rate

of Carreau fluid pertaining to this range of analysis, which

Fig. 6 Simulated volumetric

flow rate ratio of Carreau fluid

to the Newtonian with A a for

different values of shear-

thinning parameter n, while
other parameters being j ¼ 20

and C ¼ 0:01. b For different

values of rheological parameter

C, but keeping fixed value of

n ¼ 0:356 and j ¼ 20
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is witnessed by the variation shown in inset of Fig. 6a as

well. For the smaller A, the underlying transport is mainly

governed by the electroosmotic effect for which the shear

rate being developed in the flow field becomes lesser. Since

at low shear rate, the Carreau fluid behaves like a New-

tonian fluid, we observe the flow rate ratio to remain

constant and that too is independent of shear-thinning

parameter n. Also, a change in flow rate ratio becomes

insignificant with a change in n in this range of A. How-

ever, for the higher values of Að[ 10Þ, the larger magni-

tude of shear rate being developed in flow field gives rise to

a substantial velocity of the underlying flow of Carreau

fluid and results in a higher flow rate (see inset of Fig. 6a)

as well as flow rate ratio. Notably, it is because of the

higher shear rate, we see a noticeable change in flow rate

ratio with a change in shear-thinning (shear-thinning effect

is largely dependent on shear rate of the Carreau fluid)

parameter n.

Figure 6b represents the variation of QCarreau=QN for

increasing value of C. As witnessed in the inset of Fig. 6b,

QCarreau increases weakly with increasing C for smaller

Að\1Þ, while exhibit substantial increasing trend with

increasing the value of C for higher Að[ 10Þ. As discussed
in the context of Fig. 6a, for higher C, the shear rate of the
Carreau fluid decreases and it behaves like a Newtonian

fluid. This characteristic feature of the Carreau fluid leads

to a mild increase of underlying flow velocity with

increasing C for smaller Að\1Þ (see inset of Fig. 6b). For

higher Að[ 10Þ, however, the higher shear rate imposed

by the driving forcing overshadows the reduction of shear

rate due to increasing C and results drastic increase in flow

rate of the Carreau fluid (cf. Fig. 6b). It is worth adding

here that the imposed shear rate in the flow field at higher

Að[ 10Þ makes a substantial increase in flow velocity

even for higher C and its eventual impact is the significant

rise of the flow rate ratio as seen in regime-II of Fig. 6b.

The variation of flow rate ratio QCarreau=QN with Debye

parameter j is illustrated in Fig. 7, considering different

values of n (Fig. 7a) and C (Fig. 7b). In Fig. 7a, b, for j

([ 15), typically used for microscale transport, a marked

difference in the flow rate ratio with a change in n and C is

witnessed. It may be reiterated here that the higher value of

j implies the thinner EDL, which in principle, augments

the net body force being applied to take place the fluid

movement by increasing scale of characteristics shear

gradient. The higher electroosmotic body force for higher j
increases the flow rate of the Carreau fluid ðQCarreauÞ sub-
stantially (see inset of Fig. 7a, b), which consequently

results in higher flow rate ratio ðQCarreau=QNÞ as seen from

regime-II of Fig. 7a, b.

6.3 Description of wall shear stress

Finally, the variation of non-dimensional wall shear stress

sw, computed using Eq. (35), is shown for different values

of n in Fig. 8a, b, plotted as a function of A and j;
respectively. Two distinct regimes of the variation of wall

shear stress sw with A is seen in Fig. 8a. For smaller

Að\1Þ, the variation of sw with a change in shear-thinning

parameter n is miniscule, which is apparent from regime-I

of Fig. 8a. This observation is attributed to the lower shear

rate being developed in the flow field for A\1. It is

because of the low shear rate, the change in flow velocity

and so is the shear rate with n is insignificant. However, for

Að[ 10Þ, a higher shear rate being developed in the flow

field gives rise to a substantial increase in the flow velocity

and so is the shear stress, which becomes even noticeable

with a change in n (see regime-II of Fig. 8a).

Figure 8b plots the variation of wall shear stress sw
versus j, obtained for different values of

nð¼ 0:356; 0:528; 0:818Þ. Note that other parameters con-

sidered are A ¼ 0:01 and C ¼ 0:01. The value of A chosen

for plotting the variations in Fig. 8b is suggestive of

electroosmotic effect dominated underlying transport and

hence, shear rate developed in the flow field becomes

lesser. As such, for smaller value of jð\10Þ, a relatively

lesser electroosmotic body force eventually reduces shear

stress as witnessed in regime-I of Fig. 8b. On the other

Fig. 7 Simulated volumetric

flow rate ratio of Carreau fluid

to the Newtonian with j a for

different values of shear-

thinning parameter n with fixed

A ¼ 0:01, C ¼ 0:01; and b for

different values of rheological

parameter C with fixed

n ¼ 0:356, A ¼ 0:01

51 Page 10 of 13 Microfluidics and Nanofluidics (2023) 27:51

123



hand, for j[ 10, a higher electroosmotic body force leads

to a higher shear stress following higher velocity gradient

in the near wall region, i.e., within EDL (cf. inset of Fig. 4)

that too is verified from regime-II of Fig. 8b. Another

important observation to be discussed here is the variation

of sw with a change in n, as seen from Fig. 8b. A relatively

lesser flow velocity for smaller n results in a lesser wall

shear stress sw. However, the variation of sw with n is

indeed significant for j[ 10, attributed primarily to a

relatively higher flow velocity in this range of electroki-

netic parameter j.

7 Conclusions

In this study, we have discussed the flow characteristics of

non-Newtonian Carreau fluid in a microchannel under the

combined influences of applied pressure gradient and

electrokinetic effect. We have developed a semi-analytical

methodology in the framework of perturbation technique to

solve the non-linear transport equations. By validating

present theoretical results for any arbitrary values of shear-

thinning parameter n with the numerical solutions consid-

ering identical flow configuration, we have established the

efficacy of the proposed approximate analytical scheme.

Certainly, the variation of flow velocity, obtained for shear-

thinning parameters those describing the non-Newtonian

viscosity of many fluids, including biofluids, of practical

use, are demonstrated as well and the depicted variations

are found to be physically consistent with the chosen set-up

and applied forcing strength. Also, we have benchmarked

the proposed theoretical model by comparing our results

with the experimental results available in the literature for

the limiting case of a purely electroosmotic flow. We have

shown that the proposed method, accounting for the effect

that stems from the double-layer phenomenon, is capable

of describing the flow-field accurately for any values of

shear-thinning parameter n, including non-integers up to

three decimal points. The semi-analytical scheme devel-

oped in this study can be of beneficial use for describing

the flow-field of other complex non-Newtonian fluids,

typically used in several bio-microfluidic applications,

under varied flow actuation scenarios.

Acknowledgements PKM gratefully acknowledges the financial

support provided by the SERB (DST), India, through project no.

MTR/2020/000034. The authors wish to thank Mr. Kanishk Nama

Department of Mechanical Engineering, Thapar Institute of Engi-

neering and Technology Patiala-147004, Punjab, India, for his help

pertaining to this work. The authors would like to sincerely thank the

anonymous reviewers for their insightful comments those enabled to

improve the technical quality of this article.

Author contributions Mahesh Kumar: Methodology, Software, Vali-

dation, Formal analysis, Investigation, Writing - Original Draft,

VisualizationPranab Kumar Mondal: Conceptualization, Supervision,

Methodology, Project administration, Funding acquisition, Writing -

Review & Editing, Resources.

Data availability The data that supports the findings of this study are

available within the article.

Declarations

Conflict of interest The authors declare no competing interests.

References

Abhimanyu P, Kaushik P, Mondal PK, Chakraborty S (2016)

Transiences in rotational electrohydrodynamics microflows of

a viscoelastic fluid under electrical double layer phenomena.

J Non-New Fluid Mech 231:5

Anantha KK, Sugunamma V, Sandeep N (2018a) Impact of non-

linear radiation on mhd non-aligned stagnation point flow of

micropolar fluid over a convective surface. J Non-Equilib

Thermdyn 43(1):8400–8407

Anantha KK, Sugunamma V, Raman RJV, Sandeep N (2018b)

Magnetohydrodynamic Cattaneo-Christov flow past a cone and a

wedge with variable heat source/sink. Alex Eng J 57:435

Anantha KK, Sugunamma V, Sandeep N, Mustafa MT (2019)

Simultaneous solutions for first order and second order slips on

Fig. 8 Plot showing the

variation of wall shear stress sw
with A obtained a for different

values of shear-thinning

parameter n but for fixed

j ¼ 20, C ¼ 0:01; and b for

different values of electrokinetic

parameter j, while other

parameters being A ¼ 0:01 and

C ¼ 0:01

Microfluidics and Nanofluidics (2023) 27:51 Page 11 of 13 51

123



micropolar fluid flow across a convective surface in the presence

of Lorentz force and variable heat source/sink. Sci Rep 9:1406

Anantha KK, Sugunamma, V, Sandeep, N (2022a) Influence of

variable viscosity on 3-D MHD radiative cross nanofluid flow

over a biface region. Waves Random Complex Media. https://

doi.org/10.1080/17455030.2022.2104953

Anantha KK, Sugunamma V, Sandeep N (2022b) Effect of non-linear

thermal radiation on MHD Casson fluid flow past a stretching

surface with chemical reaction. Int J Amb Energy 43:1

Carreau PJ, Kee DD, Daroux M (1979) An analysis of the viscous

behavior of polymeric solutions. Can J Chem Eng 57:135

Chaffin ST, Rees JM (2018) Carreau fluid in a wall driven corner

flow. J Non-New Fluid Mech 253:16

Chen XY, Toh KC, Chai JC, Yang C (2004) Developing pressure-

driven liquid flow in microchannels under the electrokinetic

effect. Int J Eng Sci 42:609

Cho YI, Kensey KR (1991) Effects of the non-Newtonian viscosity of

blood on flows in a diseased arterial vessel, part 1: steady flows.

Biorheology 28:241

DasGupta D, Mondal PK, Chakraborty S (2014) Thermocapillary-

actuated contact-line motion of immiscible binary fluids over

substrates with patterned wettability in narrow confinement.

Phys Rev E 90:023011

Devasenathipathy S, Santiago JG, Takehara K (2002) Particle

tracking techniques for electrokinetic microchannel flows. Anal

Chem 74:3704

Ferrás LL, Afonso AM, Alves MA, Nóbrega JM, Pinho FT (2016)
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