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Abstract
Precise controlling and quantitative loading of dynamic biochemical stimulations to single cells are crucial for single cell 
dynamic analysis in vitro. Many microfluidic platforms have been proposed for providing spatiotemporal biochemical con-
ditions. However, most existing investigations have ignored the effects of the transmission characteristics of biochemical 
signals within microchannels, leading to the difficulty in the quantitative and precise control of stimuli to targeted single 
cells. Herein, based on a single-cell-trapping microchannel with variable cross-sections, a simple and effective approach 
has been proposed to simplify the transmission system of biochemical signals within microchannel under steady flows by 
low-order linear systems. It is found that the third-order system is the most “cost-effective” choice, since the overall accu-
racy and robustness of the approximations, and the system simplicity are all satisfactory in this work. Moreover, the system 
parameters, gain and crossover frequency all vary linearly with the steady flow rate in the logarithmic coordinate, which 
has also been validated by fluorescein experiments. The simplifying approach could be universally applied to other mass-
transfer systems theoretically for improving further research on the precise loading and controlling extracellular conditions 
in vitro in single cell analysis.

Keywords System identification · Linear low-order system · Transmission characteristics · Dynamic biochemical signal · 
Single cell dynamics · Microfluidics

1 Introduction

Single cell analysis is a powerful and indispensable techno-
logical approach for gaining a deep understanding of cel-
lular heterogeneity and discovering unique characteristics 
of individual cells (Altschuler and Wu 2010; Heath et al. 
2016; Wen and Tang 2018). Quantitative analysis of single 
cell dynamics in response to biochemical signals is devel-
oped to be a novel point of penetration of single cell analysis 
recently (Spiller et al. 2010). It would provide more compre-
hensive dynamic and quantitative information for the mecha-
nism exploration of serious diseases, disease diagnosis and 
drug evaluation, etc.

Microfluidic technology has emerged as an important tool 
for precisely quantitative analysis of single cell dynamics in 
response to biochemical signals owing to the advantages in 
single cell manipulation, analogy of extracellular environ-
ment, comparable scale to cell diameters, as well as cel-
lular behavior monitoring (Roper 2016; Guo et al. 2020; 
Kim et al. 2021). Trapping single cells and precise loading 
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dynamic biochemical signal to them are prerequisite for 
microfluidic single cell dynamic analysis. Many microfluidic 
platforms capable of capturing or manipulating single cells 
(Bai et al. 2013; Lee et al. 2018; Lipp et al. 2021; Tan et al. 
2020; Guo et al. 2016; Silverio et al. 2017; Gao et al. 2019) 
and providing dynamic biochemical stimulating conditions 
(Tay et al. 2010; Chingozha et al. 2014; Garcia et al. 2015; 
Song et al. 2018; Chen et al. 2017, 2018; Kim et al. 2021; 
Gao et al. 2019) have been proposed. However, most of the 
existing approaches only pay attention to how to generate the 
diverse dynamic biochemical stimulating signals. While, the 
signal single cells received are not exactly the same as the 
biochemical signals generated at the entrance, since specific 
distance exists between the single cell traps and the entrance. 
Some investigations have focused on the transport mecha-
nism of the dynamic signals within microchannels recently, 
revealing that the microchannels act as low-pass filters, the 
dynamic signals transporting within them are attenuated and 
time-delayed (Beard 2001a, b; Lam et al. 2005; Xie et al. 
2008; Azizi and Mastrangelo 2008; Azizi et al. 2010; Li 
et al. 2013; Chen et al. 2017; Li et al. 2018). Therefore, 
quantitative analysis of the transmission characteristics of 
biochemical signals within microchannels is indispensable 
for quantitatively loading dynamic biochemical stimulating 
signals to single cells and further precisely mimicking or 
even controlling the physiological microenvironment in vitro 
for single cell dynamic analysis.

To date, bulk of transmission analysis theories were only 
appropriate for the uniform microchannels with rectangular 
cross-sections (Beard 2001a, b; Lam et al. 2005; Xie et al. 
2008; Azizi and Mastrangelo 2008; Azizi et al. 2010; Li 
et al. 2013; Chen et al. 2017; Li et al. 2018), incapable of 
the microchannels with varying cross-sections or other com-
plicated microstructures. To this end, our group took a step 
forward and analyzed the transport mechanism of dynamic 
signals in steady and non-reversing pulsatile flows in a sin-
gle-cell-trapping microchannel with varying cross-section 
(Yu et al. 2019). Due to the streamline-shaped microchannel 
design (Yu et al. 2016), the simplified 2D time-dependent 
Taylor–Aris dispersion governing the longitudinal and trans-
verse molecular diffusion within the microchannel could be 
derived (Yu et al. 2019). It is a partial differential equation 
without analytic solution, other than the governing equa-
tions for the rectangular or Y-shaped channels which can be 
analytically solved (Li et al. 2013, 2018). That is, the trans-
mission characteristics within the microchannel can only be 
analyzed by numerical solution, which is complicated, well 
mathematical-knowledge-required, and long time-consum-
ing (hours or days) due to the numerical differentiation and 
multidimensional matrix calculation. For other single-cell-
analysis microchannels or microwells with specific micro-
structures, the 3D convection–diffusion equation is difficult 
to be simplified, let alone analytical solved; thus, to explore 

the transport mechanism, only more time-consuming 3D 
numerical simulation methods [such as the computational 
fluid dynamic (CFD) package FLUENT or COMSOL] can 
only be approached. Moreover, without the analytical solu-
tion, i.e., the transfer function of micro-transport system, it 
is difficult or even impossible to integrate external feedback 
controller for precise control (Na et al. 2020; Recktenwald 
et al. 2021). Thus, it is essential and urgent to develop a 
novel approach to analyze the transport mechanism of 
dynamic signals within the microchannel simply and rapidly, 
and applicable for further precisely controlling the extracel-
lular stimulating signals in the single cell analysis.

In the field of signal system, several well-developed sys-
tem identification methods can be used to obtain the approxi-
mate transfer function of a black box system, once the input 
and output signals are prior known. Generally, linear low-
order systems, especially second-order or third-order system, 
are selected to capture the transmission characteristics, since 
their system features and physical meanings are clear. They 
are also suitable for biomicrofluidics applications (Kniss-
James et al. 2017). In this work, take the single-cell-trapping 
microchannel our group proposed as an example (Fig. 1a), 
linear low-order system expressed by few numbers of 
parameters was introduced to approaching this complicated 
micro-transport system. Due to the flow-dependent feature 
of the transport system, investigations under steady flows 
were first focused herein. Input–output data sets gained from 
the 2D numerical simulation with varying input frequen-
cies, amplitudes, and waveform types in steady flows were 
adopted for the system identification. Additionally, Gauss-
ian white noises with varied Signal-to-Noise Ratios (SNR) 
were included to the simulation data sets to better simulate 
the physical existing and ineradicable uncertainties in the 
relevant individual variables in this work. To increase the 
universality of this simplification, the relationships between 
the system parameters and flow rate were investigated and 
validated by fluorescein experiments. This simple and con-
venient method can be expected to improve further research 
on the precise loading and controlling extracellular condi-
tions in vitro in single cell analysis.

2  Materials and methods

2.1  Hydrodynamic model for the transport system 
within the single‑cell‑trapping microchannel

2.1.1  Governing equation

To trap single cell and further explore single cell dynam-
ics in response to precise biochemical stimulations, we 
proposed a microfluidic single-cell-trapping device using a 
combination of stagnation point flow and boundary effect, 
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as shown in Fig. 1a (Yu et al. 2016). The single-cell-trap-
ping microchannel A is the “only way” for loading the 
precise biochemical signals to the trapped single cell; that 
is, it is a micro-transport system. The soluble biochemical 
molecules within this microchannel A are transported and 
mixed by convection and diffusion. Due to the streamline-
shaped design of the microchannel A (Yu et al. 2016), by 
combining the convection–diffusion equation and the flow 
governing Navier–Stokes equation, the governing equation 
of the height-averaging concentration of biochemical stimu-
lus, � , i.e., the 2D time-dependent Taylor–Aris dispersion 
with longitudinal and transverse molecular diffusion in the 
microchannel A can be known and expressed in the polar 
coordinate system as (Yu et al. 2019)

where
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where n is a positive number greater than 1, D is the diffu-
sion coefficient, and Ur and U� are the radial and circumfer-
ential components of the height-averaging velocity U⃗ , and 
they are functions of the width WA and length LA of micro-
channel A (Yu et al. 2019)
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Fig. 1  Schematic represen-
tations of the microfluidic 
devices. a Design of the previ-
ous PDMS-glass microfluidic 
single-cell-trapping device, 
comprises a single-cell-trapping 
microchannel A, two inlets and 
one outlet (Yu et al. 2016). The 
coordinate system used in the 
subsequent analysis is consist-
ent with that shown here, where 
O is the origin. b Schematic 
diagram of experimental setup, 
mainly contains four parts: (i) 
microfluidic chip, (ii) dynamic 
biochemical signal genera-
tion module controlled by the 
programmable syringe pumps, 
(iii) real-time observation 
module (microscope), and (iv) 
display, record and data analysis 
module, and monitor
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biochemical signal within the microchannel A can be 
obtained only by numerical methods (Yu et al. 2019). Fur-
thermore, the transportation process depends on the geomet-
rics of microchannel A ( LA , WA and HA ) and the input flow 
rate Q (Eqs. 1-3). That is, microchannels with different geo-
metric sizes under different flow rates should correspond to 
different transport systems. In this work, the size of micro-
channel A was determined and invariant based on the con-
siderations of the space efficiency of the entire microfluid-
ics design and the further high-throughput study (Table 1). 
While, the value of the flow rate Q varied according to the 
experimental conditions, aiming to discover the variation 
features of the system characteristics with the flow rate.

2.1.2  Numerical simulation

To attain the input–output data for system identification, the 
Taylor–Aris dispersion (Eq. 1) was numerically solved in 
MATLAB (The Math Works R2020a, Inc). In this work, the 
Peaceman–Rachford (P–R) scheme was used in the approxi-
mation of the solution of Eq. 1 (Yu et al. 2019).

In default, the inlet flow was set to be a steady flow. Addi-
tionally, the concentrations of the biochemical stimulations 
at the inlet (i.e., the input signal) were divided into two cat-
egories: pure signals and noise signals. Typically, the pure 
signals were set as

where �0 is the average concentration, Fwave represents the 
waveform function, and several waveform types are selected 
including the single-frequency signal (sine) and multiple-
frequency signals (square, triangle, pulse-like, step). And � 
is the amplitude, and fc is the frequency of the biochemical 
signal. And, they are also variable, ranging from 0.01 Hz to 
2 Hz, and 0.2 to 1, respectively. The frequency fc , ampli-
tude � and the waveform type of the biochemical signals 
are controlled to be single varied. To improve the accuracy 
of subsequent linear system identification, one multiple-
frequency signal, the square waveform, is picked to be the 

(4)�(t) = �0

[
1 + �Fwave

(
2�fct

)]
,

default waveform. Other default values are listed in Table 1. 
Unless otherwise specified, these default values are adopted 
throughout the simulation work.

Furthermore, to improve sample diversity and to better 
simulate the physical irreducible uncertainties in the relevant 
individual variables in this work, Gaussian white noises with 
varied SNRs are added to the input biochemical stimulations 
to generate the noise signals. Herein, the noise signals were 
set as

where the frequency fc and the amplitude � of the original 
signal are both default values listed in Table 1. Gnoise(SRN, t) 
is the Gaussian white noise with SNR ranging from 30 to 10.

In all the simulations described below, the default output 
observation position is the location around the trapped sin-
gle cell, which is assumed to be 15� m from the trap point 
(origin of coordinate in Fig. 1), i.e., x = 15� m and y = 0 
( r = 15� m and � = 0 ). That is, the output signal is the con-
centration of the biochemical stimulation detected at 15� m 
from the trap point.

Overall, the simulation lasted from a few minutes to doz-
ens of hours according to the simulation conditions.

2.2  Simplified model for the transport system 
by linear low‑order systems

As mentioned in Sect. 2.1, this transport system within the 
single-cell-trapping microchannel A is complicated and non-
linear; and the numerical calculations are generally time-
consuming. For most real nonlinear biological, mechanical, 
or other complex systems, they universally could be simpli-
fied by linear order systems (Venkat et al. 2003; Bai 2008; 
Kniss-James et al. 2017) and their transfer functions satisfy

where K is the system gain, nz is the number of zeros ( zi ) for 
the system, and np is the number of poles ( pi ), i.e., the order 
of the system. It also can be expressed as

where ai is the numerator coefficient, and bj is the denomina-
tor coefficient of the system. Absolutely, K = anz.

To simplify the numerical calculation and better under-
stand the transmission characteristics of the biochemical 
signals within this transport system (microchannel A) for 
further precisely controlling the system, a linear system 
which is expressed by Eq. 7 was adopted to approximate. 
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Table 1  Default values of 
the flow and biochemical 
stimulation parameters used in 
the numerical simulations

Parameters Values

n 2.5
LA 200 μm
WA 80 μm
HA 25 μm
D 4.14 × 10

−10 m2∕s

Q 1 × 10
−12 m3∕s

�
0 1 × 10

−3 mol/m3

fc 0.5 Hz
� 0.5
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Once the input flow rate changes, the system renews, i.e., the 
features of the approximating linear system, including values 
( ai and bj ) and numbers ( nz and np ), vary with the flow rate. 
Due to the indeterminacy on the selection of system order, 
second-order, third-order, and fourth-order systems were all 
adopted under each flow rate, respectively, at the beginning.

More detailedly, for each flow rate condition (totally 9 
flow rates, Q = 1, 2, 5, 8, 10, 20, 50, 80, or 100 ×10−13 
m3∕s ), 6 kinds of pre-selected linear systems were employed, 
including second-order system with 1 zero ( nz = 1 , np = 2 ), 
third-order systems with 1 or 2 zeros ( nz = 1 , np = 3 or 
nz = 2 , np = 3 ), and fourth-order systems with 1 to 3 zeros 
( nz = 1 to 3, and np = 4 ). That is, the total number of the 
system parameters, Npara , which satisfies Npara = nz + np + 1 , 
ranges from 4 to 8. For each pre-selected linear system, 18 
“pure” input–output simulation data sets with varying input 
frequencies (8 groups, fc = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 
and 2 Hz), amplitudes (5 groups, � = 0.2, 0.4, 0.6, 0.8, and 
1) and waveform types (5 groups, single-frequency: sine, 
multiple-frequency: triangle, square with opposite phase 
from the default one, pulse-like, and step), and 5 “noise” 
input–output data sets with varying SNRs ( SNR = 30, 25, 
20, 15 and 10) were applied to determine the optimal param-
eters of the each approximating linear system with minimum 
ave r a g e s  o f  m e a n  r e l a t i ve  e r r o r  ( M R E , 
|Outputsimulation - Outputidentification|

Outputsimulation

× 100% ) and mean squared error 
(MSE). The entire system identification process was accom-
plished by combining the System Identification Tool-
box 9.12 and self-coded MATLAB scripts, see the flowchart 
shown in ESI Fig. S1 for details. Statistical analysis was 
performed using OriginPro software (OriginLab Corpora-
tion, Northampton, MA, USA).

2.3  Experimental validation

2.3.1  Microfluidics fabrication and apparatus

To validate the identification effect experimentally, a micro-
fluidic chip was made. All the microchannels were patterned 
in PDMS (Sylgard 184, DOW CORNING) by replica mold-
ing. The mold was entrusted to a specialized microchip man-
ufacturing company (ZhongXinQiHeng, Suzhou, China) for 
production. Next, the microchannel layer was obtained by 
pouring PDMS with 10 : 1 (v/v) base  :  crosslinker ratio onto 
the mold yielding a thickness of 3.5–4 mm approximately. 
After curing the elastomer for 2 h at 70 ◦C , the PDMS 
slab was peeled from the mold, punched, and hermetically 
bonded to a coverslip by plasma oxidation.

The two inlets of the fabricated microfluidic chip were 
coupled connected with two programmable syringe pumps 
(Pump 11 Elite, Harvard Apparatus, MA, USA) filled with 
the biochemical stimulus stock and buffer solution by two 

T-bends, S 1 and S 2 (Fig. 1(b)). S 1 is switchable and S 2 is 
always on. By controlling the on–off state of S 1 , the buffer 
solution can be flow into the microchannels directly through 
inlet 1 to flush the microchannels at the beginning or wash 
out the residual fluorescein, or mixed with the biochemical 
stimulus stock to generate the dynamic biochemical stimu-
lation flowing into the microchannel through inlet 2. And 
arbitrary biochemical signals can be generated by control-
ling the flow rates of the two solutions (see ‡ESI Text T1 for 
details) (Yu et al. 2016). The flow and concentration fields 
within the microchannel were observed under an inverted 
fluorescence microscope (IX73, Olympus, Tokyo, Japan) 
with a high-speed EMCCD camera (iXon Life EMCCD, 
Andor, UK) in real time.

2.3.2  Fluorescein experimental protocol

For the experimental verification, one type of fluorescein, 
rhodamine 6G (Sigma-Aldrich, St. Louis, MO, USA) was 
used to mimic biochemical stimulations. It was dissolved 
in phosphate-buffered saline (PBS) to form a stock solution 
with a concentration of 5 �mol/mL, which was in the linear 
range between fluorescence intensity and its concentration 
(see ‡ESI Fig. S2). The switch S 1 was turned to the inlet 2. 
The flow rates of two programmable syringe pumps were set 
to wave as two expected and time-dependent functions, and 
finally generated a biochemical stimulation solution with 
expected average concentration, frequency and flow rate; 
see the detailed implementation in ‡ESI T1. And then, the 
fluorescence intensities at different regions of interest (ROIs, 
the entrance of microchannel A and near the cell trap) were 
measured and analyzed by describing the variation of the 
average gray value of ROIs with time in MATLAB.

3  Results

3.1  Comparison of system identification effects 
under different pre‑selected linear systems

Due to the lack of referable prior experiences on transport 
system identification, it is indeterminate that which kind of 
linear system is the best one for approximating the transmis-
sion characteristics of this single-cell-trapping microsystem. 
Thus, in this work, second-order, third-order, and fourth-
order systems with parameters ranging from 4 to 8 were 
pre-selected. First, the system identification effects under 
different pre-selected linear systems were compared. As 
mentioned in Sect. 2.2, 18 “pure” and 5 “noise” input–out-
put data sets under 9 flow rates were initially used for the 
system identification. First, to clarify the effect of the noise 
signal on the stability of system identification, 162 groups 
( 18 × 9 ) of “pure” input–output data sets and 207 groups 
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( 23 × 9 ) of “mix” (pure+noise) input–output data sets were 
used for identifying each pre-selected system parameters, 
respectively. Thus, each pre-selected system has two kinds 
of identified system parameters: without-consideration and 
with-consideration of noise. Based on these two kinds of 
identified system, all the 207 groups of simulation data sets 
were introduced to testify the approximation effects of these 
two systems, respectively. Finally, two groups of MRE data 
(207/group) and MSE data (207/group) were obtained under 
each selection of the identified system. We found that the 
distributions and variation trend of MREs and MSEs are 
basically consistent; thus, only MRE data are shown herein. 
With consideration of the uncertainties in the relevant indi-
vidual variables, i.e., involving noises into the data sets 
in the modeling, the identified system is closer to the real 
transport system. MRE decreases generally (see ‡ESI Fig. 
S3), indicating that the influences of the uncertainties of 
mainly relevant individual variables in this work and their 
propagation into the system identification can be effectively 
reduced by introducing noise to the data sets. Therefore, all 
the results shown below are obtained based on the model 
with consideration of noise.

To totally compare the approximation effect of each pre-
selected system, the distributions of MREs under 9 flow 
rates for each system are shown in Fig. 2. In the second-
order system approximation, the MRE distribution range 
is the largest; values are the most scattered. That is, the 
approximating effect is unstable using second-order system. 
With the increase of the parameter number or order of the 

system, the approximating effects, both the MRE value and 
the overall distribution, improve significantly. Moreover, it is 
obvious that increasing the pole number (i.e., system order) 
is better than increasing the zero number on the improve-
ment of approximation, comparing the MRE distributions 
of the two cases under 6 system parameters [the third-order 
system with 2 zeros, nz = 2 , np = 3 and the fourth-order sys-
tem with 1 zero, nz = 1 , np = 4 ] with the case under 5 system 
parameters ( nz = 1 , np = 3 ), respectively. From the point of 
the average value of MERs, with the increase of one zero, 
the mean of MREs decreases but no more than 2.5‰ for the 
same order system; and the higher order, the less decrease. 
While, keep zero number (for instance, nz = 1 ) the same 
and increase the order (pole number, np = 2 to 4), the error 
becomes lower more dramatically, especially between the 
second-order and third-order systems, the averaging-MRE 
difference is even higher than 2.3%. Specifically, MREs are 
universally less than 2% and bulk of them are even lower 
than 5‰ for the fourth-order system approximation. And 
almost 75% of them are less than 1% when approximating 
by the third-order system. However, higher order leads to the 
increase of the system complexity. Overall, the third-order 
system with 1 zero ( nz = 1 , np = 3 ) performs well. Thus, it 
could be the most “cost-effective” choice to approximate 
the transport system within this single-cell-trapping micro-
channel, with comprehensive considerations of the goals for 
both less MRE and lower system order (fewer system param-
eters). Unless otherwise specified, the results shown below 
are the approximations by the third-order system with 1 zero.

3.2  Representative approximations by third‑order 
system

As mentioned in Sect. 2.2, the 23 groups of input–output 
simulating data (pure signals with varying fc , � and wave-
form, and noise signals with varying SNRs) were adopted to 
determine the optimal parameters of the third-order system 
( a1 , a0 , b2 , b1 and b0 ). To observe the approximating effects 
more directly, the identified results corresponding to the 23 
inputs under the default flow rate by the optimal third-order 
system are shown; see Figs. 3, 4, 5, and 6.

As shown in Fig. 3, the approximations by third-order 
system generally perform well from the point of time-
domain. The overall MREs are almost within the acceptable 
range ( < 5%), see Fig. 2 and ‡ESI Fig. S4; and the frequen-
cies, amplitudes and phases of the identified outputs mainly 
match those of the simulation results, other than few cases. 
In details, when low-frequency signal inputs ( fc = 0.01Hz), 
the output frequency and phase between the approximation 
and simulation are both not significantly different. And their 
amplitudes are also almost equal, only weak and ignorable 
overshoot and undershoot near the rising edge and the fall-
ing edge, see the subgraph (E-1) in Fig. 3. It is a universal 

Fig. 2  Box plots of the MRE distributions for the system identifica-
tion by different pre-selected linear systems. The total number of the 
system parameters (abbr, paras), Npara range from 4 to 8. Data shown 
in each box includes all the flowing (9 flow rates) and biochemical 
stimulating (23 input–output data sets) conditions; thus, N = 207 . 
The mean of MREs for each pre-selected system is labeled (blue 
square dot) and shown above each box; and red lines represent the 
medians
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phenomenon for the linear system and would recede with 
the increase of input frequency. Consequently, the identified 
output amplitude and phase become distinguishable slightly 
from that of the simulations, see the individual case shown 
in the subfigures (E-2) and (E-3). While, the output frequen-
cies still can be matched with each other.

Similarly, the approximating effects are slightly different 
with the variation in the input amplitude, � (Fig. 4). The 
frequencies of the identified and simulating results match, 
regardless of the input amplitude. And varying � has a neg-
ligible effect on the identified output amplitude, compared 
to the varying-frequency cases. Only the difference of the 
output phases can be recognized by “magnifying glass”; see 
the two subgraphs (E-1) and (E-2) in Fig. 4. Thus, the gradu-
ally increasing error is primarily caused by the decreasing 
trough value with the increase of �.

Further, we compared the approximating performances 
under various input waveforms, including single-frequency 
signal and multiple-frequency ones. Figure 5 shows that the 
approximation under single-frequency input (sinusoidal) 
is better than multiple-frequency ones. And identification 
performance is almost impervious to the input phase, com-
paring the results shown in Fig. 3 ( fc = 0.5Hz) and Fig. 5 

(square+� ), which input phases are opposite. For the input 
with a shorter pulse period, the approximation by the third-
order system is still impressive. The output frequency, phase, 
and amplitude of the identification and simulation are nearly 
undifferentiated, and only the mean value is lower; see (E-1) 
in Fig. 5. More meaningfully, the step responses of the trans-
port system and the identified third-order system are com-
parable. Inapparent overshoot and undershoot exist near the 
rising edge and the falling edge. Thus, these two systems 
should have the greatly similar characteristics both in time-
domain and frequency-domain theoretically.

In addition to the “pure” data, the identification model 
was constructed with consideration of Gaussian white noise. 
Similar to the approximation performances under “pure” 
input signal, the identified output almost overlaps the simu-
lating result, regardless of the level of SNR, as shown in 
Fig. 6. MREs are all lower than 1%, and increase slightly 
(lower than 2‰) with the increase of SNR. The difference 
between the identified result and the simulating output is 
difficult to recognize only by eyes, although SNR is quite 
small; see the subgraph (E-1) in Fig. 6. Thus, it can be con-
cluded that the identified model should also be effective for 

Fig. 3  Comparisons of the biochemical output signals between 
numerical simulation and identification by third-order system, 
under different input signals with varying frequencies, fc . The flow 
rate, input amplitude ( � ), and waveform are the default ones listed 

in Table 1. Left axis: input and outputs; right axis: the relative error 
between simulation and identification. (E-1) to (E-3) are the par-
tial enlarged versions of the results corresponding to fc = 0.01Hz, 
fc = 0.2Hz, and fc = 1 Hz in about one period, respectively
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Fig. 4  Comparisons of the biochemical output signals between 
numerical simulation and identification by third-order system, under 
different input signals with varying amplitudes, � . The flow rate, input 

frequency ( fc ), and waveform are the default ones listed in Table 1. 
(E-1) and (E-2) are the partial enlarged versions of the representative 
results corresponding to � = 0.2 and � = 1 , respectively

Fig. 5  Comparisons of the biochemical output signals between 
numerical simulation and identification by third-order system, under 
different input signals with varying waveforms, including sinusoidal, 

triangular, square with opposite phase, pulse-like, and step waves. 
Here, fc = 0.5Hz, � = 0.5 . (E-1) is the partially enlarged version of 
the pulse-like result
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the experimental data which contains systematic and random 
uncertainties.

The approximation effects in time-domain have been 
shown and expounded detailedly (3, 4, 5 and 6). And the 
amplitude–frequency characteristics of the micro-transport 
system are also preliminarily investigated by analyzing the 
characteristic frequency of the identified third-order system. 
Data are shown in the subsequent section.

In Figs. 3, 4, 5 and 6, the inputs adopted to determine the 
optimal parameters of the third-order system are all simple 
ones with regular frequency. To further numerically vali-
date the accuracy and the robustness of this optimal third-
order system, more complex input–output data should be 
introduced. And the potential application of this study is 
to quantitatively load dynamic biochemical/physicochemi-
cal stimulations for single cell analysis. While, the cellular 
microenvironment in vivo is quite complex and diverse. 
Some of the dynamic stimuli applied to biological cells are 
the signals with time-varying frequency and/or amplitude, 
such as the blood glucose (Brownlee and Hirsch 2006). 
Some are more rhythmic, such as the arterial pulse wave. 
Therefore, a signal with time-varying frequency and ampli-
tude and a physiological-shaped signal were chose herein. 
In Fig. 7a, the identification result is eminently precise from 
the beginning to about 80 s; and the difference in the output 
amplitude and phase occurs, especially in the amplitude, 
once the input frequency becomes higher (nearly 1Hz). 

While, these errors could be acceptable for the application 
that the amplitude is the not extremely interested feature. 
Moreover, for the physiological-shaped signal, the third-
order system identification result almost captures all the 
amplitude, frequency, and phase characteristics, although 
the input frequency is not much low. Merely, the waving 
of the peak is slightly different; see the details in Fig. 7b. 
In summary, the third-order system (with 1 zero) could be 
adopted to approximate the transmission characteristics of 
the transport system precisely in most instances.

3.3  Log–log linear relationships between system 
parameters, characteristic values, and flow rate

Data shown in Sect. 3.2 have adequately demonstrated that 
under the default flow rate, the transmission characteris-
tics of the biochemical signal transporting in the mass-
transfer system (microchannel A) could be captured by 
a third-order system (Figs. 3, 4, 5, 6 and 7). Similarly, 
under other flow rates, higher or lower, the approximations 
by third-order system still perform gratifyingly, either 
the MRE distribution or the output features (such as fre-
quency, amplitude, and phase); see Fig. 2, and ‡ESI Figs. 
S4, S5. The universal, flow-independent applicability of 
the third-order system approximating this transport system 
raises a question that, might the system parameters and 
characteristic values, such as the crossover frequency ( fsc , 

Fig. 6  Comparisons of the biochemical output signals between 
numerical simulation and identification by third-order system when 
inputing different noise signals with varying SNR. Here, fc = 0.5Hz, 

� = 0.5 . (E-1) is the partially enlarged version when inputing signals 
with large amount of noise
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the frequency where the gain margin is measured, which 
is a −180◦ phase crossing frequency, unit: rad/s) and the 
gain (K), monotonically or even functionally vary with the 
flow rate? To address this question, we performed curve 
fitting analysis on the parameters, ai and bj , and the crosso-
ver frequency, fsc of the optimal third-order system under 
each flow rate Q. Ultimately, we found that, ai , bj , fsc and 
K ( K = anz ) all approximately increase linearly with the 
increase of Q in the logarithmic coordinate, as shown in 
Fig. 8. Here, for the third-order system with 1 zero, all the 
denominator coefficients bj are positive, while the numera-
tor ones ai are not ( a1 < 0 ). Thus, the log–log linear fitting 

functions between the parameters and the flow rate can be 
expressed as

and

where ai ( i = 1 or 0) and bj ( j = 2 , 1 or 0) are the numerator 
coefficient and the denominator coefficient of the system, 
respectively (Eq. 7); pi1 , pi2 and qj1 , qj2 are the log–log linear 
fitting coefficients for ai and bj , respectively. Similarly, the 
function between the crossover frequency, fsc , and the flow 
rate, Q, performs in the same way as Eq. 8 or 9, with differ-
ent fitting coefficients, as well as the system gain, K, which 
is actually equal to a1.

In terms of linear fitting performance, the fitting lines 
corresponding to the coefficients ( ai and bj ) of the same 
orders, are approximately parallel, i.e., pi1 ≈ qj1 ( i = j = 1 
or 0), labeled as Lai‖Lbi ; specially, for the constant terms 
( a0 and b0 ), they almost coincide, i.e., p0k ≈ q0k ( k = 1, 2 ), 
labeled as La0

‖
≈
Lb0 . Moreover, the crossover frequency fsc 

also logarithmic linearly increases with the flow rate. And 
the slope of the fitting line is nearly consistent with that 
of the quadratic denominator coefficient ( b2 ), which is the 
highest degree of the effective denominator coefficients for 
the third-order system ( b3 == 1 , Eq. 7).

In summary, the overall third-order system identi-
fication for this flow-rate-dependent transport system 
(microchannel A) could be described by few fitting coef-
ficients. Once determining the flow rate, the transmission 
characteristics of the biochemical signals transporting in 
the microchannel are almost known immediately, both in 

(8)lg |ai| = pi1 lg (Q) + pi2

(9)lg
(
bj
)
= qj1 lg (Q) + qj2,

Fig. 7  Validation of the identified third-order system with optimal parameters. a An input with time-varying frequency and amplitude. b A phys-
iological-shaped input. The flow rate is the default one, that Q = 1 × 10−12m3∕s . Details are shown in the enlarged subgraphs

Fig. 8  Variations of the parameters ( ai and bj ) and the crossover fre-
quencies ( fsc ) of the identified third-order system with the flow rate Q 
in the logarithmic coordinate. The lines with different linetypes and 
colors are the linear approximations to the corresponding data, and 
R-squared, on behalf of the fitting effects, are listed, respectively
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time-domain and frequency-domain. And once the input is 
determined, the corresponding approximated output could 
be received within few seconds.

3.4  Fluorescein experimental validation

To verify the log–log linear relationship between the 
system parameters and the flow rate, and the practicabil-
ity and accuracy of the approximation by the third-order 
system experimentally, fluorescein solution with dynamic 
concentrations mimicking the dynamic biochemical signal 
was injected into the microfluidic chip. The fluorescent 
intensities at the inlet of microchannel A and near the cell 
trap, i.e., the real input and output, were measured simulta-
neously, after the transmission reached a steady state. The 
duration of the unstable transmission is related to the flow 
rate Q (‡ESI Fig. S5) and the input frequency fc (Fig. 3), 
wherein the flow rate Q plays a more critical role. Higher 
the flow rate, shorter the lasting time for reaching sta-
ble transmission. Generally, the lasting time for reaching 

a stable state is less than 200 s when Q > 2𝜇L/min (see 
‡ESI Fig. S6). Herein, all the data were recorded 3min 
after turning on the syringe pumps. Then, the input was 
transported into the identified optimal third-order system 
to compare its output with the real one. The system param-
eters were calculated by Eqs. 8 and 9. Figure 9 shows 
the comparisons under various experimental conditions, 
including two flow rates, three input frequencies, and three 
waveform types. Overall, the identified outputs almost lie 
on the experimental ones at all experimental conditions, 
especially for the higher Q, lower fc , and simpler wave-
form case. On other conditions, the experimental data con-
tain more high-frequency components which are probably 
ambient noises; they are filtered when transporting in the 
third-order system; thus, the identified outputs look more 
smooth. While, the crucial features, such as the frequency 
and amplitude, are all captured. Therefore, in terms of both 
simulation and experiment, this transport system within 
the single-cell-trapping microchannel A can be simplified 
as a linear third-order system, and the system parameters 
are definitely quantified by the flow rate.

Fig. 9  Fluorescein validations under various experimental condi-
tions, including three input frequencies, and three waveform types, 
under two flow rates. a Q = 6�L∕min , fc = 0.02Hz, pulse-like; b 

Q = 12�L∕min , fc = 0.02Hz, pulse-like; c Q = 12�L∕min , fc = 0.01

Hz, square-like; d Q = 12�L∕min , fc = 0.05Hz, sine-like. Sampling 
time: 0.07459 s
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4  Discussion

Analyzing the transmission characteristics of the dynamic 
biochemical signals transporting in the microchannels sim-
ply and rapidly is prerequisite for precisely controlling and 
quantitatively loading biochemical stimulations to cells in 
the investigation of single cell dynamics (Na et al. 2020; 
Recktenwald et al. 2021). However, most mass-transfer 
microchannels applied to single cell analysis are compli-
cated nonlinear transport systems without definite transfer 
functions (Yu et al. 2019). Thus, the mass-transfer process 
with the microchannels could be analyzed only be time-
consuming numerical approaches; but the incapacity of 
precise control still remains due to the unclarity of the 
system transfer function. In this work, we propose a sim-
plification method to approximate the complicated trans-
port system within a single-cell-trapping microchannel by 
linear low-order systems. The number of the linear sys-
tem parameters (zero number and pole number) is decided 
with comprehensive considerations of the approximating 
performance and system complexity, quantified by the 
distributions and values of averaging-MRE and averag-
ing-MSE, and the system order, at various input and flow 
conditions, respectively (‡ESI Figs. S3, S4 and Fig. 2). 
By introducing noise to the input–output data sets, the 
influence of the uncertainties of relevant individual vari-
ables and their propagation into the system identification 
can be effectively reduced (‡ESI Fig. S3). Then, based 
on the identified model with consideration of noise, the 
parameters of the most “cost-effective” system (herein, 
third-order system with 1 zero) are also confirmed. The 
overall approximations are satisfactory, basically capturing 
the crucial features, either for the simpler inputs (Figs. 3-
6, ‡ESI Figs. S5) or more complicated signals (Fig. 7). 
Therefore, simplifying the transmission characteristics of 
the biochemical signal transporting within a mass-transfer 
microchannel by a third-order system is highly feasible 
and effective.

For all the transport systems within microchannels, the 
system characteristics are governed by the combination 
of convection diffusion equation and Navier–Stokes equa-
tion (Li et al. 2013, 2018; Yu et al. 2019; Recktenwald 
et al. 2021). Thus, they are flow condition dependent. 
Herein, we illustrate the explicit functions between the 
simplified system parameters and the flow rate (Eqs. 8 and 
9), based on the linear fitting results in the logarithmic 
coordinate (Fig. 8). Therefore, the transportations under 
arbitrary flow rate could be identified precisely and rap-
idly without the time-consuming simulations. These have 
been validated experimentally (Fig. 9). Besides, the corre-
sponding crossover frequency fsc could be also confirmed, 
which is critical to provide meaningful suggestion on the 

selection of stimulation frequency experimentally. Based 
on all these results under steady flow, we could speculate 
that the transporting process under pulsatile flow within 
this microchannel would probably be approximated by 
a third-order system as well, and the system parameters 
might be time-dependent, that is, ai = Fa[Q(t)] = Fa(t) 
and bj = Fb(t) . Especially, for the pulsatile flow with very 
low frequency or tiny amplitude, or under the assump-
tion of quasi-steady flow, they might be constant, that 
ai∕bj ≈ Fa∕b

(
Q0

)
 , where Q0 is the average flow rate of the 

pulsatile flow. It is a meaningful topic that we are going to 
further investigate it deeply.

In addition, as mentioned above, the most “cost-effec-
tive” system herein is the third-order system with 1 zero. 
While it is not the only option. In case of the identifying 
expectation with high goodness of approximation and 
extremely tiny error (such as MRE < 1% or lower), a linear 
system with higher order could be picked specifically. In 
this work, the approximations of the transport system 
within the single-cell-trapping microchannel A by second-
order to fourth-order systems are all investigated (Fig. 2, 
‡ESI Figs. S4, S5). Similar to the third-order system, their 
system parameters also approximately linearly vary with 
the flow rate in logarithmic coordinate, as well as the cor-
responding crossover frequencies of the system (‡ESI 
Figs. S7). More importantly, the fitting line slopes of the 
numerator and denominator coefficients with the same 
order are approximately identical, i.e., Lai‖Lbi ; and a0 and 
b0 are geometrically indistinguishable, La0

‖
≈
Lb0 . Similarly, 

the fitting line of the crossover frequency is parallel to that 
of the highest degree of the effective denominator coeffi-
cient, Lfsc‖Lb(np−1)

 . That is, the numerator coefficients ai and 

denominator coefficients bj of the identified system are 
intrinsically relevant, regardless of the system order. It 
probably is an inherent characteristic of this transport sys-
tem (single-cell-trapping microchannel A). More studies 
focus on system features and the corresponding physical 
meanings should be further stressed to decipher these phe-
nomena. It would be also beneficial to better understand 
the transmission characteristics of the dynamic biochemi-
cal stimulation within it.

Theoretically, the simplifying approach proposed in 
this work could be universally applicable to other trans-
port systems, as long as several effective input and output 
data (simulations or experiments) are pre-known. And 
more diversified input–output data (multiple frequency 
components, varying amplitude, etc.) would lead to better 
approximation performance. Definitely, the system charac-
teristics, such as the relationships between the parameters 
and flow rate, should be individually distinct. It is another 
focalization to be explored in the subsequent studies to 
verify the universality of this simplification method.
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5  Conclusions

In this work, a simple and effective approach for simplify-
ing the transmission characteristics of the dynamic bio-
chemical signal transporting within a single-cell-trapping 
microchannel under steady flows by linear low-order sys-
tems has been proposed. According to the study objec-
tives, specific linear system with distinct orders could be 
purposefully decided. The third-order system is labeled as 
the most “cost-effective” one herein due to the satisfactory 
approximation effects and system simplicity. Moreover, it 
is found that the parameters, gain and crossover frequency 
of this identified third-order system all vary linearly with 
the flow rate of steady flow in the logarithmic coordinate, 
which has also been validated experimentally. The sim-
plifying approach could be universally applied to other 
transport systems theoretically. Therefore, this simple and 
convenient method can be expected to improve further 
research on the precise loading and controlling extracel-
lular conditions in vitro in single cell analysis.
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