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Abstract
In this paper, a theoretical model is developed to describe the comprehensive influences of surface roughness, fluid rarefica-
tion and nonlocal effect on the instability and dynamic behaviors of rough nanotubes conveying nanoflow. Correction fac-
tors for fluid are utilized to characterize the effects of the surface roughness and Knudsen number on the internal fluid. The 
results demonstrate that the surface roughness of nanotube and rarefication effect of nanoflow have opposite influences on the 
stability and natural frequencies of the system. For fixed–fixed nanotubes, as the roughness height increases, the critical flow 
velocity increases. On the other hand, as the Knudsen number increases, which indicates the rarefication effect dominates, 
the critical velocity decreases. In addition, with the increasing of roughness height or the decreasing of Knudsen number, 
the natural frequency of the first mode increases. For cantilevered nanotubes, the surface roughness makes the curve, which 
describes the relationship between the critical velocity and the mass ratio, move to the top right of the critical velocity-mass 
ratio plane while the rarefication effect induces the curve shifting to the bottom left. In addition, the influences of nonlo-
cal effect are also analyzed and discussed. The material length scale parameter can enhance the stiffness of nanotube and 
increase the critical velocity.

Keywords  Rough nanotube · Nanoflow · Fluid–structure interaction · Instability · Dynamics

1  Introduction

The fluid-conveying pipes are indispensable for many 
industrial applications, including biological engineering, 
aerospace industry, heat exchangers, and so on. Due to the 
complexity of the interaction between the pipe and the inter-
nal fluid, the vibration and dynamics of the fluid-conveying 
pipe has been attracting the attention of numerous research-
ers since about 50 years ago (Paidoussis and Denise 1972; 
Paidoussis and Issid 1974). After decades of research and 
development, the study on pipes conveying fluid has become 
a typical paradigm in fluid–structure dynamics (Paidoussis 

1998, Mohammad Hosseini 2017, Wang et al. 2017) and the 
literature on this topic is constantly increasing (Zhi Hang Li 
2019; Jiayin Dai 2020; Xiaofei Lyu 2020; Jiang et al. 2021; 
Mao et al. 2021; Zheng et al. 2021).

In recent years, micro/nano electromechanical systems 
has developed rapidly, and micro/nano-structures have 
attracted enormous attentions due to the outstanding and 
superior properties. Micro/nano-tube based devices have 
high frequencies and quality factors in the liquid environ-
ment and can be used for high-precision measurement of 
micro and nano-particles such as cells, viruses and proteins 
in fluid (Burg et al. 2007; Lee et al. 2010; Bryan et al. 2014; 
Kim et al. 2016). Reducing the size of the tube can dramati-
cally improve the detection accuracy, but the small effects of 
both the structure and fluid pose challenges to the dynamic 
modelling of nanotubes conveying fluid. It is well known 
that the classical elastic theory, which describes the dynamic 
characteristics of structures and the Navier–Stokes equation, 
which characterizes the hydrodynamic behavior of fluid, are 
both based on the continuity assumption. However, for the 
nanostructure and nanoflow, the continuity assumption no 
longer holds. In addition, surface roughness is an inherent 
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byproduct of almost all fabrication techniques (Parfenyev 
et al. 2019). The roughness height is usually between tens of 
nanometers and several microns, which can be neglected for 
macro-tubes but should be taken into account for nanotubes.

To account for the small size of nano-structures, nonlo-
cal elastic theories were presented (Wang et al. 2007). Lee 
and Chang (2008) first introduced the nonlocal theory to 
analyzing the dynamics of fluid-conveying nanotubes. It 
was shown that the nonlocal parameter dramatically affected 
both the frequency and mode shape. And increasing the 
nonlocal effect decreased the frequency. Yun et al. (2012) 
presented a nonlocal Timoshenko beam model for study-
ing the vibration and instability characteristics of single- 
and multi-walled carbon nanotubes conveying fluid. The 
results demonstrated that by increasing the strain gradient 
length scale and decreasing the small length scale, the criti-
cal flutter velocity and stability region increased. Bağdatli 
and Togun (2017) developed a nonlinear model for fluid-
conveying nanotubes using the Hamilton’s principle by 
considering the nonlocal effect. The effects of the nonlocal 
parameters, mean speed value and ratios of fluid mass to the 
total mass on the linear and nonlinear frequencies, stability, 
frequency–response curves and bifurcation point were ana-
lyzed and discussed in detail. Jin et al. (2021) developed a 
higher-order size-dependent beam model for the functionally 
graded nanotubes carrying fluid. The nonlocal stress, strain 
gradient effects, surface energy effects were considered and 
the small size effects on post buckling, natural frequency and 
nonlinear vibration of were studied.

To characterize the discontinuity of fluid, the Knudsen 
number (Kn), which is defined as the ratio of the mean free 
path of the fluid molecules to the characteristic length of 
the fluid flow, was introduced. Generally, the flow can be 
divided into four regimes according to the Knudsen number 
(Zhang et al. 2012): the continuum regime (Kn < 0.001), the 
slip flow regime (0.001 < Kn < 0.1), the transition regime 
(0.1 < Kn < 10), and the free molecular regime (Kn > 10). 
The flow characteristics are quite different for various Knud-
sen numbers. For the continuum regime, the continuum and 
thermodynamic equilibrium assumptions are appropriate, 
and the flow can be described by the N–S equations with 
conventional no-slip boundary conditions. For the slip flow 
regime, the non-equilibrium effects dominate near the walls 
and the no-slip boundary condition fails. However, the rare-
fied flow can still be analyzed by solving the N–S equa-
tions with slip velocity boundary. For the transition regime, 
the rarefaction effects dominate and the continuum and 
thermodynamic equilibrium assumptions of the N–S equa-
tions begin to break down. The flow can be studied using 
N–S equations with more complex slip boundaries or other 
method, such as direct simulation Monte Carlo method. For 
the free molecular regime, the inter-molecular collisions 
are negligible as compared with the collisions between the 

gas molecules and wall surfaces. The molecular dynamics 
should be utilized. Consequently, the dynamic behaviors of 
fluid-conveying nanotubes, which are typical fluid–struc-
ture systems, are certainly affected by the Knudsen number. 
Rashidi et al. (2012) first introduced the Knudsen number 
into the analysis of fluid-conveying nanotubes. The equiva-
lent bulk viscosity and slip boundary condition of nanoflow 
were considered and the velocity correction factor was used 
to describe the effects of Knudsen number on the govern-
ing equation for nanotubes conveying nanoflow. The results 
demonstrated that as the Knudsen number increased, the 
critical velocity for divergence decreased. After this work, 
researchers usually taken account the effect of Knudsen 
number into the analysis of fluid-conveying nanotubes. Liu 
et al. (2018) presented an improved model of fluid-convey-
ing carbon nanotube by considering comprehensive effects 
of Knudsen number. The effective viscosity, slip boundary 
condition and non-uniform flow profile were all taken into 
account. Ghayesh et al. (2019) studied the global dynamic 
characteristics of the nanotube containing nanoflow by con-
sidering the geometric nonlinearity, the nanostructure and 
the nanoflow. Ghane et al. (2020) investigated the flutter 
vibrations of fluid-conveying thin-walled nanotubes sub-
jected to magnetic field. The Knudsen number was con-
sidered to describe the slip between the nanoflow and the 
wall of nanotube. Hosseini and Ghadiri (2021) analyzed the 
influence of the residual surface stress on the instability and 
nonlinear dynamic behaviors of fluid-conveying double-
walled nanotubes.

In general, the surface roughness is inevitable because 
of the limitation of fabrication technologies. The roughness 
height usually ranges from tens of nanometers to several 
micrometers (Jaeger et al. 2012; Zhou et al. 2017), which 
can be neglected for macrotubes but is comparable to the 
characteristic length of microtubes and nanotubes. About 
20 years ago, Mala and Li (1999) investigated the fluid 
flow through microtubes with diameters ranging from 50 
to 254 μm. The experimental results showed that the fric-
tion factor for rough microtubes was obviously higher than 
that for smooth microtubes. Afterwards numerous scholars 
studied the surface roughness effect on the flow characteris-
tics in micro and nano tubes using analytical, numerical and 
experimental methods (Mala and Li 1999; Tang et al. 2007; 
Akyildiz and Siginer 2017; Song et al. 2018; Dey and Saha 
2021). Ou et al. (2004) presented a series of experiments 
on water flow through microchannels using hydrophobic 
surfaces with well-defined surface roughness. The results 
demonstrated significant drag reduction for the laminar 
flow. Duan and Muzychka (2008) developed an analytical 
model to predict velocity distributions and friction factors 
for rough microtubes based on the Navier–Stokes equations 
with a velocity slip boundary. Yan et al. (2015) numerically 
analyzed the flow characteristics in rough microtubes by 
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solving the 3D Navier–Stokes equation with an extended 
slip model. The effect of rarefication, compressibility, rough-
ness height and fractal dimension were investigated and dis-
cussed. Eduard et al. (Marusic-Paloka and Pazanin 2020) 
studied the influences of both surface roughness and inertia 
on the flow in a corrugated pipe and proposed a higher-order 
correction of the Hagen–Poiseuille velocity. And a new for-
mula for the Darcy friction coefficient was developed. Yao 
et al. (2021) analyzed the influences of rough morphology 
and wall-fluid interaction on the flow and thermal character-
istics in nanotubes by the molecular dynamics method. They 
found that the surface roughness and the interaction between 
the fluid and wall lead to different variations in temperature 
jump and velocity slip.

By reviewing the literature, it can be found that the sur-
face roughness has an important effect on the flow in nano-
tubes. As a classical fluid–structure coupling system, the 
fluid-conveying nanotube is influenced by the surface rough-
ness. However, few researchers have paid attention to the 
instability and dynamics of rough nanotubes carrying nano-
flow. Jiang et al. (2021) analyzed and discussed the effects 
of surface roughness on the stability of both fixed–fixed 
and cantilevered microtubes. Because the research object 
is the microtube, for which the discontinuity effect of the 
structure and fluid is not obvious, the nonlocal effect and 
Knudsen number were not considered in the model. To the 
best knowledge of authors, the stability and dynamic char-
acteristics of fluid-conveying nanotubes has not been stud-
ied by comprehensively considered the nonlocal effect of 
nanostructure, the rarefication effect of nanoflow and the 
surface roughness effect of interface between nanostructure 
and nanoflow. In this article, this topic is addressed.

The article is outlined as follows. In Sect. 2, a theoreti-
cal model is developed by comprehensively considering the 
surface roughness, rarefication effect and nonlocal effect of 
nanotubes conveying nanoflow to characterize the dynamic 
behaviors of the fluid–structure coupling system. The influ-
ences of surface roughness, Knudsen number and nonlocal 
effect on the instability and natural frequencies of nanotubes 
with different boundary conditions are analyzed and dis-
cussed in Sect. 3. Some conclusions are drawn in Sect. 4.

2 � Model development

Figure 1 illustrates the schematic for fixed–fixed and canti-
levered nanotubes conveying fluid with surface roughness 
(Kim et al. 2016). In the axial direction of the nanotube, the 
inner radius almost keeps constant. And in the circumfer-
ential direction, the distribution of radius is approximately 
periodic. Hence, the nanotube with sinusoidally wavy sur-
face roughness is taken into account, as shown in Fig. 1b. 

Two coordinate systems are adopted for modelling. One is 
for modelling the vibration of nanotube, as illustrated in 
Fig. 1a. The x-axis is the direction of fluid flow and the 
y-axis is the direction of vibration. The other is a cylindrical 
coordinate system (r, θ, x), which is for modelling the fluid 
flow in the rough nanotube, as shown in Fig. 1b. The inner 
radius of nanotube by considering the surface roughness is 
described by

where Ri is the real radius of the inner wall, Rm is the mean 
radius, � is the relative roughness which is defined as 
� = Δ

/
Rm , � is the wave number that can be expressed as 

� = 2�Rm

/
b . The parameters Δ and b are the amplitude and 

wavelength of the surface roughness, respectively.
According to the authors’ previous work, the governing 

equation for a rough microtube without nonlocal effect can 
be given as:

where E is the Young’s modulus, I is the second moment of 
cross-sectional area, w is the lateral displacement of micro-
tube, � is the density, A is the area, ux is the fluid velocity 
in the x direction and Sf  is cross-section of the fluid. The 
superscript (r) means “rough”, and (s) represents “smooth”. 
The subscript t means parameters for tube, and the subscript 
f means for fluid. For nanotube, the nonlocal effect should 
be considered because of the size effect. In this paper, the 

(1)Ri = Rm[1 + � sin (��)],

(2)

EI(r)
�4w

�x4
+

(
�tA

(r)
t + �f A

(r)

f

)
�2w

�t2
+ 2�f

(
∫Sf

uxdS

)

�2w

�x�t
+ �f

(
∫Sf

u2
x
dS

)
�2w

�x2
= 0,

Fig. 1   a Schematic for fixed–fixed and cantilevered nanotubes con-
veying fluid (Kim et  al. 2016). b Rough surface of nanotubes (Kim 
et al. 2016)
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modified couple stress theory is adopted. Hence, the govern-
ing equation for nanotube conveying fluid can be written as:

where G = E∕2(1 + �) , � is the Poisson’s ratio and l is the 
value of the material length scale parameter, which describes 
the nonlocal effect of structure.

For fixed–fixed nanotubes, the boundary conditions are 
subjected to,

For cantilevered nanotubes, the boundary conditions are 
subjected to,

To obtain the flow velocity ux , the flow characteristics in 
the nanotube should be analyzed by considering the surface 
roughness and the rarefication effect. In order to study the 
effect of rarefaction, it is necessary to determine the flow 
regime of gas in nanotubes. The mean free path of gas can 
be given as �m = k�(�∕p)

√
2RsT  , where k� =

√
�

�
2 

according to the hard sphere model, Rs is specific gas con-
stant, � , p and T are the dynamic viscosity, pressure and 
temperature, respectively (Ewart et al. 2006). Therefore, the 
mean free path of common gases is about 10 nm to 100 nm 
under normal temperature and pressure (e.g., ~ 40 nm for 
carbon dioxide, ~ 60 nm for nitrogen, ~ 120 nm for hydrogen, 
etc.). And the diameter of nanotubes is usually in the order 
of 10 nm to 100 nm. Consequently, the gas flow in the nano-
tube is generally in the slip regime and the transition regime. 
Using the Navier–Stokes equations with an appropriate 
velocity slip boundary (Beskok and Karniadakis 1999), the 
nanoflow in the slip regime and the transition regime can be 
well characterized (Rashidi et al. 2012; Sadeghi-Goughari 
and Hosseini 2015). By referring to the published work 
(Mirramezani and Mirdamadi 2012; Rashidi et al. 2012), the 
fluid flow with Knudsen number ranging from 0.001 to 2 is 
focused on in this paper.

(3)

(
EI(r) + GA

(r)
t l2

)
�4w

�x4
+

(
�tA

(r)
t + �f A

(r)

f

)
�2w

�t2

+ 2�f

(
∫Sf

uxdS

)
�2w

�x�t
+ �f

(
∫Sf

u2
x
dS

)
�2w

�x2
= 0,

(4)
w(0, t) = 0,

�w(0, t)

�x
= 0,

w(L, t) = 0,
�w(L, t)

�x
= 0.

(5)
w(0, t) = 0,

�w(0, t)

�x
= 0

�2w(L, t)

�x2
= 0,

�3w(L, t)

�x3
= 0

The considered nanotube is axisymmetric, and the cross-
section keeps constant in the axial direction. Hence, the 
velocity components in the radial and circumferential direc-
tions are zero. And for fully developed fluid, dux

/
dx is zero. 

The momentum equation for fluid in the rough nanotube is 
written as,

where p is the pressure and � is the dynamic viscosity. 
Because of the rarefication effect, the fluid velocity at the 
solid surface is not equal to the corresponding value of the 
wall. The difference between the fluid velocity and the wall 
velocity is known as the slip velocity. Consequently, the 
boundary condition at the solid surface is given by (Beskok 
and Karniadakis 1999),

where �v is the tangential moment accommodation coeffi-
cient, Kn is the Knudsen number, and n is the normal vector. 
Choosing an appropriate b, the effect of slip condition can be 
as accurate as a second-order term. For fully developed flows 
in channels, b = − 1 (Beskok and Karniadakis 1999). �v is 
related to the tangential momentum of incoming, reflected 
and reemitted molecules, and for most practical purposes, �v 
can be considered to be 0.7. Using the velocity slip bound-
ary condition in Eq. (7), the fluid characteristics of flow in 
the slip regime and the transition regime can be accurately 
predicted.

Using the perturbation method, the velocity ux is 
expanded in terms of �

By substituting Eq. (8) into Eqs. (6) and (7), the expres-
sions of u(0)

x
 , u(1)

x
 and u(2)

x
 can be given as (Sadeghi et al. 

2011),

with the coefficients,

(6)−
dp

dx
+ �

(
�2ux

�r2
+

1

r

�ux

�r
+

1

r2

�2ux

��2

)
= 0,

(7)

ux(r, �) =

(
2 − �v

�v

)(
Kn

1 − bKn

)(�ux

�n

)
at r = Rm[1 + � sin (��)],

(8)ux(r, �) = u(0)
x
(r, �) + �u(1)

x
(r, �) + �2u(2)

x
(r, �) +⋯ .

(9)u(0)
x

= a0 + b0

(
r

Rm

)2

,

(10)u(1)
x

= a1

(
r

Rm

)�

sin (��),

(11)u(2)
x

= a2 + b2

(
r

Rm

)2�

cos (2��),
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where �m =
(

2−�v

�v

)(
Kn

1−bKn

)
.

According to Eqs. (9)–(12), the parameters in the govern-
ing Eq. (3) associated with ux are written as:

where � = −
1

�

dp

dz

R2

U
�∗ and � represents a0 , b0 , a1 , a2 and b2.

Substituting Eq.  (13) into Eq.  (12), the fluid–struc-
ture interaction equation for nanotube conveying fluid by 

(12)

a0 = −
R2
m

4�

dp

dx

(
1 + 2�mKn

)
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R2
m

4�

dp
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,
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,

(13)
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,

where A(r)
t  and A(r)

f
 are the cross-sectional areas of the rough 

nanotube and the internal fluid, respectively, A(s)

f
= �R2

m
 is 

the fluid cross-sectional area of the smooth microtube, CFF1 
and CFF2 are Correction Factors for Fluid due to the surface 

roughness and rarefication effect, and Us =
(
−

1

�

dp

dz

)
R2
m

8
 is the 

averaged fluid velocity of smooth microtube without consid-
ering the rarefication effect. The coefficients in Eq. (14) are 
written as

(15)
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considering the surface roughness and rarefication effect of 
fluid is given as,

(14)

(
EI(r) + GA

(r)
t l2

)
�4w

�x4
+
(
�tA

(r)
t + �f A
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f
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(
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(
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s

�2w
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where � = Ro

/
Rm is the ratio of the outer radius to the mean 

inner radius.
Equation (14) is developed by taking the nonlocal effect 

of structure, the surface roughness at the inner wall and 
the rarefication effect of fluid into account. If the nonlocal 
effect and the rarefication effect are neglected, the equation 
is equivalent to the model presented for rough microtubes 
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conveying fluid (Jiang et al. 2021). If the surface rough-
ness is ignored, the equation is equivalent to the model for 
smooth nanotubes conveying nanoflow developed by Rashidi 
et al. (2012) If both the surface roughness and rarefication 
effect are neglected, the equation is equivalent to the model 
for size-dependent analysis presented by Wang (2010).

The governing Eq. (14) can be nondimensionalized as:

with parameters

(16)

�
CFS1 + CFS2 ⋅ 𝜅

�
𝜂���� +

�
CFS3

�
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+
�
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�
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2𝜂�� = 0
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,

where � = Rm

/
l , �� = (��∕��) and 𝜂̇ = (𝜕𝜂∕𝜕𝜏) . The param-

eters CFS1, CFS2 and CFS3 are Correction Factors for Struc-
tures induced by the surface roughness. The boundary condi-
tions in non-dimensional form are expressed as:

for fixed–fixed nanotubes and

for cantilevered nanotubes. In the next, by solving the gov-
erning equation through the Galerkin method, the stabil-
ity and dynamic behaviors of nanotubes conveying fluid by 
considering the surface roughness, rarefication effect and 
nonlocal effect are analyzed and discussed.

3 � Results and discussions

3.1 � Correction factors

The correction factors in Eq. (16), CFS1, CFS2, CFS3, CFF1 
and CFF2, relate the surface roughness of inner wall and rare-
fication effect of fluid to the stability and dynamic behaviors 
of nanotubes conveying nanoflow. Moreover, these factors 

(18)�(0, t) = 0, ��(0, t) = 0, �(1, t) = 0, ��(1, t) = 0

(19)
�(0, t) = 0, ��(0, t) = 0, ���(1, t) = 0, ����(1, t) = 0

Fig. 2   Variation of correc-
tion factors for structures with 
surface roughness for different 
geometrical parameters a CFS1 
b CFS2 c CFS3, �t

/
�f = 10 and 

d CFS4, �t
/
�f = 0.1
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are important characteristics that distinguish the present 
model from other models. If the surface roughness and rare-
fication effect are not considered, CFS1 = CFS2 = CFS3 = 1 
and CFF1 = CFF2 = 0 . Then Eq. (16) is equivalent to the 
classical model for size-dependent analysis of fluid-convey-
ing microtubes developed by Wang (2010). Because of the 
significance of correction factors, it is necessary to study and 
discuss the variation of correction factors with the surface 
roughness and Knudsen number.

Parameters CFS1, CFS2 and CFS3 are correction factors 
for the structure. The previous work has discussed the effects 
of surface roughness on these factors in detail (Jiang et al. 
2021). For the completeness, Fig. 2 illustrated the varia-
tion of correction factors for structures with the roughness 
height. Because CFS1, CFS2 and CFS3 are only related to 
�2 , which is high order small quantity, the three factors are 
almost unchanged with the increase of relative roughness 
height. As Fig. 2 is shown, when � increases from 0 to 0.05, 
the variation of CFS1, CFS2 and CFS3 is less than 1%. It 
can be concluded that the surface roughness has no obvious 
effect on correction factors for structures. Consequently, the 
influences of CFS1, CFS2 and CFS3 on dynamics of fluid-
conveying nanotube can be neglected.

Parameters CFF1 and CFF2 are correction factors for 
fluid, which are affected by not only the surface roughness, 
but also the slip velocity on the boundary. From the literature 
(Duan and Muzychka 2008), it is known that the surface 
roughness can reduce the flow velocity while the rarefication 
effect can increase the fluid velocity. When the fluid veloc-
ity varies, the Coriolis force and centripetal force related to 
the fluid flow also change. The physical meaning of CFF1 
is the ratio of Coriolis force caused by nanoflow in rough 
nanotube to the one in smooth tubes without considering the 
rarefication effect. The CFF1 is affected by three parameters, 
the relative roughnes height � , the wave number � and the 

Knudsen number Kn. The first two parameters characterize 
the surface roughness, and the latter parameter represents the 
rarefication effect of fluid. The increasing of � or � means 
that the surface is more rough. And the increasing of Kn 
indicates that the rarefication effect is more significant. Fig-
ure 3 shows the variation of CFF1 with the relative rough-
ness height and Knudsen number for different wave num-
bers. It can be found that with the increasing of roughness 
height, CFF1 decreases while with the increasing of Knudsen 
number, CFF1 increases. This is because the surface rough-
ness reduces the flow velocity, thereby reducing the Coriolis 
force, while the boundary slip increases the flow velocity, 
thereby increasing the Coriolis force.

To more clearly show the effects of roughness height, 
wave number and Knudsen number on CFF1, Fig. 4a and b 
shows the variation of CFF1 with � for different � and Kn. 
Comparing the two figures, it can be found that the change 
of Kn does not vary the trend of the CFF1-� curve, while the 
increasing of � makes CFF1 decrease faster as the roughness 
height increases. In addition, the relationship between CFF1 
and � is nonlinear. Actually, from Eq. (15) it is known that 
when � and Kn keep constant, CFF1 is proportional to �2 . 
Figure 4c and d show the variation of CFF1 with � for dif-
ferent � and Kn. Similar to � , the increase of � also reduces 
CFF1. Figure 4e and f illustrate the variation of CFF1 with 
Kn for different � and � . It is obvious that as Kn increases, 
the CFF1 dramatically increases.

The physical meaning of CFF2 is the ratio of centrip-
etal force caused by nanoflow in rough nanotube to the 
one in smooth tubes without considering the rarefication 
effect. As shown in Figs. 5 and 6, the effects of roughness 
height, wave number and Knudsen number on CFF2 are 
very similar to the ones on CFF1. The difference is that 
the variation of CFF2 with � , � and Kn is more sharp. This 
is because the centrifugal force caused by fluid is directly 

Fig. 3   Variation of CFF1 with the relative roughness height and Knudsen number for different wave numbers a � = 10 and b � = 25
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proportional to the square of fluid velocity, which is more 
significantly affected by the uneven distribution of fluid 
velocity. Moreover, it is found that as the Knudsen num-
ber increases, the effect of surface roughness on CFF2 is 
more significant. As shown in Fig. 6a, when the relative 
roughness height increases from 0 to 0.05, CFF2 decreases 
from about 1.1 to about 0.93 (by 15%) for � = 25 . On the 
other hand, for Kn = 1, CFF2 decreases from about 16.5 
to about 6.8 (by 59%) as illustrated in Fig. 6b. This is 
because the velocity at the boundary gradually dominates 
with the increasing of Knudsen number. Moreover, the 

surface roughness hinders the fluid flow at the boundary. 
As a result, when the gas rarefaction effect increases, the 
influence of surface roughness on flow characteristics is 
more significant (Yan et al. 2015).

To study the stability and dynamic behaviors of nano-
tubes conveying nanoflow, Sects. 3.2 and 3.3 are allocated 
to demonstrate the influences of several parameters, includ-
ing the material length scale parameter, relative roughness 
height, wave numbers, Knudsen number, mass ratio, etc., on 
the frequencies and critical velocities of system subjected to 
fixed–fixed and cantilevered boundary conditions.

Fig. 4   Effects of roughness 
height, wave number and Knud-
sen number on CFF1
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3.2 � Fixed–fixed nanotubes

By referring to (Wang 2011), the mean inner radius of the 
nanotube is chosen as Rm = 10 nm and the Poisson ratio is 
specified as 0.19. The material length scale parameter l is 
very different for various materials. For example, for most 
metals, the characteristic length scale is about 0.25 nm 

(Zhang and Sharma 2005); for the gallium arsenide, l is 
about 0.82 nm; for the graphite, l is about 3.3 nm; and for the 
rubber, l is about 4.6 nm (Zhang and Sharma 2005; Nikolov 
et al. 2007). As a result, the characteristic length scale in the 
range from 0.25 to 4.6 nm is considered.

Solving the governing equations subjected to the 
fixed–fixed boundary condition through the Galerkin 

Fig. 5   Variation of CFF2 with the relative roughness height and Knudsen number for different wave numbers a � = 10 and b � = 25

Fig. 6   Effects of roughness 
height, wave number and Knud-
sen number on CFF2
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Fig. 7   The variation of 
dimensionless complex 
frequencies with the increas-
ing of the dimensionless 
flow velocity for smooth 
and rough nanotubes with 
� = 0.007 a Smooth, Kn = 0 
b � = 0.05, � = 20, Kn = 0 
c Smooth, Kn = 1 d 
� = 0.05, � = 20, Kn = 1

Fig. 8   Influences of nonlo-
cal effect, surface roughness 
and rarefication effect on the 
variation of frequency with flow 
velocity: a nonlocal effect, b 
surface roughness, c rarefication 
effect, d combined effect of sur-
face roughness and rarefication
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method, the complex eigenfrequencies 𝜔̂ can be obtained. 
The real part of 𝜔̂ is the dimensionless oscillation fre-
quency, and the ratio of the imaginary to the real parts is 
the damping ratio of the system. Figure 7 illustrates the 
Argand diagrams for smooth and rough nanotubes. The 
surface roughness, rarefication effect and nonlocal effect 
do not influence the instability mode of fixed–fixed nano-
tubes conveying fluid. As the flow velocity increases, the 
frequency decreases and the damping ratio keeps constant 
as zero. And once the flow velocity exceeds the critical 
value, the instability of divergence occurs. However, the 
surface roughness, rarefication effect and nonlocal effect 
have significant effect on the critical flow velocity for 
divergence. Figure 7a demonstrates the variation of com-
plex frequency with flow velocity for a smooth nanotube 
without considering the rarefication effect. Figure 7b is for 
a rough nanotube with Kn = 0. By comparing Fig. 7b with 
Fig. 7a, it is found that the critical flow velocity increases 
by about 7% due to the surface roughness. Figure 7c shows 
the Argand diagram for a smooth nanotube by taking the 
rarefication effect into account. As the Knudsen number 
increases from 0 to 1, the nondimensional critical velocity 

decreases from 5.51 to 1.33. The influence of surface 
roughness and rarefaction effect on the critical velocity is 
opposite. The former increases the critical velocity, while 
the latter decreases the one. Figure 7d illustrates the com-
bined effect of both surface roughness and velocity slip 
at the boundary. It can be found that due to the opposite 
influence of surface roughness and rarefaction effect, the 
critical velocity obtained by comprehensively consider-
ing the rough wall and boundary velocity slip is between 
the ones obtained by only taking one single effect into 
account.

The variation of natural frequencies is shown in Fig. 8 for 
different parameters. It is found that for different conditions, 
the nondimensional natural frequency decreases with the 
increasing of flow velocity. As illustrated in Fig. 8a, with 
the enhancement of nonlocal effect, the curve describing the 
relationship between the natural frequency and flow velocity 
moves along the positive direction of Y axis, which means 
that the natural frequency and critical velocity of the system 
increase. This is because nonlocal effects enhance the stiff-
ness of nanotubes (Wang 2010). Figure 8b–d demonstrates 
the influences of surface roughness and rarefication effect on 

Fig. 9   Variation of nondimensional critical velocity with roughness height and Knudsen number for a � = 0 and b � = 0.1

Fig. 10   a Variation of Ûcr with 
relative roughness height for 
different Knudsen numbers b 
variation of Ûcr with Knudsen 
number for different roughness 
height
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the natural frequency, which are absolutely opposite. As the 
roughness height increases or Knudsen number decreases, 
both the natural frequency and the critical velocity increase. 
This is due to the fact that the centripetal force induced by 
the internal flow can be equivalent to an axial compressive 
force which makes the nanotube softer. And the impacts of 
surface roughness and rarefication effect on fluid flow are 
opposite. The former reduces the velocity while the latter 
increases the velocity. Consequently, the increase of surface 
roughness or the decrease of Knudsen number can reduce 
the stiffness softening effect caused by the centripetal force, 
thus making the frequency and critical velocity increase.

Figure 9 demonstrates the variation of nondimensional 
critical velocities Ûcr with the roughness height and Knudsen 
number. On one hand, as the roughness height increases, 
the critical flow velocity increases. On the other hand, as 
the Knudsen number increases, which indicates the rarefica-
tion effect dominates, the nondimensional critical velocity 
decreases. In addition, the increasing of � only makes Ûcr 
increase and it has no effect on the variation trend of Ûcr 
with � and Kn. Figure 10 more clearly illustrates the opposite 
influence of surface roughness and rarefaction effect on the 
critical velocity. This opposite effect can cause a phenom-
enon that the critical velocity may be the same for different 
surface roughness and Kn numbers, as shown in Fig. 11. 
This indicates that even if there are dramatic differences in 
roughness and fluid rarefication between fluid-conveying 
nanotubes, their stability behavior may be consistent.

In the above analysis, the critical flow velocities are pre-
sented in the dimensionless form. According to Eq. (17), the 
corresponding dimensional values can be directly given as,

where Ucr is the dimensional critical velocity, � = Ro

/
Rm 

is the cross-sectional aspect ratio, and �1 = L
/
2Ro is the 

slenderness ratio. The materials for nanotubes are various, 
including silicon (about 160 GPa, by referring to (Hopcroft 

(20)Ucr = Ûcr

�
EI(s)

𝜌f A
(s)

f

1

L
= Ûcr

�
E

𝜌f

√
𝛼4 − 1

4𝛼𝛼1
,

et al. 2010)), carbon, and so on. To obtain the dimensional 
critical velocity, the carbon nanotube is analyzed. The cross-
sectional aspect ratio, slenderness ratio and the Young’s 
module are set to be 1.2, 500 and 1 GPa by referring to 
Rashidi et al. (Rashidi et al. 2012). The internal fluid is con-
sidered as gas, whose density is 1.169 kg/m3. From Fig. 7, 
it is known that the nondimensional critical velocity for four 
different cases are 5.51, 5.91, 1.33 and 1.70, respectively. 
According to Eq. (20), it is easy to obtain the dimensional 
critical velocities 69.58 m/s, 74.63 m/s, 16.79 m/s and 
21.47 m/s.

3.3 � Cantilevered nanotubes

The dynamic behaviors of cantilevered nanotubes convey-
ing fluid are very different from the fixed–fixed ones. Fig-
ure 12 illustrates the Argand diagram of smooth and rough 
cantilevered nanotubes with rarefication effect for � = 0.2 . 
The parameters used for calculation are the same to the 
fixed–fixed nanotubes in Sect. 3.2. It can be found that with 
the increasing of the flow velocity, the imaginary part of 
𝜔̂ for the second mode first increases and then decreases. 
And once the flow velocity exceeds the critical value, the 
damping becomes negative and the system loses stability, 
which is known as fluttering. For the smooth nanotube, the 
nondimensional critical velocity is about 4.46 without con-
sidering the rarefication effect, while the value is about 4.78 
for the rough nanotube with � = 0.05 and � = 20 . Once the 
rarefication effect is taken into account, the critical veloc-
ity for the smooth nanotube decreases from 4.46 to about 
1.18, as shown in Fig. 12c. When both the surface rough-
ness and rarefication are considered, the critical velocity 
is about 1.54. Similar to fixed–fixed nanotubes conveying 
fluid, surface roughness and fluid rarefaction have opposite 
effects on the critical velocity of cantilevered nanotubes for 
� = 0.2 . The former increases the critical velocity, while the 
latter decreases the one. The opposite influences are clearly 

Fig. 11   Contours of nondimen-
sional critical velocities for 
different roughness height and 
Knudsen numbers a � = 0 and 
b � = 0.1
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demonstrated by Fig. 13, which illustrates the variation of 
critical velocities with the roughness height and Knudsen 
numbers.

It is known that the mass ratio � has significant effect on 
the instability of fluid-conveying cantilevered tubes. Fig-
ure 14 illustrates the Argand diagram for � = 0.4 , which 
indicates that the dynamic behavior is so different from the 
one for � = 0.2 . As the flow velocity increases, the imagi-
nary part of 𝜔̂ , i.e. Im(𝜔̂) , first increases, then decreases, then 
increases and finally decreases. For the smooth nanotubes 
without considering the rarefication effect, Im(𝜔̂) firstly 
drops to about 0.08 and then increases. And for the second 
decreasing, Im(𝜔̂) reduces below 0 and the nanotube flut-
ters. As illustrated in Fig. 12b, Im(𝜔̂) of the rough nanotube 
without considering the rarefication effect drops to below 0 
for the first decreasing. Consequently, the surface roughness 
makes the critical velocity decrease from about 7.20 to about 
6.58, which is opposite to the case for � = 0.2 . Figure 12c 
shows the influence of rarefication effect. It can be found that 
Im(𝜔̂) reduces to below 0 for the second decreasing, which 
is similar to the case for Kn = 0. And the critical velocity 
decreases from about 7.20 to about 6.92. Hence, the effect 
of fluid rarefication on the critical velocity for � = 0.4 is the 

Fig. 12   The variation of dimensionless complex frequencies with the increasing of the dimensionless flow velocity for � = 0.2

Fig. 13   Variation of nondimensional critical velocity with roughness 
height and Knudsen number for cantilevered nanotubes
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same with the one for � = 0.2 . When the surface roughness 
and rarefication effect are both taken into account, Im(𝜔̂) 
also drops to below 0 for the second decreasing. And the 
critical velocity increases to about 7.34.

Figure 15 demonstrates the variation of Ûcr with � for 
different parameters. Every curve describing the relation-
ship between the critical velocity and mass ratio includes 
a S-shaped segment, which is associated with the instabil-
ity–restabilization–instability sequence (I–R–I sequence) 
(Paidoussis 1998). Inside the I–R–I sequence region, each � 
corresponds to three critical velocities, and the critical speed 
changes sharply as � varies. Outside the region, every � cor-
responds to a unique critical velocity, and the critical veloc-
ity increases slowly with the increasing of � . The nonlocal 
effect, surface roughness and Knudsen number have different 
influences on the relationship between Ûcr and � . As shown in 
Fig. 15a, the increasing of � makes the Ûcr-� curve move up to 
the top of coordinate system, which indicates that the nonlocal 
effect can increase the critical velocity. In addition, the nonlo-
cal effect does not change the position of the I–R–I sequence 
region. When � is about in the range (0.38, 0.40), the nano-
tube may go through the instability-restabilization-instability 

sequence. The roughness height and Knudsen number have 
opposite effects on the Ûcr-� curve. The former makes the 
curve move to the top right of the Ûcr-� plane as shown in 
Fig. 15b, while the latter induces the curve shifting to the bot-
tom left, which is illustrated in Fig. 15c. Outside the I–R–I 
sequence region, the surface roughness increases the critical 
velocity, while the rarefication effect reduces the critical veloc-
ity, which is similar to the fixed–fixed nanotube. On the other 
hand, the surface roughness makes the I–R–I sequence region 
move right along the � axis, while the rarefication effect makes 
the region move left. Figure 15d shows the coupled effect of 
surface roughness and fluid rarefication on the Ûcr-� curve. 
In order to detailed show the influence of roughness height 
and Knudsen number on the instability-restabilization-insta-
bility sequence, Fig. 16 illustrates the variation of Im(𝜔̂) for 
the second mode with the increasing of nondimensional flow 
velocity for � = 0.395 . For the nanotube with Kn = 0, Im(𝜔̂) 
of the second mode passes through the zero point three times 
with the increasing of the fluid velocity, which corresponds to 
three critical velocities. The surface roughness and rarefication 
effect change the variation trend of Im(𝜔̂) with � , so that Im(𝜔̂) 

Fig. 14   The variation of 
dimensionless complex frequen-
cies with the increasing of the 
dimensionless flow velocity for 
� = 0.4
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only passes through the zero point once, which corresponds to 
a unique critical velocity.

Figure 17 demonstrates the effects of surface roughness 
and Knudsen number on the frequencies of the first and sec-
ond mode. As the flow velocity increases, the frequency of 
the first order first increases and when the velocity reaches 
a certain value, the frequency decreases. On the other hand, 

the frequency of the second order decreases. The surface 
roughness and Knudsen number have opposite effects on 
the frequency. With the increasing of the roughness height 
or the decreasing of the Knudsen number, the frequency of 
the first order decreases while the frequency of the second 
order increases. The difference can be attributed to the dif-
ferent mode shapes of the two modes (Yan et al. 2017; Jiang 
et al. 2021).

4 � Conclusions

A theoretical model is developed to describe influences of 
surface roughness, fluid rarefication and nonlocal effect on 
the instability and dynamic behaviors of rough nanotubes 
conveying nanoflow. Correction factors for fluid are uti-
lized to characterize the effects of the surface roughness 
and Knudsen number on the internal fluid and dynamic 
behaviors of the system. The results demonstrated that the 
surface roughness of nanotube and rarefication effect of 
nanoflow have opposite influences on the correction fac-
tors for fluid, CFF1 and CFF2. The increasing of rough-
ness parameters makes CFF1 and CFF2 decrease, while 
the increasing of Knudsen number induces CFF1 and CFF2 
increasing. Because the physical meaning of CFF1/CFF2 

Fig. 15   Variation of the non-
dimensional critical velocity 
with mass ratio � for different 
conditions

Fig. 16   The variation of Im(𝜔̂) for the second mode with the nondi-
mensional flow velocity for � = 0.395
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is the ratio of Coriolis/centripetal force caused by nano-
flow in rough nanotube to the one in smooth tubes with-
out considering the rarefication effect, the influences of 
surface roughness and rarefication effect on the stability 
and natural frequencies are also opposite. For fixed–fixed 
nanotubes, as the roughness height increases, the critical 
flow velocity increases. On the other hand, as the Knudsen 
number increases, which indicates the rarefication effect 
dominates, the nondimensional critical velocity decreases. 
In addition, with the increasing of roughness height or the 
decreasing of Knudsen number, the natural frequency of 
the first mode increases. For cantilevered nanotubes, the 
surface roughness makes the curve, which describes the 
relationship between the critical velocity Ûcr and the mass 
ratio � , move to the top right of the Ûcr-� plane while the 
rarefication effect induces the curve shifting to the bottom 
left. In addition, the influences of nonlocal effect are also 
analyzed and discussed. The material length scale param-
eter can enhance the stiffness of nanotube and increase the 
critical velocity.
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