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Abstract
Advances in miniaturization of medical and engineering equipment made nanotubes and nanopipes to be very important 
components for these devices. A nonlinear mechanical behaviour of nonlocal strain gradient of a slightly curved tube con-
veying pressurized fluid under thermal loading subjected to forced vibration is investigated in this study. The microtube’s 
viscoelasticity of the material is assumed using the Kelvin–Voigt model. First the effects of scale due to fluid and solid 
are considered. Then using Hamilton’s principle, and the nonlocal strain gradient elasticity, the nonlinear size-dependent 
governing partial integro-differential equation (PDE) is derived. Two different methods are used to solve this problem. 
These are; (1) finite difference method (FDM), is used to solve the PDE, and (2) the Eigenfunction expansion methods was 
combined using Runge–Kutta and Heun schemes to solve the resulting ODE in time. The results of pipe’s midpoint displace-
ment and frequency are almost indistinguishable with Runge–Kutta and Heun schemes. However, comparing FDM with 
RK, the displacement is within 16% while frequency is within 2% respectively. Results show that particularly the effect of 
initial curvature have profound effects on the resonance of the system. For the linear analysis, the slip, nonlocal and thermal 
parameters degraded the natural frequency of the nanotube. For forced vibration, when initial curvature is zero, one distinct 
resonant frequency was obtained. However, for slightly curved pipe, two distinct resonant frequencies were obtained for flow 
velocity between 3.7 and 4.5 respectively. Slightly curved nanopipes with slip boundary condition behave very differently 
from those without slip boundary condition. There are no comparable results in the study of micropipes conveying fluids in 
the oil and gas industry.

Keywords  Carbon nanotube · Small length scale · Natural frequency · Steady state · Fluttering · Chaotic instabilities

1  Introduction

Fluid–solid interactions at nano/small scales in micro and 
nanofluids, are vital since these interactions can change the 
mechanical characteristics/behaviour of the system. For 
example, it has been observed that flow in carbon nano-
tube (CNT) differs in vibration response and its stability 
behaviour is quite different from conventional tube or pipe 
Li et al. (2016). Indeed, less work has been done on fluid 
solid interactions of macropipes and macrotubes (Gholipour 
and Ghayesh 2020; Adebusoye and Oyediran 2016; Orolu 
et al. 2019; Owoseni et al. 2017; Oyelade et al. 2020; Liu 
and Mote 1974; Zhong-min et al. 2005; Li and Yi-ren 2017; 
Oyelade and Oyediran 2020). However, in the last few years, 
attention has been on nanotubes and pipes due to brilliant 
mechanical and electrical properties of these nanostructures 
which find wide applications in engineering and medicine. 
Therefore, for better understanding and production of these 
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small scale systems, their fluid structure interactions should 
be investigated comprehensively.

In mechanics of nanotubes, it has been observed that the 
mechanics of microscale structures is greatly determined by 
size effects which are usually expressed in terms of strain 
gradient and couple stress models (Farajpour et al. 2018; 
Ghayesh et  al. 2018, 2019a, b; Ghayesh and Farajpour 
2008; Ghayesh et al. 2016, 2020). In these works, modi-
fied elasticity theory was developed from the classical con-
tinuum mechanics to incorporate microscale structures. In 
the work of Ghayesh et al. (2020), size effects in both solid 
and fluid nanoscale parts are taken into consideration with 
the slip boundary conditions, however the authors investi-
gated straight nanotube without thermal load. The effects 
of slip boundary conditions and initial curvature will be 
addressed in this paper. In a similar work by Ghayesh’s 
group, the effect of slip boundary conditions was shown to 
overestimate the critical speed of the fluid (Farajpour et al. 
2018). Furthermore, nonlinear dynamics of a geometrically 
imperfect microbeam without fluid has been studied by 
Ghayesh’s group (Farokhi et al. 2013), and the frequency-
response curves for the system with different initial imper-
fections were investigated. In another study, fluttering and 
divergence instability of viscoelastic nanotubes conveying 
fluid were investigated by Nematollahi et al. (2019). The 
pipe was analysed with continuous variations of the material 
properties through the thickness of the nanotube, the elastic 
modulus and the density. The linear analysis was presented 
up to six modes. The effects of structural damping, nonlocal 
parameter, and power-law parameter were investigated. A 
functionally graded material (FGM) pipes conveying fluid 
using power law was studied using a hybrid method which 
combines reverberation-ray matrix method and wave propa-
gation method (Deng et al. 2017). The effects of fluid veloc-
ity, volume fraction exponent, internal pressure and internal 
damping on free vibration and stability of multi-span pipes 
conveying fluid were studied numerically.

Oyelade and Oyediran (2020) explored the cusp bifur-
cation due to the initial curvature on the temperature, 
pressure, and tension. However, in many studies, the size 
dependent due to strain gradient was neglected. Nonlinear 
vibration of a single walled carbon nanotube was shown to 
exhibit different characteristics under high levels of mass 
weight and velocity (Kiani 2014; Mohammadi et al. 2014; 
Ansari et al. 2012). The nanotube was modeled using only 
nonlocal parameter which has been discovered to be insuf-
ficient in modelling the characteristics behaviour of nano-
tubes (Farajpour et al. 2020). Recently, the nonlinear strain 
incorporating the initial curvature was used in the work of 
Farajpour et al. (2020) in investigating dynamics of nano-
tube conveying fluid. Beskok-Karniadakis approach was 
utilized for relative motions at the nanotube wall, and there 
was a coupling of the transverse and longitudinal motion 

of the microtube. This work omitted the effects of cusp 
bifurcation due to initial curvature and thermal, pressure 
or tension load on the nanotube.

All previous contributions are restricted to one parameter 
size-dependent models, straight nanotube or linear models, 
or frequency response of each mode of vibration via a fre-
quency-continuation method, to the best of our knowledge 
no work has extensively dealt with all the variables in nano-
pipe. In this work, a comprehensive analysis of nonlocal 
strain gradient theory (both the nonlocal stresses and the 
strain gradient) is presented for a slightly curved viscoelastic 
nanopipe conveying hot pressurized fluid under forced vibra-
tion with both ends clamped. To better describe the nano-
pipe which normally are not perfectly straight, the pipe is 
assumed to have an initial curvature modeled as trigonomet-
ric function of cosine. Then the size effect of the solid part 
is accounted for by the nonlocal strain gradient theory while 
that of the nanofluid by the slip parameter. The nanopipe 
ends are assumed as clamped-clamped which models a gyro-
scopic nanosystem (Farajpour et al. 2018). The Euler–Ber-
noulli beam and Hamilton’s principle were used to derive the 
nonlinear equation of motion of the size-dependent motion 
of the nanotube. The nonlinear partial integro-differential 
equation of motion is solved using two different methods. 
In the first instance, the eigenfunction of the nanopipe was 
used to change the PDE to ODE in time. Four modes were 
considered. This was used to solve the linear and nonlinear 
analyses (Runge–Kutta and Heun). In the second method, 
the PDE was discretized and finite difference method (FDM) 
was used to solve for the deflection. The results of the FDM 
and Eigenfunction expansions were compared and is found 
that deflections are within 16% of each other. The results 
using the Eigenfunction expansion were used exclusively for 
other cases reported here. The linear analysis results show 
that the natural frequencies decrease as the slip, and nonlocal 
parameters increases. When the nanopipe is straight, one dis-
tinct resonant frequency was obtained while for the slightly 
curve nanotube, two resonants frequencies were observed. 
The behaviour of nanopipe with slip boundary condition 
behaves quite differently from the pipe with no slip boundary 
condition. Thermal and viscoelastic parameters significantly 
affected the dynamics response of the nanotube. The paper is 
organized as follows. Firstly, the nonlinear governing equa-
tion of size dependent pipe is introduced using Hamilton’s 
principle and the semi analytical solution are presented in 
Sect. 2. The stability analysis is conducted for the system to 
show the effect of various parameters such as initial curva-
ture, non local, strain gradients and slip boundary to guar-
antee stability. Secondly, the nonlinear effect of the system 
is systematically analysed by showing the frequency versus 
midpoint displacement of the nanotube for various forcing 
frequencies and initial curvature in Sect. 3. Conclusion is 
presented in Sect. 4 of this paper.
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2 � Mathematical formulation and method 
of solution

2.1 � Effect of slip boundary condition

Figure 1 shows the schematic representation of a micro-
pipe, subjected to a transverse harmonic excitation force 
per unit length F(x) cos(xt) . The no-slip boundary condi-
tion is assumed at a solid surface, where the fluid velocity 
assumes the velocity of the solid surface. No slip boundary 
condition assumption works well in marcoscales levels for 
fluid in pipes and tubes. However, when the characteristics 
length scale is of manometers, the assumption of no-slip 
boundary conditions is not valid any longer. Hence, the 
effect of slip boundary conditions will be included based 
on the earlier work done by Karniadakis et al. (2006). The 
deviation of the state of the fluid from continuum is meas-
ured by the Knedsen number’s Kn, which is defined as the 
ratio of the mean free path of the molecules to external 
characteristics length scale of a fluid conveying system. 
Karniadakis et al. (2006) proposed for generalized diffu-
sion coefficient as a function of Kn:

where �nf0 is the dynamic bulk viscosity of the gas at a spec-
ified temperature and � is the generalized diffusion coeffi-
cient. Diffusion coefficient � as presented in Farajpour et al. 
(2018) is obtained by

In Eqs. (2) and (3), the coefficients �0 , �1 and �0 which are 
determined as �0 = 4, �1 = 0.4, and �0 = -1 Farajpour et al. 
(2018). Based on the Beskok–Karniadaki model, the slip 
speed can be written as Karniadakis et al. (2006)

(1)�nf (Kn) = �nf0

[
1

1 + �Kn

]
,

(2)� =
2�0

�
tan−1

[
�0(Kn)

�1
]
,

(3)�0 = lim
Kn→∞

=
64�0

3�(�0 − 4)
=

64

15�
.

Now, a correction factor for the average speed of the flowing 
fluid inside the nanoscale tube is defined as

where vs and vns are the average fluid velocity for slip and no 
slip boundary conditions respectively. In view of the above 
relations Eqs. (4) and (5), the fluid speed correction factor 
is obtained as

2.2 � Non local strain gradient theory

The classical continuum mechanics cannot describe physi-
cal phenomena in which the long-range interactions play 
a major role. It fails to observe many of the micro-/nano-
scale phenomena. Therefore, the properties and behaviour 
of materials captured by the classical continuum mechan-
ics are invariant with respect to time and length scales, and 
more notably size effects cannot be captured by this classical 
mechanics (Eringen and Edelen 1973; Eringen and Wegner 
2003). The physics of nonlocal elasticity continuum theory 
is to characterize the material body whose behavior (stress 
field) at a material point is not only a function of the strain 
at the point of application of stress but of all points of the 
body. This implies that the stress at a given point within a 
body depends on the strain over the entire material body 
(Eringen and Wegner 2003). For homogeneous and isotropic 
elastic solids, the nonlocal stress tensor at point x is given by

where E is the elastic modulus of the pipe, �0(x�, x, e0a) and 
�1(x

�, x, e1a) are the nonlocal attenuation functions associ-
ated with the strain �xx and the first-order strain gradient 
�xx,x =

d�xx

dx
 , respectively, and l is the strain gradient length 

scale parameter. It is noted that the higher order strain 

(4)

vx =
1

4�nf

P�r2 +
R2

i

4�nf

P�

[
2

(
�v − 2

�v

)(
Kn

1 − �0Kn

)
− 1

]
.

(5)�nf1 =
vs

vns

(6)�nf1 = (1 + �Kn)

[
1 +

4Kn

1 + Kn

(
2 − �v

�v

)]
.

(7)txx = �xx −
d

dx
�(1)
xx

(8)�xx =

L

∫
0

E�0(x, x
�, e0a)�

�
xx
(x�)dx�

(9)�(1)
xx

= l2

L

∫
0

E�1(x, x
�, e0a)�

�
xx
(x�)dx�

Fig. 1   A slightly curved nanoscale tube conveying hot pressurized 
fluid flow subject to external loading
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gradient attenuation function �1(x�, x, e1a) and the strain gra-
dient length scale l are not present in Eringen’s nonlocal 
elasticity theory. The linear nonlocal differential operator 
can be given by Eringen and Edelen (1973)

By applying Eq. (10) into Eq. (7), a general constitutive 
model in a differential form can be given by Li and Hu 
(2016)

where ∇2 =
d
2

dx2
 is defined as the one dimensional differen-

tial operator. Equation (11) is the generalized nonlocal con-
stitutive relation based on the new higher-order nonlocal 
strain gradient theory for the Euler–Bernoulli beam model. 
It contains three length scale parameters; two of which rep-
resent the nonlocal size effect, one of them for the lower-
order nonlocal stress and the other the higher-order nonlocal 
stress; and the third one accounts for the size effect induced 
by higher-order deformation or strain gradients. The nonlo-
cal strain gradient constitutive relation Eq. (11) could be 
easily reduced to the lower order nonlocal stress model

The strain gradient and nonlocal parameters are, respec-
tively, denoted by lsg and eoa in which eo and a represent 
the nonlocal calibration coefficient and the internal charac-
teristic length, respectively. Also, nanotubes resting on the 
polymer matrix can be considered as viscoelastic systems. In 
this research, we use the Kelvin–Voigt viscoelastic model in 
order to capture the damping effects in fluid-conveying hot 
pressurized nanotubes as Farajpour et al. (2018)

Therefore, the size-dependent constitutive equation based 
on the nonlocal strain gradient theory associated with the 
Kelvin–Voigt viscoelastic model may be defined as

(10)Li = 1 − (eia)
2∇2 i = 0, 1.

(11)
[
1 − (e1a)

2∇2
][
1 − (e0a)

2∇2
]
txx = E

[
1 − (e1a)

2∇2
]
�xx

− El2
[
1 − (e0a)

2∇2
]
∇2�xx,

(12)�xx − (ea)2∇2�xx = E
(
1 − l2

sg
∇2

)
�xx.

(13)�xx = E
(
1 + �

�

�t

)
�xx.

(14)
(
1 − (ea)2∇2

)
�x =

(
1 − l2

sg
∇2

)(
E + �

�

�t

)
�xx

(15)
(
1 − (ea)2∇2

)
Mx = −I

(
1 − l2

sg
∇2

)(
E + �

�

�t

)
w��

2.3 � Equations of motion of size‑dependent 
nonlinear pipe

Consider a clamped-clamped slightly curved viscoelastic 
nanotube (SCVN) conveying hot pressurized fluid resting 
on linear and nonlinear foundations under an external load-
ing (see Fig. 1). The total strain and elastic energy of the 
beam can be expressed as

The total strain due to bending and slightly curved differen-
tial element in transverse direction together with the tem-
perature changes, tension and pressure is given as

where w̄ , ā0 , T̄  , P̄ , 𝜃̄ are the transverse displacement, initial 
curvature, tension, pressure and temperature respectively. 
� is the coefficient of thermal expansion, E is the Young 
modulus of the tube and A is the nanotube’s cross-sectional 
area. The strain energy can be expressed as

Adding the strain energy function for the damping (c), linear 
stiffness (k1) and nonlinear stiffness (k3) to the tube gives:

In this study, the stress resultants (Nx,Mx) are defined by 
integration over the cross-section of the nanotube with area 
A as follows

The kinetic energy of the pipe in the transverse direction is 
given by

(16)U =

L

∫
0

∫
A

�x�xxdAdx.

(17)𝜀xx =
1

2
w̄�2 + ā�

0
w̄� − 𝛼𝜃̄ +

(
T̄

EA
−

P̄

E

)
− zw̄��,

(18)

U =

L

∫
0

∫
0

𝜎x

[
1

2
w̄�2 + ā�

0
w̄� − 𝛼𝜃̄ +

(
T̄

EA
−

P̄

E

)
− zw̄��

]
dAdx.

(19)

U =

L

∫
0

[
Nx

{
1

2
w̄�2 + ā�

0
w̄� − 𝛼𝜃̄ +

(
T̄

EA
−

P̄

E

)}
−Mxw̄

��

]
dx

+
1

2
c ̇̄w +

1

2
k̄1w̄

2 +
1

4
k̄3w̄

4.

(20)Mx = ∫A

�xz dA Nx = ∫A

�x dA.

(21)T =
1

2
mp

L

∫
0

̇̄w2dx +
1

2
mf

L

∫
0

( ̇̄w + 𝜅nf1v̄w̄
�)2dx.
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Here, mp , mf  and v̄ represent the mass of the nanopipe, mass 
of the nanofluid and the velocity of the flow, respectively. 
The external harmonic excitation force is obtained as:

in which 𝜔̄n and F̄ denote the excitation frequency and the 
force amplitude. Applying the variational methods to Eqs 
(19),(21) and (22), and evaluating the Lagrangian for the 
equation of motion as L = T − U . Using

the equations of motion in transverse direction with external 
force is given by

Inserting Eq. (17) in Eq. (14) yields

Integrating both sides of Eq. (25) over the pipe area A gives

From Eq. (24), one obtains

Then the transverse equation of motion becomes

(22)WF = ∫
L

0

F̄(x)cos(𝜔̄nt̄)dx,

(23)

𝜕L

𝜕w̄
−

𝜕

𝜕t

(
𝜕L

𝜕 ̇̄w

)
+

𝜕2

𝜕x2

(
𝜕L

𝜕w̄��

)
+

𝜕2

𝜕x𝜕t

(
𝜕L

𝜕 ̇̄w�

)
−

𝜕

𝜕x

𝜕L

𝜕w̄�
= 0

(24)

(mp + mf ) ̈̄w + c ̇̄w + mf (2𝜅nf1v̄ ̇̄w
� + 𝜅2

nf1
v̄2w̄��) + k̄1w̄ + k̄3w̄

3

−
𝜕

𝜕x
Nx(w̄

� + ā0
�) −

𝜕2Mx

𝜕x2
− F̄(x)cos(𝜔̄nt̄) = 0.

(25)

[
1 − (ea)2∇2

]
𝜎x =

[
1 − l2

sg
∇2

][
E + 𝜂

𝜕

𝜕t

]

×

[
1

2
w̄�2 + ā�

0
w̄� − 𝛼𝜃̄ +

(
T̄

EA
−

P̄

E

)
− zw̄��

]
.

(26)

Nx − (e0a)
2N��

x
= EA

[(
1

2
w̄�2 + ā�

0
w̄� − 𝛼𝜃̄ +

(
T̄

EA
−

P̄

E

))

− l2
sg
∇2

(
1

2
w̄�2 + ā�

0
w̄� − 𝛼𝜃̄ +

(
T̄

EA
−

P̄

E

))]

+ 𝜂A
[(

̇̄w�w̄� + ā�
0
̇̄w�
)
− l2

sg
∇2

(
̇̄w�w̄� + ā�

0
̇̄w�
)]
.

(27)

𝜕2Mx

𝜕x2
= (mp + mf ) ̈̄w + c ̇̄w + mf (2𝜅nf1v̄ ̇̄w

� + 𝜅2

nf1
v̄2w̄��)

+k̄1w̄ + k̄3w̄
3 −

𝜕

𝜕x
Nx(w̄

� + ā�) − F̄(x)cos(𝜔̄nt̄).

Using Eq. (26), it can be easily shown that;

while Eq .(28) becomes

For convenience of numerical solution, the following dimen-
sionless parameters and operators are considered

(28)

(mp + mf ) ̈̄w + c ̇̄w + mf (2𝜅nf1v̄ ̇̄w
� + 𝜅2

nf1
v̄2w̄��) + k̄1w̄ + k̄3w̄

3

−
𝜕

𝜕x
Nx(w̄

� + ā0
�)

+EIw̄IV − l2
sg
∇2EIw̄IV + 𝜂I

𝜕

𝜕t
w̄IV − l2

sg
∇2𝜂I

𝜕

𝜕t
w̄IV

−F̄(x)cos(𝜔̄nt̄) − (ea)2∇2

[
(mp + mf ) ̈̄w + c ̇̄w + mf (2𝜅nf1v̄ ̇̄w

�

+𝜅2

nf1
v̄2w̄��) + k̄1w̄ + k̄3w̄

3 −
𝜕

𝜕x
Nx(w̄

� + ā0
�) − F̄(x)cos(𝜔̄nt̄)

]
= 0.

(29)

Nx =
EA

L

L

∫
0

[(
1

2
w̄�2 + ā�

0
w̄�

)
− l2

s
∇2

(
1

2
w̄�2 + ā�

0
w̄�

)]
dx

+
𝜂A

L

L

∫
0

[
( ̇̄w�w̄� + ā�

0
̇̄w�) − l2

sg
∇2( ̇̄w�w̄� + ā�

0
̇̄w�)

]
dx

+ (T̄ − P̄A − EA𝛼𝜃̄) − l2
sg
∇2(T̄ − P̄A − EA𝛼𝜃̄).

(30)

(mp + mf ) ̈̄w + c ̇̄w + mf (2𝜅nf1v̄ ̇̄w
� + 𝜅2

nf1
v̄2w̄��) + k̄1w̄ + k̄3w̄

3

+ EIw̄IV − l2
sg
∇2EIw̄IV + 𝜂I

𝜕

𝜕t
w̄IV − l2

sg
∇2𝜂I

𝜕

𝜕t
w̄IV

−
EA

L

L

∫
0

[(
1

2
w̄�2 + ā�

0
w̄�) − l2

sg
∇2(

1

2
w̄�2 + ā�

0
w̄�
)]

dx(w̄�� + ā��)

−
𝜂A

L

L

∫
0

[
( ̇̄w�w̄� + ā�

0
̇̄w�) − l2

sg
∇2( ̇̄w�w̄� + ̇̄a�

0
w̄�)

]
dx(w̄�� + ā��)

− F̄(x)cos(𝜔̄nt̄) − (T̄ − P̄A − EA𝛼𝜃̄)(w̄�� + ā��)

+ l2
sg
∇2(T̄ − P̄A − EA𝛼𝜃̄)(w̄�� + ā��) − (ea)2∇2

[
(mp + mf ) ̈̄w + c ̇̄w

+ mf (2𝜅nf1v̄ ̇̄w
� + 𝜅2

nf1
v̄2w̄��) + k̄1w̄ + k̄3w̄

3

−
EA

L

L

∫
0

[(1
2
w̄�2 + ā�

0
w̄�
)
− l2

sg
∇2

(
1

2
w̄�2 + ā�

0
w̄�
)]
dx(w̄�� + ā��)

−
𝜂A

L

L

∫
0

[
( ̇̄w�w̄� + ā�

0
̇̄w�) − l2

sg
∇2( ̇̄w�w̄� + ̇̄a�

0
w̄�)

]
dx(w̄�� + ā��)

− (T̄ − P̄A − EA𝛼𝜃̄)(w̄�� + ā��) + l2
s
∇2(T̄ − P̄A − EA𝛼𝜃̄)(w̄�� + ā��)

− F̄(x)cos(𝜔̄nt̄)

]
= 0.
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Using these dimensionless parameters, Eq. (30) yields a par-
tial integro-differential equation given by

with the following boundary conditions for a clamped-
clamped microbeam

(31)

w̄ = wr, x̄ = xL, ā0 = a0r, t̄ = t

√
(mp + mf )

EI
L2, 𝜒sg =

lsg

L

T̄ = T
EI

L2
, P̄ = P

EI

AL2
, 𝜃̄ = 𝜃

I

𝛼AL2
, v̄ = v

√
EI

mf

1

L
,

k̄1 = k1
EI

L4
, k̄3 = k3

EI

L4r2
, 𝛽 =

√
mf

mp + mf

,

𝜒nl =
e0a

L
, 𝜂1 =

𝜂I

L2
√

(mp + mf )

, F̄ = F
EIr

L4
,

𝜔̄n =
1

L2

√
EI

(mp + mf )
Ω, 𝜇 =

cL2
√

EI(mp + mf )

.

(32)

ẅ + 𝜇ẇ + 2𝜅nf1v
√
𝛽ẇ� + (𝜅2

nf1
v2 − T

+ P + 𝜃)w�� + k1w + k3w
3 + wIV

− 𝜒2

sg
wVI + 𝜂1ẇ

IV − 𝜒2

sg
𝜂1ẇ

VI

−

L

∫
0

��
1

2
w�2 + a�

0
w�

�

− 𝜒2

sg
(w�� + a���

0
w� + 2a��

0
w�� + a�

0
w���)

�
dx(w�� + a��

0
)

− F1cos(Ωt) − 𝜂1

L

∫
0

�
ẇ�w� − 𝜒2

sg
(ẇ���w�

+ 2ẇ��w�� + ẇ�w���)
�
dx(w�� + a��

0
)

− (T − P − 𝜃)a��
0
+ 𝜒2

sg
(T − P − 𝜃)

�
wIV + aIV

0

�

− 𝜒2

nl

�
ẅ�� + 𝜇ẇ�� + 2𝜅nf1v

√
𝛽ẇ���

+ (𝜅2

nf1
v2 − T + P + 𝜃)wIV + k1w

�� + 6k3ww
��

−

L

∫
0

��
1

2
w�2 + a�

0
w�

�
− 𝜒2

sg
(w�� + a���

0
w�

+ 2a��
0
w�� + a�

0
w���)

�
dx(wIV + aIV

0
)

− 𝜂1

L

∫
0

�
ẇ�w� − 𝜒2

sg
(ẇ���w� + 2ẇ��w��

+ ẇ�w���)
�
dx(wIV + aIV

0
) − (T − P − 𝜃)aIV

0

+ 𝜒2

sg
(T − P − 𝜃)(wVI + aVI

0
)

�
= 0,

2.4 � Method of solutions

In this subsection, both the Eigenfunction expansion method 
and FDM will be considered. The former method was pre-
viously explained in Oyelade and Oyediran (2020), where 
PDE was reduced to a set of ODE in time. The ODE was 
solved using Runge–Kutta and Heun methods. The sec-
ond method discretizes the PDE directly and solved for the 
deflection. These two methods are described below:

2.4.1 � Eigenfunction expansion technique

The nonlinear partial integro-differential equation of motion 
(Eq. (32)) is discretized into a set of second-order nonlin-
ear ordinary differential equations (ODEs) by means of the 
Eigenfunctions expansion technique. The eigenfunctions for 
the transverse motion of a linear clamped-clamped beam is 
assumed as the appropriate basis functions for the transverse 
motion of the system. The trial function for the transverse 
displacement is taken as

where qi is function to be determined. �i is the eigenfunc-
tion of the clamped-clamped boundary condition. N is the 
number of modes to consider, and for this work, four-mode 
expansion will be used for satisfactory precision. The eigen-
function of clamped-clamped case is

Considering the initial curvature as a sinusoidal function of 
the spatial coordinates of amplitude b, the initial curvature 
that satisfies the clamped-clamped boundary condition can 
be expressed as

The required partial derivatives of Eq. (34) is substituted 
in Eq. (32) and a system of ordinary differential equations 
resulting from Eigenvalue expansion are numerically solved 
by using the Runge–Kutta method.

2.4.2 � Numerical validation by FDM

In this subsection, the numerical procedures for validation 
of the results above are described. The above system (32) 

(33)w(0, t) = w(1, t) = w�(0, t) = w�(1, t) = 0

(34)w(x, t) =
N∑
i=1

qi(t)�i(x),

(35)

�i(x) = cosh �ix − cos �ix −
cosh �i − cos �i

sinh �i − sin �i
(sinh �ix − sin �ix)

(36)a0 =
b

2
(1 − cos 2�x).
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of non-linear partial integro-differential equations is solved 
under the relevant initial and boundary conditions using 
central difference schemes as approximations to the partial 
derivatives (Mattheij et al. 2005). The integral terms in the 
equation are approximated by the well-known trapezoidal 
rule for numerical integration (Burden and Faires 2011). 
Numerical analysis for partial integro-differential equations 
have been studied in Sloan and Thomée (1986), Sanz-Serna 
(1988), Kauthen (1992), and Soliman et al. (2012), while 
the numerical modelling of applied problems with partial 
intgero-differntial equations using the finite-difference 
approach has been explored in Dehghan (2006) and Ding 
and Chen (2019). The basic idea of the finite difference 
method is to approximate the derivative and integral terms 
in the model problem (32). The partial integro-differential 
equations will then be transformed to a sequential sets of 
algebraic equations for the time-dependent problems. The 
approach taken here follows the recent work of Ding and 
Chen (2019).

Equation (32) are solved by finite difference method. Tak-
ing the uniform mesh of step k and time step h, the grid 
points generated are

Partial derivatives are approximated with the following 
finite difference schemes using the notations in the form 
wi,j , where wi,j approximates the exact solution w(x, t) of 
Eq. (32). To discretize the space derivatives, the following 
second order symmetric difference approximation schemes 
are adopted

The temporal derivatives are similarly approximated by the 
central difference scheme

The integral terms are approximated using the composite 
trapezoidal rule

(ti, xj) = (ih, jk), j = 0, 1, 2,… ,M, i = 1, 2,… ,N

(37)

w�(ih, jk) =
wi,j+1 − wi,j−1

2k
,

[2ex]w��(ih, jk) =
wi,j+1 − 2wi,j + wi,j−1

k2
,

[2ex]w���(ih, jk) =
2(wi,j−1 − wi,j+1) + wi,j+2 − wi,j−2

2k3
,

[2ex]wIV (ih, jk) =
wi,j+2 + wi,j−2 + 6wi,j − 4(wi,j+1 + wi,j−1)

k4
,

[2ex]wVI(ih, jk) =
wi,j+3 + wi,j−3 − 6(wi,j+2 + wi,j−2) + 15(wi,j+1 + wi,j−1) − 20wi,j

k6
.

(38)
ẇ(ih, jk) =

wi+1,j − wi−1,j

2h
,

[2ex]ẅ(ih, jk) =
wi+1,j − 2wi,j + wi−1,j

h2
.

The clamped boundary conditions are equally resolved in 
discretized form as follows:

With the implementation of the finite difference approxi-
mations (37) and (38), integral approximations (39) and 
clamped boundary conditions (40), Eq. (32) takes a very 
cumbersome (N − 1) × (M − 1) nonlinear equations of the 
form

From (41), a system of decoupled (M − 1) nonlinear equa-
tions is generated for j = 1, 2,… , (M − 1 ), which is solved 
sequentially by Newton’s method to compute the grid 
displacement {wi+1,1,wi+1,2,… ,wi+1,(M−1)} for time grids 
i = 0, 1, 2,… , (N − 1) . The iterative formula takes the vec-

tor form

where, W (k)

i+1
= {wi+1,1,wi+1,2,… ,wi+1,(M−1)} generated at the 

kth iteration, F(W (k)

i+1
) is the vector function consisting of 

fi+1,j(wi+1,1,wi+1,2,… ,wi+1,M−1), j = 1, 2,… , (M − 1) evalu-
ated at W (k)

i+1
 , while J−1F(W (k)

i+1
) is the inverse of the Jaco-

bian of the vector function F(Wi+1) evaluated at W (k)

i+1
 . This 

procedure is halted when the norm ‖W (k+1)

i+1
−W

(k)

i+1
‖ ≤ tol , 

where tol is specified tolerance to break the iterative 

(39)

L∫
0

w(t, x)dx =
k

2

�
w(t, 0) + 2

M−1∑
j=1

w(t, jk) + w(t, L)

�

[2ex] =
k

2

�
wi,0 + 2

M−1∑
j=1

wi,j + wi,M

�
.

(40)

w0,j = 0.0001, j = 1, 2,… , (M − 1) ⇔ w(0, x) = 0.0001

[2ex]wi,0 = 0 ⇔ w(t, 0) = 0

[2ex]wi,M = 0 ⇔ w(t, L) = 0

[2ex]wi,−1 = wi,1 ⇔ w�(t, 0) = 0

[2ex]wi,M+1 = wi,M−1 ⇔ w�(t, L) = 0

(41)

F(Wi+1) ≡ fi+1,j(wi+1,1,wi+1,2,… ,

wi+1,M−1) = 0 j = 1, 2,… , (M − 1),

i = 1, 2,… , (N − 1).

(42)W
(k+1)

i+1
= W

(k)

i+1
− J−1F(W

(k)

i+1
)F(W

(k)

i+1
)
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procedure. The iterative procedure is repeated sequentially 
for i = 0, 1, 2,… , (N − 1) . See Burden and Faires (2011) for 
more exposition.

The Newton’s procedure is implemented using the 
�������� command in ����������� . Consequently, to 
validate the Eigen function expansion via Runge-methods 
presented in Sect. 2.4.1, the graphical results are presented 
in Sect. 3

3 � Results and discussion

In this section, results of the dynamics are presented. The 
dynamical behaviour of the system, frequency versus fluid 
velocity diagrams of the nanotube conveying hot pressur-
ized fluids are presented for clamped-clamped boundary 
condition.

3.1 � Verifications

To demonstrate the accuracy of the linear model, the dimen-
sionless linear critical velocities are compared with those 
calculated in Ghayesh et al. (2019b).The governing equation 
in the static form can be achieved by dropping the time-
dependent terms from Eq. (32) (Dehrouyeh-Semnani et al. 
2017a, b). Figure 2 shows a very good agreement between 
the calculated results and those reported in Ref Ghayesh 
et al. (2019b).

In order to obtain the amplitude of the steady-state 
response of the slightly curved pipe, the local maximum 
and minimum values of the vibration of last period are 
taken, then the amplitude-frequency response of the mid-
dle point of the pipe is shown in Fig. 3. The steady-state 
response amplitude plot is defined as the half of the differ-
ence between the maximum and minimum values of the dis-
placement for each forcing frequency. Results obtained from 
the Eigen expansion solutions using Runge–Kutta–Fehlberg 
and Heun are then compared with the solution via FDM, as 
shown in Fig. 4. It is seen in Fig. 4 that as far as the displace-
ment tendency with varying frequency is concerned, the 
numerical results obtained by the Runge–Kutta–Fehlberg, 
Heun method and FDM methods are in good agreement. The 
discernible discrepancies between the FDM and the ODE 
results can be attributed to a number of factors, such as order 
of the methods, space grids and stepsize in the numerical 
integration of the resulting ODEs. Hence, the three numeri-
cal methods for solving the nonlinear forced vibration of 
the slightly curved nanotube conveying fluid are accurate 
and credible. The results of the Galerkin method using 
Runge–Kutta are presented.

3.2 � Free vibration: natural frequency

In order to determine the influence of the initial curva-
ture on the natural frequency of the nanotube pipe, Fig.5 
depicts the initial curve amplitude effects on the stabil-
ity of the nanotube conveying hot pressurized nanofluid. 
The real parts of the frequencies decrease as the velocity 

Fig. 2   Verification study for the size-dependent modelling; reported 
result is from Ghayesh et al. (2019b)

Fig. 3   Time-domain response 
of the mid-point of the slighlty 
curved tube. a response in 20 s 
and b steady-state response in a 
time interval of 10–10.5 s v = 4

.F = 1 , P = 0 , � = 0 , T = 0 , 
� = 0.5 , � = 0.5 , �nf1 = 1.4 , 
�sg = 0.0001 , �nl = 0.0005 , 
k
1
= 10 , k

3
= 10 , �

1
= 0.0005 , 

Ω = 6

(a) (b)
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increases between zero and first critical velocity for all 
initial curvatures. However, the critical velocity changes 
from 4.5 for straight pipe to 4.6 and 4.8 for initial curva-
ture of 0.5 and 1.0, respectively. Between the first critical 
velocity and the second, the eigen frequency of the nano-
tube is mainly imaginary, while the real part is zero as the 

velocity increases. There are two branches of the imagi-
nary part which represents the positive and negative damp-
ing effect. The negative parts causes the instability in the 
nanotube. Coupled mode fluttering can be observed at the 
second, third and fourth modes where we have mode 1 and 
2, 2 and 3 and 3 and 4 being coupled together. Imperfect 

(a) (b)

Fig. 4   Comparisons between the Eigenvalue expansion method (with 
Runge–Kutta) and the FDM with velocity. a Initial amplitude varies 
for v = 4 . F = 1 , P = 0 , � = 0 , T = 0 , � = 0.5 , � = 0.5 , �nf1 = 1.4 , 
�sg = 0.0001 , �nl = 0.0005 , k

1
= 10 , k

3
= 10 , �

1
= 0.0005 , b Slip 

parameter varies for v = 4 . F = 1 , P = 0 , � = 0 , T = 0 , � = 0.5 , 
� = 0.5 , b = 0.5 , �sg = 0.0001 , �nl = 0.0005 , k

1
= 10 , k

3
= 105 , 

�
1
= 0.005

Fig. 5   Plot of natural frequency 
against fluid velocity for various 
initial curvature. a real part, 
b imaginary parts. P = 0 , 
� = 0 , T = 0 , � = 0.5 , � = 0.5 , 
�nf1 = 1.4 , �sg = 0 , �nl = 0.001 , 
k
1
= 0 , k

3
= 0 , �

1
= 0

(a) (b)

Fig. 6   Plot of natural frequency 
against fluid velocity for various 
slip boundary parameter. a real 
part, b imaginary parts. P = 0 , 
� = 0 , T = 0 , � = 0.5 , � = 0.5 , 
b = 0.5 , �sg = 0.01 , �nl = 0.01 , 
k
1
= 0 , k

3
= 0 , �

1
= 0

(a) (b)
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nanotube due to initial curvature can be seen to delay the 
divergence instability of the nanotube at the first critical 
velocity but have no significant difference at higher modes 
as we have in classical pipes where the effect of the initial 
curvature affect all the critical velocities significantly (Yi-
Min et al. 2012; Ni et al. 2011) .

Figure 6 presents the plots of the slip boundary effects on 
the natural frequencies of the nanotube conveying nanofluid 
flow. The speed correction factor is set to �nf1 = 1.2 and 1.4 
for slip boundary conditions while it is set to �nf1 = 1 for 
no-slip boundary conditions (classical pipe). The slip bound-
ary parameter has a decreasing influence on the stiffness of 
nanotubes. This effect is noticed for all the critical velocities 
unlike the initial curvature that has effect on the fundamental 
critical velocity only. For example, for classical pipe, the 
first critical velocity is 6.40 while when slip parameter is 
1.2 and 1.4 the critical velocity is 5.35 and 4.6, respectively. 
Likewise, for the second critical velocity for the classical is 
9.0 and for slip parameter 1.2 and 1.4 is 7.5 and 6.4, respec-
tively. At low fluid velocity the frequency is almost the same, 
but as the velocity increases the effect of slip ratio on the 
frequency becomes pronounced in the system.

Figure 7 shows the dynamical behaviour of a clamped-
clamped nanotube conveying fluid under the influence of 
three different non-local parameters. The properties of 
the system are considered as � = 0.5 , � = 0.5 , �nf1 = 1.2 , 
�sg = 0.01 , and b = 1 . It is observed that the nonlocal param-
eters soften the total stiffness for the nanotube system. As the 
value of non-local parameter increases, the critical velocity 
tends to decrease. This result is consistent with other pub-
lished literature on non-local parameters (Nematollahi et al. 
2019; Farajpour et al. 2018). However, instead of the cor-
responding decrease in frequency as the velocity increases 
for increase in non-local parameters, it is seen that the fourth 
mode has increase for high non-local parameter. For illustra-
tion, the frequency at velocity 4 for first mode is 15, 13.5 
and 8.7 for non local parameter 0, 0.1 and 0.2, respectively. 
While for the fourth mode, the frequency is 201.8, 202.8 

and 204, respectively. Hence, at some point as the velocity 
increases the frequency of the nanotube can be higher than 
that of the classical tube.

Strain gradient causes an increase in both the critical 
velocity and natural frequency of the fluid. The first critical 
velocity is almost the same for all strain gradient param-
eters, however, there are differences in the second, third and 
fourth modes. This can be seen in Fig. 10. The frequency 
for the first two modes are similar for the three strain gradi-
ent at the low fluid velocity. Though the difference becomes 
pronounced at the 3rd and 4th modes. For example at strain 
gradient �sg=0, 0.01, and 0.03, the frequency is 200, 202, 
and 218 respectively at fluid velocity 2 for the 4th modes, 
whereas at 3rd modes the frequency is 60, 60.1 and 61.6, 
respectively at the same fluid velocity. The effect of strain 
gradient on frequency at first two modes is quite different in 
terms of the magnitude from the third and the fourth mode.

The effect of viscoelastic parameter is studied in two 
ways; the influence of the inital curvature on elastic nano-
tube and viscoelastic parameter. It is observed that the initial 
geometry imperfection of the pipe only affect the first criti-
cal velcoity for elastic and viscoelastic pipe. The presence 
of damping parameter decoupled the third and fourth mode 
as can be seen in Fig 8b, d (Oyelade et al. 2020). Therefore. 
the higher frequencies are affected by damping more than 
the lower mode (Nematollahi et al. 2019).

Figure 9 shows the effect of thermal load on the critical 
velocity of the slightly curved nanotube. Here, as tempera-
ture increases, the critical velocity and the natural frequen-
cies decrease. Thus, thermal load causes a softening effect 
on the pipe which collaborated the work of Ashley and Havi-
land (1950) and Qian et al. (2009). When the flow velocity is 
lower than the critical, the first natural frequency decreases 
with the increase of the temperature change. This result is at 
variance with nanotube at low or room temperature, in which 
case thermal coefficient is negative.

Fig. 7   Plot of natural frequency 
against fluid velocity for various 
nonlocal parameters. a real 
part, b imaginary parts. P = 0 , 
� = 0 , T = 0,� = 0.5 , � = 0.5 , 
�nf1 = 1.2 , �sg = 0.01 , b = 1 , 
k
1
= 0 , k

3
= 0 , �

1
= 0

(a) (b)
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3.3 � Forced vibration: steady state

The effects of the initial curvature on the dynamics of nano-
tubes before and after critical velocity are shown in Figs. 11 
and  12, respectively. The geometric imperfection of the 
tube is varied between zero and 1. When b = 0 , the tube 
is straight. However when b ≠ 0 then the tube is slightly 
curved. It can be seen in Fig. 11 that straight tube and tube 
with geometric imperfection up to 0.2 display only one 
resonant frequency while tube with geometric imperfection 
greater than 0.2 show two resonants frequencies. Further-
more, the first resonant peak tends to be higher than the 

second peak when the system displays two resonant peaks. 
Hence, the geometric imperfection has significant effect on 
the forced nanotube. The works of Farajpour et al. (2018, 
2019) did not capture this phenomenon because the work 
is based on the straight pipe. From Fig. 12, where the fluid 
velocity is chosen as 10, there is only one resonant for all 
values of initial curvature. Though amplitude value has 
reduced for all frequencies compared to the plots before 
bifurcation as shown in Fig.11. Furthermore, the two res-
onants observed when b ≥ 0.2 , has turned to one. Hence, 
there is need to further probe the effect of fluid velocity 
on the dynamics of the pipe. According to Figs. 13a, and c 

Fig. 8   Plot of natural frequency 
against fluid velocity for various 
initial curvature and viscoelastic 
parameters. bf a, b real part, 
c, d corresponding imaginary 
parts. P = 0 , � = 0 , T = 0 , 
� = 0.5 , � = 0.5 , �nf1 = 1.4 , 
�sg = 0.01 , �nl = 0.1 , k

1
= 0 , 

k
3
= 0 , b = 0.5

(a) (b)

(c) (d)

Fig. 9   Plot of natural frequency 
against fluid velocity for vari-
ous temperature parameters. a 
real part, b imaginary parts. 
P = 0 , � = 0 , T = 0 , � = 0.5 , 
� = 0.5 , �nf1 = 1.4 , �sg = 0.01 , 
�nl = 0.1 , k

1
= 0 , k

3
= 0 , �

1
= 0
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when the initial curvature of the pipe is zero and the exci-
tation frequency increases from 0 to 30, there is only one 
resonance frequency for all vibration. However, when the 
initial curvature b ≠ 0 , the response of the slightly curved 
pipe becomes more complex with two different resonance 
frequency Fig. 13b. This can be observed when the flow 
velocity is between 3.7 and 4.5. The contour plot in Fig. 13d 
clearly shows the two resonants around these velocities. 
Therefore, in general, dynamics of the tube is significantly 
affected by the initial curvature of the pipe and the velocity 
of the fluid.

The resonance frequency is overestimated when the 
slip boundary condition is not incorporated. Moreover, the 
fluid–structure interaction model with no-slip boundary con-
ditions cannot predict modal interactions in the size-depend-
ent frequency-amplitude behaviour of fluid-conveying vis-
coelastic nanotubes

Figure 14 illustrates the effects of fluid slip boundary 
condition on the frequency and midpoint displacement of 
the slightly curved viscoelastic nanotube conveying fluid. 
An interesting phenomenon is found in this system by the 
variation of the slip boundary conditions; there is a reduc-
tion in resonant frequency as the slip boundary parameters 
increases up to 1.4, then the dynamics of the system changes 
from when the slip parameter becomes 1.5. The resonant fre-
quency tends to increases and there is evolution of another 
resonant peak, making two resonant peaks for slip param-
eters greater than 1.5. For example, when �nf1 = 1.4 ,and 
�nf1 = 1.2 , the resonant frequency are 5 and 12, respectively. 
This is lower compared to nanotube with no slip boundary 
condition. In addition, the peak displacements values are 
within range when �nf1 = 1.3 and �nf1 = 1.6 . Hence, no slip 
boundary parameter normally assumed for pipe can not actu-
ally capture the dynamics of nanotube systems. Therefore, 
the internal wall of the tube has effect on the dynamics of 
the nanotube.

The midpoint displacement of the pipe system as a func-
tion of nonlocal parameters and frequency is shown in 

Fig. 10   Plot of natural fre-
quency against fluid velocity 
for various strain gradient 
parameter a real part, b imagi-
nary parts. P = 0 , � = 0 , T = 0 , 
� = 0.5 , � = 0.5 , �nf1 = 1.2 , 
b = 0.5 , �nl = 0.1 , k

1
= 0 , 

k
3
= 0 , �

1
= 0

(a) (b)

Fig. 11   Midpoint displacement of the system as a function of fre-
quency and initial curvature amplitude before critical velocity. v = 5 . 
F = 1 , P = 0 , � = 0 , T = 0 , � = 0.5 , � = 0.5 , �nf1 = 1.4 , �sg = 0.05 , 
�nl = 0.1 , k

1
= 10 , k

3
= 10 , �

1
= 0.0005

Fig. 12   Midpoint displacement of the system as a function of fre-
quency and initial curvature amplitude after critical velocity. v = 10 . 
F = 1 , P = 0 , � = 0 , T = 0 , � = 0.5 , � = 0.5 , �nf1 = 1.4 , �sg = 0.05 , 
�nl = 0.1 , k

1
= 10 , k

3
= 10 , �

1
= 0.0005
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Fig.15. By inspecting Fig.15, three remarkable features can 
be found; (i) As the nonlocal parameter increases, the reso-
nant frequency shift towards the lower frequency up till a 
point where �nl = 0.15 ; (ii) two resonant peaks are formed 
at range �nl = 0.15 to �nl = 0.2 ; and (iii) after �nl = 0.3 , the 
resonant peaks reduce drastically and the resonant frequency 
goes beyond the 30.

It is observed that increase in strain gradient parameter 
causes an increase in the resonant frequency. This can be 

easily seen in Fig. 16. Furthermore, larger strain gradient 
parameters lead to lower peak mid displacement of the pipe 
transverse motions (Farajpour et al. 2020). For illustration 
when �sg = 0.01 , the displacement is around 0.05, while at 
�sg = 0.3 , the displacement is 0.03.

Figure 17 shows that the midpoint displacement of the 
pipe system as a function of frequency and thermal load. 
First, it is obvious that the peak value of the midpoint 
displacement of the pipe reduces with the increase of 

Fig. 13   Midpoint displacement 
of the system as a function of 
frequency and fluid velocity. a 
b = 0 , b b = 1 , c, d correspond-
ing contour map, for �nf1 = 1.5 , 
F = 1 , P = 0 , � = 0 , T = 0 , 
� = 0.5 , � = 0.5 , �sg = 0.05 , 
�nl = 0.2 , k

1
= 0 , k

3
= 0 , 

�
1
= 0.0005

Fig. 14   Midpoint displacement of the system as a function of fre-
quency and slip parameters v = 4 , F = 1 , P = 0 , � = 0 , T = 0 , 
� = 0.5 , � = 0.5 , b = 0.5 , �sg = 0.05 , �nl = 0.1 , k

1
= 10 , k

3
= 10 , 

�
1
= 0.0005

Fig. 15   Midpoint displacement of the system as a function of fre-
quency and nonlocal parameters v = 4 . F = 1 , P = 0 , � = 0 , T = 0 , 
� = 0.5 , � = 0.5 , �nf1 = 1.4 , b = 0.5 , �sg = 0.05 , k

1
= 10 , k

3
= 10 , 

�
1
= 0.0005
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thermal load. Second, the resonance point of the pipe sys-
tem increases as the � increases. This effect is due to the 
slip parameter. The slip boundary condition tends to drag 
the displacement of the pipe. To better understand this, 
we remove the effect of the slip parameter in Fig. 18. In 
Fig. 18 slip parameter was set as zero, and the frequency 
and temperature variation shows that as the frequency 
is increasing the resonant decreases. The behaviour of 
nanopipe with slip boundary condition behaves quite 
differently from the pipe with no slip boundary condi-
tion. Figure 19a highlights the influences of pressure 
and tension on nanotubes frequency diagrams for P =0,2 

and 4. A larger pressure parameter gives a lower peak 
amplitude for the midpoint displacement accompanied by 
a resonance-region shift to the right. Conversely,the ten-
sion parameter increase tends to increase the amplitude 
of the displacement and shift the resonant region to the 
left Fig. 19b.

It can be concluded that viscoelastic parameters does 
not significantly alter the resonant frequency of the nano-
system. However, it has an important effect on the mid-
point displacement of the transverse motion of the nano-
tube (Fig. 20). The resonant frequency for all the forcing 
frequency occurs at 12, and the maximum displacement 
at when there is no damping which is expected from basic 
physics.

4 � Conclusion

In this paper, the initial curvature of the curved nanotube 
has been considered with thermal load in studying the 
transverse vibration of tube considering the effects of scale 
due to fluid and solid. To the best of our knowledge, this is 
one of few papers on forced vibration. The Eigenfunction 
expansion method and fourth order Runge–Kutta method 
were combined to analyze the vibration of the initially 
nanotube under slip boundary conditions,nonlocal effect, 
strain gradient, viscoelastic and thermal load parameters. 
The dynamic equation of the nanotube was derived using 
the generalized Hamilton’s principle. Eigenfunction 
expanson was used to analyze the natural frequencies of 
the nanotube. The steady-state response under harmonic 
excitation was obtained by the numerical methods. The 
effects of key parameters on the steady-state response were 

Fig. 16   Midpoint displacement of the system as a function of fre-
quency and strain gradient parameters v = 4.F = 1 , P = 0 , � = 0 , 
T = 0,� = 0.5 , � = 0.5 , �nf1 = 1.4 , �nl = 0.1 , b = 1 , k

1
= 100 , 

k
3
= 105 , �

1
= 0.0005

Fig. 17   Midpoint displacement of the system as a function of fre-
quency and thermal parameters v = 4 . F = 1 , P = 0 , T = 0 , � = 0.5 , 
� = 0.5 , b = 1 , �sg = 0.05 , �nf1 = 1.4 , �nl = 0.2 , k

1
= 100 , k

3
= 100 , 

�
1
= 0.0005

Fig. 18   Midpoint displacement of the system as a function of fre-
quency and thermal parameters v = 4 . F = 1 , P = 0 , T = 0 , � = 0.5 , 
� = 0.5 , b = 1 , �sg = 0.01 , �nf1 = 1.0 , �nl = 0.01 , k

1
= 100 , k

3
= 100 , 

�
1
= 0.0005
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examined. Based on the obtained results, the following 
conclusions can be drawn:

1.	 The vibration features of a slightly curved nanotube, 
including its linear frequency and the nonlinear response 
are greatly prone to the initial curvature of the tube.

2.	 An increase in fluid slip parameter degrades both the 
linear natural frequency and the critical velocity of the 
tube. The resonant frequency tends to reduce as the slip 
parameter increases. However, for slip boundary condi-
tions, the amplitude of the vibration are higher than no 
slip boundary condition.

3.	 With an increase of the nonlocal parameter, there is a 
decrease in the total stiffness of the nanotube while an 
increase in strain gradient causes an increase in the stiff-
ness of the tube. For the steady state, there is reduction 
of the resonant frequency as the nonlocal parameter 

increases. While strain gradient increase produces an 
increase resonant frequency.

4.	 For forced vibration, when initial curvature is zero, one 
distinct resonant frequency was obtained. However, for 
slightly curved pipe, two distinct resonant frequencies 
were obtained for flow velocity between 3.7 and 4.5 
respectively. One resonant frequency is obtained for 
velocities below 3.7 and above 4.5 respectively.

5.	 Changes in the thermal load and viscoelastic parameters 
significantly affect the dyanmic response of the nanotube 
in linear and nonlinear state.

Consequently, the initial curvature of the nanotube and 
thermal load demonstrate complex dynamic features. There-
fore, initial curvature with other scale dependents effects 
should be considered in the study of vibration of nanotubes.
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